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ABSTRACT 
Unbiased estimates of 8 = ~ N H  in a random mating population can be based on either the number 

of alleles or the average number of nucleotide differences in a sample. However, if there is population 
structure and the sample is drawn from a single subpopulation, these two estimates of 8 behave 
differently. The expected number of alleles in a sample is an increasing function of the migration 
rates, whereas the expected average number of nucleotide differences is shown to be independent of 
the migration rates and equal to 4 N ~ p  for a general model of population structure which includes 
both the island model and the circular stepping-stone model. This contrast in the behavior of these 
two estimates of 8 is used as the basis of a test for population subdivision. Using a Monte-Carlo 
simulation developed so that independent samples from a single subpopulation could be obtained 
quickly, this test is shown to be a useful method to determine if there is population subdivision. 

F the DNA sequences are known for several copies I of a gene sampled from a randomly mating pop- 
dation, there are two ways to estimate 8 = 4Np, where 
N is the population size and p is the mutation rate. 
EWENS (1972) showed that the maximum likelihood 
estimate of 8 assuming the infinite alleles model (KI- 
MURA and CROW 1964) is a function of only the 
number of alleles in the sample and not the frequen- 
cies of the alleles. On the other hand, if the infinite 
sites model (KIMURA 1969) is assumed, then 8 can be 
estimated from the number of segregating sites (WAT- 
TERSON 1975) or less efficiently from the average 
number of nucleotide differences between copies of 
the gene (TAJIMA 1983). If there is random mating 
and nn intragenic recombination then both are un- 
biased estimates of 8. However, if either of these 
assumptions is not true, then these two methods may 
estimate different values. For example, intragenic re- 
combination is expected to increase the number of 
alleles in a sample but not affect the number of seg- 
regating sites or the average number of nucleotide 
differences (WATTERSON 1975; STROBECK and MOR- 
GAN 1978; STROBECK and GOLDING 1983; HUDSON 
198313). 

In this paper it is shown that for a general model of 
population structure, the expected number of nucleo- 
tide differences between two genes which are ran- 
domly chosen from a single subpopulation is inde- 
pendent of the migration rates between subpopula- 
tions and equal to 4NTp where NT is the total number 
of individuals in the population. This model includes 
the island model of WRIGHT (1931) and the circular 
stepping-stone model (MARUYAMA 1970). In contrast, 
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the distribution of the number of alleles in a sample 
from a single subpopulation is approximately the dis- 
tribution of alleles in a panmictic population with a 8’ 
which is an increasing function of the migration rates 
(G. B. GOLDING, personal communication). For ex- 
ample, for the island model it has approximately the 
same sampling distribution as a panmictic population 
with a 8’ = 8 + M ( n  - 1)8/((n - l)8 + M )  where n is 
the number of islands and M = 4Nm (SLATKIN 1982; 
GOLDING and STROBECK 1983). Thus it may be pos- 
sible to determine if a population is panmictic or 
structured by comparing the observed number of 
alleles with that expected from the estimate of 8 based 
on the average number of nucleotide differences be- 
tween the copies of the genes in the sample. Lastly, 
the power of this test to detect population subdivision 
is investigated using Monte-Carlo simulation to obtain 
independent samples from a population known to be 
subdivided. 

EXPECTED NUMBER OF NUCLEOTIDE 
DIFFERENCES 

In this section the expected number of nucleotide 
differences between two randomly chosen DNA se- 
quences is derived for three models of population 
structure; the island model (WRIGHT 193 l ) ,  the cir- 
cular stepping-stone model (MARUYAMA 1970) and a 
general conservative migration model. Unless other- 
wise stated, it is assumed throughout this section that 
the population consists of n subpopulations each with 
N diploid individuals with N >> 1 .  The mutation rate 
per DNA sequence per generation is denoted by p 
and is assumed to be O( 1 /N). 
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In the island model the migration rate from one 
subpopulation to any of the other n - 1 subpopula- 
tions is m / n  - l ( m  = O ( l / N ) ) .  The recurrence equa- 
tions for the expected number of nucleotide differ- 
ences between two randomly chosen DNA sequences 
from the same subpopulation, &,, and from two differ- 
ent subpopulations, [q ,  are 

neglecting terms of O( 1/N2)  or less. The first term on 
the righthand side of (la) is the probability that the 
two sequences came from two distinct sequences in 
the previous generation, no new mutants occurred, 
and neither were migrants times the expected number 
of nucleotide differences. The second term is the 
probability that there was a mutation in one of the 
two sequences times the expected number of nucleo- 
tide differences plus one (because of the new muta- 
tion). The third term is the probability that one of the 
two sequences is a migrant times the expected number 
of nucleotide differences when the two sequences 
come from different subpopulations. The terms con- 
taining the probabilities that there were two muta- 
tions, one sequence was a migrant and there was a 
mutation, etc. have been neglected. Equation l b  is 
derived in a similar fashion. The equations for the 
expected values of the stationary distributions for the 
number of nucleotide differences are therefore 

(2b)  
4Nm A 4Nm 

n - 1  n - 1  &I + - i, = 4NP -- 

and the solution to these equations is 

These results were first obtained by LI (1976) using 
generating functions. 

In the circular stepping-stone model, the subpopu- 
lations are arranged in a circle with migration only 
between adjacent subpopulations. The migration rate 
from a subpopulation to each of the two adjacent 
subpopulations is m/2.  As the number of subpopula- 
tions goes to infinity, the circular stepping-stone 
model converges to the stepping-stone model of Kr- 
MURA and WEIS (1 964). The recurrence equations for 
the expected number of nucleotide differences when 

the two sequences come from two subpopulations 
which are i steps apart, &, are 

+ 2m&-, if n = 2 k  

[L = (1 - 2P - 2m)& + 2 p ( 6  + 
+ m&, + m&-, if n = 2k + 1. 

Thus the equations for the expected values of the 
stationary distribution for the number of nucleotide 
differences are 

(1 + 4Nm)to - 4Nm& = 4Np ( 5 4  
A A * .  

&+I  - 2& + ti-, = -2 m 
f o r i =  1 ,  . . e ,  R -  1 

P 
112 

1 1  

& - &-I = 2 - if n = 2k + 1. 

The general solution to the inhomogeneous Equation 
5b is 

The constants C1 and CO are determined by substitut- 
ing (6) into (5c) and then into (5a). The complete 
solution for the expected number of nucleotide dif- 
ferences is 

El = n 4 ~ p  + - CL i(n - i> for i = 0,  . . . , k .  (7) m 

For both the island model and the circular stepping- 
stone model, the expected number of nucleotide dif- 
ferences when both sequences are drawn randomly 
from the same subpopulation is independent of the 
migration rate and equal to n 4 N ~ .  This is the expected 
number of nucleotide differences if the total popula- 
tion, n N ,  were panmictic. This result also holds for 
any isotropic conservative migration model. Both the 
island model and the circular stepping-stone model 
are isotropic conservative migration models. 

Consider the general backward migration model in 
which my is the proportion of the ith subpopulation 
that comes from the j th  subpopulation each genera- 
tion. (Thus m,, = l - E,+, my.) Let N, be the number 
of diploid individuals in the ith subpopulation. The 
migration will be considered conservative if for every 
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subpopulation the number of individuals migrating 
into the subpopulation is equal to the number of 
individuals migrating out of the subpopulation, i . e . ,  

N I  m, = N l ( l  - mtz) = 2 m,,N, 
,*I 

or 

0 = x mjiNj - Ni .  
I 

This implies that q(M - I )  = 0 where 77 = (NI ,  N2, 
. , N,)  is the row vector of the population sizes, M 

= (me)  is the nXn migration matrix, and I = diag(1) is 
the n x n  identity matrix. If all the Ni are of the same 
order of magnitude and the mi, for i # j are of the 
order of l / N j  then the recurrence equations for Eii 
and Eq are 

neglecting terms of O( 1 /N?)  or less. Therefore the 
equations for the expected values of the stationary 
distributions of the number of nucleotide differences 
are 

(Xmik k#i -k k+l m,k)iy - k#i 1 midjk 
(9b) 

- 2  m , & ,  = 2 p  for i, j = 1, - . e  , n .  
k+J 

Since 
summarized as the matrix equation 

m, = 1 - mzl, these n2 equations can be 

D - ( M  - I)(  - [ (MT - I) = 2pU (10) 

where D = diag(ill/2Nl), E; = (&), and U = (1) is the 
nXn matrix consisting of all ones. 

Multiplying (10) by 2.11 = ( 2 N 1 , 2 N 2 ,  . . .  , 2N,) on 
the left and 2$ on the right, one obtains 

I 

where NT = xi N I  is the total population size. Thus 
the average of the ill, 

tZ2 = 2 N l i l l / 2 N ~  = ~ N T P  

and is independent of the migration rates. If the 
migration model is isotropic, i . e . ,  the pattern of mi- 
gration for each subpopulation is identical to the 
migration pattern of any other subpopulation and N I  
= N for all i, then 

- 
l 

= ct = n4Np.  

Formally, the migration model is isotopic if for any i 
and j there exists a permutation such that i goes t o j  
and mkl = mkrlp where k goes to k’  and E goes to 1’. 
Both the island model and the circular stepping-stone 
model satisfies this condition. During the preparation 
of this paper, it was learned that SLATKIN (1987) has 
obtained similar results for the symmetric migration 
model. 

TEST FOR POPULATION SUBDIVISION 

As shown in the previous section, the expected 
number of nucleotide differences between two DNA 
sequences from the same subpopulation is independ- 
ent of the migrations rates and equal to n 4 N p  for a 
number of models of population structure, including 
the island model. However, for the island model it has 
been shown that the number of alleles in a sample 
from a single subpopulation has a EWEN’S distribution 
with a modified value of 0, 8’ = O + M ( ( n  - l )O / [ (n  - 
1)O + M I }  where O = 4 N p  and M = 4Nm (SLATKIN 
1982; GOLDINC and STROBECK 1983). As M goes from 
zero, i . e . ,  the subpopulations are completely isolated, 
to infinity, i . e . ,  the population is panmictic, 0’ goes 
from O to nO. Thus, if a population is effectively 
subdivided, the number of alleles in a sample from a 
single subpopulation should be much less than predi- 
cated using the O estimated from the average number 
of nucleotide differences found in the sample. 

This suggests the following test for population sub- 
division when the DNA sequences are known for s 
copies of a gene from a single population. First cal- 
culate the average number of nucleotide differences 
for the s(s - 1)/2 pairs of genes. This is an unbiased 
estimate of t9 if the population were panmictic (TAJIMA 
1983). Then use this estimate of O to calculate the 
distribution for the number of alleles found in a 
sample of size s (EWENS 1972) .  If the probability of 
obtaining a sample with less than or equal to the 
number of alleles which were observed in the sample 
is less than a given value a, the null hypothesis that 
the population is panmictic is rejected at the a X 
100% level. In Table 1 the values which the estimate 
of O must exceed before the probability of observing 
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TABLE 1 

Values which 0 = must exceed before the probability of 
observing a given number of alleles in a sample of size 10 or 50 

is less than 0.10, 0.05 or 0.01 

No. Probability 
Sample of al- 

size leles 0.10 0.05 0.01 

10 2 2.18 2.85 4.65 
3 3.84 4.93 7.90 
4 6.30 8.08 13.00 
5 10.23 13.24 21.85 
6 17.19 22.71 39.59 

50 2 1.04 1.30 1.91 
3 1.53 1.86 2.62 
4 2.06 2.46 3.36 
5 2.63 3.09 4.14 
6 3.24 3.78 4.97 
7 3.90 4.51 5.86 
8 4.60 5.29 6.81 
9 5.36 6.13 7.83 

10 6.17 7.03 8.92 

a given number of alleles is less than a (a = 0.10, 0.05 
and 0.01) are listed for sample sizes of s = 10 and 50. 

Two questions about this test come quickly to mind: 
“What is the power of this test to detect population 
subdivision if it exists?” and “Since the number of 
alleles and the average number of nucleotide differ- 
ences are positively correlated, what is the true value 
of rejection of the null hypothesis?” Information about 
both of these questions can be obtained using Monte- 
Carlo simulation to obtain independent samples from 
populations with known structure, subpopulation size, 
migration rates, and mutation rate. A modification of 
the simulation method used by HUDSON (1983a) (see 
also TAJIMA 1983) provides an easy method to obtain 
independent sample for any given population struc- 
ture. 

To obtain independent samples from a panmictic 
population of size N, HUDSON first constructs the 
phylogenetic tree of the sample and determines the 
time associated with each branch of the tree and then 
determines the number of mutations that occur along 
each branch. The phylogenetic tree and the associated 
times are constructed recursively. The probability that 
k copies of a gene in one generation are derived from 
k - 1 copies of the gene in the previous generation is 
k(k - 1)/4N plus terms of O(l/N2). The probability 
that the k copies come from k copies in the previous 
generation is 1 - k(k - 1)/4N plus terms of O(1/N2). 
Therefore, the time, t, measured in 4N generations 
for k copies of a gene to have come from k - 1 copies 
is exponentially distributed, i . e . ,  

fit) = k(k - l)e-@-’]*. 

The cumulative distribution is 
F(t)  = 1 - e-Kk-’)‘ 

Therefore a value o f t  can be obtained by choosing x 
from a uniform distribution on (0, 1) and setting 

-1 
k(k - 1) 

t =  log(1 - x). 

The two copies of the gene that came a single copy in 
the previous generation are chosen randomly. The 
number of mutations along a branch with an associ- 
ated time T, measured in 4N generations is Poisson 
distributed with mean X = OT = 4NpT. 

T o  extend this method to the island model with 
islands, each island with a population size of N, and a 
migration rate m per gene per generation, it is only 
necessary to note that the probability that all k copies 
of a gene on an island one generation were all on the 
island the previous generation is 1 - mk and the 
probability that one copy was an immigrant is mk. 
Therefore the time, measured in 4N generations, till 
one of the copies was an immigrant is exponentially 
distributed 

g(t,) = kM e-kMt*, 

where M = 4”. Therefore a value of t, can be 
obtained by choosing x from a uniform distribution 
on (0, 1) and setting 

-1 
kM 

t, = - log(1 - x). 

To construct the phylogenetic tree of a sample to- 
gether with the associated time for each branch, it is 
necessary to obtain a value of t for each island that 
contains two or more copies of the gene (the distri- 
bution of t depends on the number of copies on each 
of the islands) and a value of t, for each island that 
contains at least one copy of the gene. If the minimum 
value of all of these values is a t value, then on that 
island two genes are randomly selected and replaced 
by a single copy of the gene. If the minimum value is 
a t, value, then on that island one copy of the gene is 
chosen to have been the immigrant and one island is 
chosen from which it had emigrated. A new set of t 
and t, values are chosen and the process repeated 
until only one copy of the gene remains. At this time 
the number of mutations along each branch of the 
phylogenetic tree is determined as before. 

For the purpose of answering the question on the 
power of the proposed test, the number of islands was 
assumed to be n = 8; the sample size, s = 10 or 50; O 
= 4Np = 0.50; and M = 4Nm = 0.125, 0.250, 0.500, 
1.000 and 2.000. The results of 100 independent 
samples are shown in Table 2 for each of the above 
combinations. The test is moderately successful in 
detecting the presence of population subdivision es- 
pecially with s = 50. Note that as either M becomes 
small or large the power of the test decreases. This is 
expected since as M becomes small the single subpop- 
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TABLE 2 

Percentage of samples from a single subpopulation for which 
the null hypothesis of random mating was rejected when the 

island model was assumed 

TABLE 3 

Percentage of samples from a population for which the null 
hypothesis of random mating was rejected when random mating 

was assumed 

Sample 
size 4Nm 

Level of significance (70) 

10 5 1 

10 0.125 
0.250 
0.500 
1 .ooo 
2.000 

50 0.125 
0.250 
0.500 
1 .ooo 
2.000 

15 13 
33 29 
33 25 
33 23 
22 10 

35 31 
34 33 
49 45 
56 50 
49 44 

11 
19 
13 
9 
4 

24 
25 
35 
39 
21 

A hundred independent samples were obtained for each set of 
parameters. It was assumed that the number of islands was n = 8; 0 
= 4Np = 0.5; 4Nm = 0.125, 0.250, 0.500, 1.000 or 2.00; and the 
sample size s = 10 or 50. 

dation becomes completely isolated, whereas if M 
becomes large, the whole population behaves as if it 
were panmictic. 

T o  answer the question of how conservative the 
proposed test is, 1000 independent samples were ob- 
tained for 8 = 0.50, 1.00 and 2.00 and s = 10 and 50. 
The results are shown in Table 3. The test is very 
conservative with s = 10, i.e., only 0.6 to 1.4% are 
rejected at the 10% level. With s = 50 the test is much 
less conservative, i.e., from 1.7 to 7.1% are rejected 
at the 10% level. It should be noted, however, that 
the test does not behave properly for 8 = 2.0 at the 
1% level, i.e., 2.2% is rejected. This is not just a 
stochastic error since another run of 1000 independ- 
ent samples had approximately the same results. It 
seems to occur because although the probability of 
two, three, or four alleles in a sample is small with a 
high mutation rate, when such a sample does occur 
the average number of nucleotide differences in the 
sample is large and therefore more likely to be signif- 
icant. For example, in the simulation with 8 = 2.0 and 
s = 50, there were 115 samples with two, three or 
four alleles of which 25, 21 and 9 were significant at 
the 10, 5 and 1% level, respectively. On the other- 
hand, there were 128 samples with ten or more alleles 
of which only one was significant (at the 5% level). 

T o  summarize, the Monte-Carlo simulations show 
that population structure can be detected by compar- 
ing the observed number of alleles in a sample to that 
expected when 8 = 4Np is estimated from the average 
number of nucleotide differences. However, it is a 
very conservative test for small sample sizes and it is 
not a proper statistical test if 8 is large. It may be 
possible to overcome these problems by developing a 
test based on the joint distribution of the number of 

Level of significance (%) 

size 4NP 10 5 1 

10 0.5 0.6 0.1 0.0 
1 .O 1.2 0.7 0.1 
2.0 1.4 0.5 0.0 

50 0.5 1.7 0.6 0.2 
1 .o 5.8 3.3 0.8 
2.0 7.1 5.2 2.2 

Sample 

A thousand independent samples were obtained for each set of 
parameters. It was assumed that 0 = 4Np = 0.5, 1.0 or 2.0 and the 
sample size s = 10 or 50. 

alleles and the average number of nucleotide differ- 
ences in a sample. 
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