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ABSTRACT 
It  is a common observation that most mutants have similar dominance relations for all the characters 

they are known to affect. As a model of pleiotropic effects w e  investigate a branched pathway where 
the two outputs represent two characters whose variation is affected by changes in any of the 
genetically specified enzymes in the system. We consider the effects on the phenotype (fluxes or 
intermediate metabolites) of substitutions at one locus represented by enzyme activities of the two 
homozygotes (mutant and wild type) and that of the heterozygote. Dominance indices for the 
characters pleiotropically connected by the metabolic system are calculated. We show that if enzymes 
behave ‘linearly,’ (first order), that is if saturation and feedback inhibition or other nonlinearities are 
absent, all fluxes and pools have identical dominance relations. The  presence of such nonlinearity, 
however, leads to differences in dominance between different characters and we define the conditions 
where such differences can be important. 

HE characters which geneticists measure must T arise from the physiological and metabolic proc- 
esses which occur within the organism. Genetic vari- 
ation results in variation of the gene products of which 
many are catalytic proteins, i .e. ,  enzymes. Acting 
through the metabolism, enzymes ‘control’ the varia- 
bles, i . e . ,  fluxes and metabolic pools, in a quantitative 
manner. Metabolism is often represented by the met- 
abolic map. This map shows us how the enzymes are 
connected to one another by the metabolites they 
share. The substrate for one reaction is, in general, 
the product of another. Other interactions are from 
metabolites that act as effectors, positive or negative, 
for particular enzymes. The map does not, however, 
define the kinetic structure of the metabolic system, 
that is, give us any information on the rates at which 
substrates are converted from one to another. The 
measurement of these rates-the metabolic fluxes- 
and of the metabolite pool concentrations is the 
proper subject of ‘quantitative metabolism.’ The 
methodology of quantitative metabolism is to study 
the effects of varying the parameters of the system 
(e.g., enzyme activities) on variables which may be 
measured ( i . e . ,  fluxes and metabolite pool levels). The- 
oretical treatments of quantitative metabolism (KAC- 
SER and BURNS 1973; HEINRICH and RAPOPORT 1974; 
KACSER 1983; FELL and SAURO 1985; HOFMEYER, 
KACSER and VAN DER MERWE 1986) have provided 
expectations of the behavior of living systems (e .g . ,  
FLINT, PORTEOUS and KACSER 1980; FLINT et al. 198 1 ; 
GROEN et a l . ,  1982; MIDDLETON and KACSER 1983; 
STUART et al. 1986; WOODROW 1986; SALTER, 
KNOWLES and POGSON 1986; DYKHUIZEN, DEAN and 
HARTL 1987). Because, in principle, all enzymes affect 

Genetics 117: 319-329 (October 1987) 

all variables and since enzyme activities are under 
genetic control, fluxes and pool levels are quantitative 
characters or very closely related to them. In living 
systems the values of these characters are determined 
by the alleles which control enzyme activities and by 
the environment which controls the inputs and the 
external effectors to the metabolic system. 

In a previous paper (KACSER and BURNS 198l), the 
methods of quantitative metabolism were applied to 
the question of the effects of finite changes in enzyme 
activity generated by allelic differences and led to a 
general analysis of dominance relationships. It was 
shown that there is a nonlinear relationship between 
flux or metabolite concentration and enzyme activity. 
The general expectation that “null” mutants at en- 
zyme loci are ‘recessive’ is explainable in these terms 
without necessitating an evolutionary hypothesis of 
“modifiers” first proposed by FISHER (1 928) (see e.g. ,  
MIDDLETON and KACSER 1983; DEAN, DYKHUIZEN and 
HARTL 1986; CORNISH-BOWDEN 1987; KACSER 1987). 
On the other hand, small differences in the enzyme 
parameters of mutant and wild type were shown to 
result in an intermediate heterozygote phenotype. 
Here, we extend the KACSER and BURNS ( 1  98 1) treat- 
ment to the problem of pleiotropic effects of enzyme 
variation. 

Since the metabolic system is highly interactive, 
genetic variation at one locus will in principle affect 
all the characters. This, together with the interactive 
nature of development gives us a general expectation 
of pleiotropy. It does not, however, imply that any 
genetic variation affects all the characters in the same 
way. Intuitively, we would expect some characters to 
be ‘close’ to one another and others to be more 
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‘distant’ but the directions and extent to which differ- 
ent characters are affected by genetic variation and 
the types of response in such characters are not intu- 
itively obvious. The purpose of the present study is to 
develop theoretical expectations for the effects of 
finite changes in genetically determined enzyme pa- 
rameters on characters pleiotropically related in the 
metabolic system. In particular, expectations for the 
dominance relations will be derived. This will be 
related to the fact that, in a vast majority of cases, the 
dominance relations of a pair of alleles affecting one 
character are the same when the effects on a pleio- 
tropically related character are considered. 

T H E  MODEL 

The dominance relationship of the three pheno- 
types in a diploid can be described by an index. The 
dominance index (D) ,  first defined by WRIGHT (1934) 
and used by KACSER and BURNS ( 1  98 I), gives a quan- 
titative description of dominance. Using the symbols 
Mi, H and A4 for the values of the wild-type, hetero- 
zygote and mutant phenotypes, respectively, the index 
D is defined by: 

W - H  D=- 
W - M ’  

Although D can take any value, the following useful 
conditions apply for limiting cases: (a) W = H ,  then D 
= 0. The mutation is fully ‘recessive’; (b) W - H = (W 
- M ) / 2 ,  then D = 0.5. The mutation gives an exact 
intermediate heterozygote phenotype; and (c) N = M ,  
then D = 1. The mutation is fully ‘dominant.’ 

For this study, where general properties are re- 
quired, we use an abstraction of a living system dis- 
playing some important properties (Figure 1). This i s  
a simple biochemical system showing pleiotropy, as 
two outputs will be affected by changes in any one 
“me. Although even an unbranched pathway will 
display pleiotropy, insofar as enzyme variation can 
affect the intermediate pools differentially, a 
branched system with two outputs is a more general 
case. The system will reach a steady state with input 
concentrations X A  and outputs X B  and Xc held at 
constant levels. The external concentrations of X A ,  X B  
and X,; are assumed to be controlled by the environ- 
ment and are in no way affected by the activities of 
the metabolic system itself. If there is an electrochem- 
ical potential difference between X A  and X ,  as well as 
Xi,, there will be a net flow from the input to the 
outputs. The substrate S is utilised by enzymes in both 
of the branches and they therefore compete for S. At 
steady state the fluxes ( J ’ s )  through each pathway are 
constrained by 

J A  = Je +- Ji:. (2) 
The outputs J. and Jc: are ‘correlated’ characters as 

X A  
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FIGURE 1 (a and b).-The branched system. The  system is 
bounded by the external substances, X,, Xa and Xc.  The  three 
symmetrical branches are labeled “ A ” ,  “B” and “C”.  The  point of 
divergence in the system is at  substrate S which is catalysed by three 
enzymes E:,  E? and E?. The  superscript on the enzyme and sub- 
strate symbols refer to the branch, and the subscript refers to the 
position in the branch. Equilibrium constants are similarly named. 
For example, KA, ,  refers to the equilibrium constant of the reaction 
X, -+ Sf, etc. For the unsaturated case, all the enzymes in each 
branch can be condensed to ‘group enzyme activities,’ A ,  B and C 
(see Appendix 1,  Eq. 1.4). 

are all the substrate pool levels including the concen- 
tration of S.  Enzyme variation anywhere in the system 
will simultaneously affect all the characters though 
not necessarily to the same degree. 

The unsaturated system 

Figure 1 b represents the general case of a branched 
pathway. By making the simplifying assumption that 
all the steps are monomolecular, and that saturation 
of the enzymes is absent, it is possible to derive a 
system of linear equations for the fluxes and pools 
(Appendix 1). As a further simplification the activities 
of the enzymes in each branch can be combined to 
give ‘group enzyme activities’ A ,  B and C (their exact 
definition is given in Appendix 1). For the unsaturated 
system defined in Figure 1 b, there are therefore three 
linear rate equations for the three fluxes. 

Since the system is symmetrical, the flows in any 
one branch can go on in either direction as long as 
the mass conservation constraint (2) is met. In the 
following sections, we define the following directions 
for positive fluxes: X A  + S ,  S 3 Xe, S 3 X ( , .  We have 
three symmetrical branches-“A,” “B” and “C” with 
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an arbitrary number of first order enzymes in each. 
By solving the simultaneous equations, expressions 

for each of the fluxes J A ,  J B  and J C  can be obtained in 
which the enzyme activities appear as parameters. 
Although a character, such as a flux or a pool, is a 
function of all the enzyme activities in the system, we 
are interested in the effect of variation in one enzyme 
only. This can be anywhere in the system. We consider 
the two-allele case: wild type, mutant and heterozy- 
gote for which three different values of one of the 
enzyme activities will apply. By inserting these three 
different enzyme values in each of the equations for 
JA,  J B  and Jc,  the phenotypic values for the fluxes are 
obtained. Finally, insertion of these in to the expres- 
sion for the dominance index (1) allows us to compare 
how changes at one locus affects the dominance rela- 
tions for the pleiotropically related fluxes. 

In Appendix 2 we give a general proof that for a 
system of unsaturated enzymes, of any complexity, 
the dominance index with respect to any one locus is 
exactly the same for all characters (fluxes or metabo- 
lite pools) affected by the allelic substitutions. AI- 
though the dominance indices are identical, the mea- 
sured differences in the characters may be very dif- 
ferent. If, e.g., we find ‘recessivity’ in one character, 
say a flux, (D 3 0), then we shall find the same in 
another pleiotropically related character, say a pool. 
The underlying feature which generates these identi- 
ties is that in a system with linear equations for each 
step, all the fluxes are linearly related to all the pools. 
This is illustrated in Figure 2 which is shown as a 
‘reflection diagram.’ (See BURNS and KACSER 1977.) 
Such a diagram shows the effects of the independent 
variable (enzyme activity ’4 in this case) on a dependent 
variable (metabolite S in this case) which, in turn, 
affects further dependent variables (the three fluxes). 
The decomposition into the functional components 
aids the understanding of the system. 

The branched system with saturation 
We now consider specifically the case of some de- 

gree of saturation in one of the branches. Let this be 
an enzyme E! in the “B” branch. The system is rep- 
resented in Figure 3. 

The “ A ”  and “C” branches are identical in structure 
to the nonsaturable system (Figure lb). The saturable 
branch can be divided into three parts: (a) The “P” 
section of nonsaturable enzymes proximal to E;. (b) 
The saturable enzyme E,”. E; is saturable by either its 
product S, or its substrate S, or both, depending on 
the values of the Michaelis constants, MI and M,, 
respectively (see Eq. 1.1 in Appendix 1). (c) The “D” 
section of nonsaturable enzymes distal to E;. 

A quadratic expression for J B  is obtainable in terms 
of all the internal and external parameters (Appendix 
3). The expression forJ, is also a quadratic and is also 
given in Appendix 3. These equations are difficult to 
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FIGURE 2.-Flux responses to changes in the enzyme activity of 
the common branch in a system with first order enzymes (all 
enzymes unsaturated). The effects are shown as a “reflection dia- 
gram” which ‘decomposes’ the effect into component functions of 
the final function. (a) How variation in the parameter A (group 
enzyme activity) changes the steady state value of the variable S 
(the branch point substrate). (see Figure 1) .  (b) Changes in S are 
now reflected in this panel which shows how changes in the variable 
affect the three fluxes dependent on it. This therefore shows how 
S is allocated from JA to the two output fluxes JB and Jc. (c)  The 
flux changes are reflected back to A and show the resultant net 
effect of changes in A on the three fluxes. It will be noted that (b) 
shows linear relationships of  S on J’s. This implies that the Domi- 
nance Index (resulting from any three values of A) will be identical 
when measured in any of the three fluxes or in S .  The relationships 
of the J’s  on A in (c)  are simple hyperbolic functions. Any three 
values of A will give identical flux proportions in all three fluxes. It 
will also be noted that in (b) and (c)  the fluxes are constrained byJn 
= JB + Jc. 

manipulate algebraically, and, being non-linear, the 
matrix treatment does not apply. Their characteristics 
with respect to enzyme variation are better under- 
stood by evaluating specific parameter sets. (See e.g., 
HOFMEYER 1986.) Branched pathways have been in- 
vestigated previously [KACSER (1983) in terms of con- 
trol analysis; LAPORTE, WALSH and KOSHLAND (1984) 
in terms of allocation of the fluxes; and SAURO, SMALL 
and FELL (1 98’7) in terms of the matrix method giving 
branch distribution control coefficients]. 

Since we are interested in the possible effects of 
saturation on the dominance relations in JB and Jc ,  we 
need to examine cases of ‘high’ and ‘low’ saturation. 
The degree of saturation may be described quantita- 
tively by a simple saturation index, SAT: 

(3) 

SAT can take values as follows: (a) &/Mi << 1 and 
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FIGURE 3.-The saturable branched system. As before there are 
three branches labeled “ A ” ,  “B” and “C.” T h e  “A” and “C” branches 
are identical in structure to the branches as specified for the Figure 
1 b and are assumed to be unsaturated. The  “B” branch consists of 
three parts. The  linear “P” section is proximal to the saturable step 
S, -+SI catalyzed by enzyme E,. Distal to this step is the “D” portion 
o f  unsaturated enzymes. T h e  nomenclature is the same as described 
in the legend to Figure 1. 
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Input Concentration I X R I  
FIGURE 4.--Saturation response of E, to X,. The following pa- 

rameters were used: Xa, varied from l to 100; Xa = l ;  X ,  = l ;  A = 

equilibrium constants were set to unity. These values were used to 
compute the fluxes and the pools, Si and S,, which are then inserted 
into Eq. 3. 

2; P = 100; D = 100; C = 1, V, = 100; M, = 5; Mj = 1000. All 

S,/MJ << 1 (‘low’ saturation, SAT + 0) and (b) S,/Mi 
>> 1 and/or Sj/Mj >> 1 (‘high’ saturation, SAT 3 1). 

We investigate differences in saturation by modify- 
ing a parameter which will in turn affect the amount 
of saturation. To vary saturation we have chosen to 
simulate changes in X,. As X A  increases, the saturation 
of El will increase (Figure 4). (An alternative method 
would have been to compare a series of enzymes with 
decreasing values of M.) 

The dominance relations in such a system are in- 
vestigated by evaluating the functions for JB and J. 
with different values of X A .  For any given value of X A  
wit3 now consider variation in one enzyme’s activity 

t /  

E! - 0.4 0*51< 
\ DJB 

0.0 
0 20 40 60 80 100 

Input Concentration I X R )  
FIGURE 5.-Dominance indires as a function of saturation by 

varying X.4. The dominance indices of the two output fluxes with 
respect to enzyme variation occurring in the common (“A”)  branch. 
The parameters are identical to those used in generating Figure 4, 
except for A. The values for .4 were taken as: the mutant activity = 
0, the heterozygote activity = 1 and the wild-type activity = 2. 

and its effect on the fluxes. We obtain three Je and Jc  
values, two homozygote values and the heterozygote. 
These are then used to evaluate the expressions for 
the dominance indices, 0,. and D,(; (Eq. I) ,  where the 
subscripts refer to the phenotype where the domi- 
nance index is measured. This procedure is repeated 
for different values of X ,  (and hence different degrees 
of saturation of enzyme Ej). 

Enzyme variation in the common branch: Figure 
5 illustrates the dominance indices of Jp, and J(; for 
enzyme variation in the “ A  ” branch as X A  is modulated 
and hence as the degree of saturation changes. Clearly 
with high levels of saturation, the dominance indices 
can be quite different with, in this case, the saturable 
output, J B  more ‘recessive’ (smaller value of D). At 
low saturation, as the analysis of the unsaturated case 
predicts, the indices tend to equality. The differences 
in dominance which can occur are best explained in 
terms of the nonlinearity of the fluxes to substrate 
concentrations now present in the system. Since the 
“C” pathway is a chain of nonsaturable enzymes, Jc  
responds linearly to changes in the common substrate, 
S ,  but J B  responds nonlinearly due to the damping 
effect of the saturable enzyme. Th i s  is illustrated in 
Figure 6 which is shown as a “reflection diagram” for 
one value of X A  giving high saturation. 

Figure 6a shows the effect of varying A enzyme on 
the common substrate S .  Unlike the response in non- 
saturated systems, where the relationship was hyper- 
bolic (Figure 2), S shows an early ‘accelerating’ portion 
before approaching a plateau at high values of A (not 
shown). Figure 6b shows the effect of such changes in 
S on its differential allocation to the two output fluxes 
J B  and Jc; .  Clearly,Jc responds linearly to S (cf: section 
on nonsaturated systems), while J B  shows the effects 
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FIGURE 6.-Flux responses to changes in the enzyme activity of 
the common (“A”)  branch. Parameters as in Figure 4 with XA at 100 
(high saturation) and A varying from zero to 2. As explained in the 
legend to Figure 2, the effects are shown as a ‘reflection diagram.’ 
The “C” branch of first-order enzymes gives a linear flux response 
to S. The “B” branch, however, gives a damped response due to 
the presence of the saturable enzyme. This damping effect leads to 
the tendency for the “B” flux to give a ‘more recessive’ phenotype 
than the “C” flux (see Figure 5) and hence to different dominance 
indices. 

of increasing saturation. Finally, Figure 6c shows the 
net effect of changes in A on the fluxes. 

Thus, no matter which three values of S result from 
the three enzyme activities, the J B  phenotype will 
appear ‘more recessive’ than](;. It is notable (Figures 
5 and 6c) that in this case the flux in the nonsaturable 
branch, J c ,  can give a Dominance Index greater than 
0.5, i . e . ,  the mutant can therefore tend to be ‘domi- 
nant’ over the wild type (the heterozygote is nearer 
the mutant phenotype). This result, not previously 
observed, is due to the increasing slope of the J(; flux 
at low values of A (Figure 6c) in contrast to the 
monotonically declining change in J B .  

Enzyme variation in the nonsaturable branch: Fig- 
ure 7 illustrates the dominance indices measured in 
the two fluxes for varying values of X A  where enzyme 
variation occurs in the nonsaturable branch. Here, we 
observe the opposite result from the effect of variation 
in the common branch. The flux measured through 
the nonsaturable pathway, Jc ,  is in this case a more 
recessive phenotype than that measured in the satur- 
able branch. This result is also explainable in terms of 
the reaction of the fluxes to changes in the common 
substrate, S. This is illustrated in Figure 8. As in the 
case of variation in the common branch, J B  varies 
nonlinearly with S, higher values being damped due 
to the effect of saturation (Figure 6b). The flux in the 

0-36 T 

O n o 6 L  0.00 0 20 40 60 80 100 

Input Concentration ( X R )  
FIGURE 7.-The dominance indices of the two output fluxes 

with respect to enzyme variation occurring in the nonsaturable 
(“C”) branch. Saturation is varied in the system by modulating the 
input X,. The mutant enzyme activity is zero and the heterozygote 
activity is half wild type. The following parameters were used to 
generate the curves: X ,  = 1; X c  = 1, A = 1; P = 100; C = 10 (wild 
type); VI = 50; M ,  = 5; M, = 1000. All equilibrium constants were 
set to unity. 

1“ 
\ i.“ 

60 50 40 30 20 10 
S 

FIGURE 8.-Flux response to changes in enzyme activity in the 
competing “C” branch in the saturable system. This is a ‘reflection 
diagram’ (see Figure 2). Parameters as in Figure 7 with Xn = 100 
and C varying from zero to 10. The “A” flux gives a linear response 
to changes in S, and “B” flux is damped due to the presence of 
saturation. The net result of these changes (c) is the tendency for 
J. to give a more recessive phenotype thanJB. 

common branch, J A ,  is, however linear in S. Since J(; 
= J A  - J B ,  Jc; varies in this case nonlinearly with S, 
changes in which have been induced by enzyme vari- 
ation in this pathway. 

Enzyme variation in the saturable branch: In this 
case the numerical studies indicated, somewhat sur- 
prisingly, that the dominance indices measured in 
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FIGURE 9.-Flux responses to change in enzyme activity in the 
saturable “B” branch. Parameters: X.4 = 100, X B  = 1; X,: = 1; A = 
0.5; P = 100; D = 100; M, = 10; M, = 1000, C = 1; and V, varied 
from 0 to 100. All equilibrium constants were set to unity. Here 
the relationships of the fluxes to the branch point metabolite, S ,  are 
all linear, leading to identical dominance relations (compare Figure 
2). 

each character were identical although there was con- 
siderable saturation in the branch. This is so irrespec- 
tive of whether variation occurs before, after, o r  at 
the saturable step. T h e  explanation for this result lies 
in the linearity of the fluxes in the nonsaturable 
branches ( J A  and J(;) with changes in S caused by 
enzyme variation in the saturable branch. Since the 
fluxes are  constrained by J B  = J.4 - Jc:,  J B  must also be 
linear with changes in S caused by enzyme variation 
in its own pathway (Figure 9). (Contrast Figures 6 b  
and 8b.) 

I n  our  simulations we have assumed that a mutation 
of the saturable enzyme affects only the V,,,,,, and not 
the K ,  values. This is an unnecessary restriction as 
changes in any enzyme parameter will affect the phe- 
notypes through changes in S. T h e  behaviour of the 
indices will therefore be the same as discussed above. 

Effect of feedback inhibition: Feedback inhibition 
is mother  mechanism which can cause nonlinear re- 
lationships between pools and fluxes. We have inves- 
tigated the effect of a feedback inhibition loop (Figure 
10) on the dominance relations of the output fluxes. 

Again the common “ A ”  branch and the “C” branch 
are  identical in structure to  the corresponding 
branches in the nonsaturable system (Figure 1 b). T h e  
branch where feedback inhibition occurs is divided 
into three sections, P ,  Q and R with an arbitrary 
number of enzymes in each. T h e  substrate Sk inhibits 
the enzyme E]. Sk is distal to the product of El (SI)  in 
the chain. 

“B” Branch SI 

XA- s ” P“enzymes 

\ 
“K Branch \ 

FIGURE 1 0.-The branched system with feedback inhibition. 
The structure is similar to the previously defined systems (Figures 
1 and 3). The “A” and “C” branches are identical in structure to 
the linear system. The “B” branch consists of four parts. The  “P” 
section is a chain of linear en7ymes proximal to the step S, -+ S, 
catalyzed by enzyme E:. This enzyme is inhibited by .Sh, a substrate 
further up the chain. Proximal to S I  is the “Q” section of linear 
eniymes and distal is the “R” section. The  equilibrium constants 
for the reactions S + S,, S, + Sa, and Sh 3 X B  are termed K,, KQ 
and K R ,  respectively. 

Assuming steady state, quadratic equations are ob- 
tainable for fluxes through each branch (Appendix 
4). T h e  nonlinearity introduced by feedback inhibi- 
tion leads to qualitatively similar behavior to the sys- 
tem with saturation in one branch (results not shown). 
As feedback increases (measurable by an index anal- 
ogous to the saturation index), differences in domi- 
nance can occur, the directions of which are the same 
as the saturable case. T h e  arguments to explain these 
phenomena are  identical to those used to  explain the 
effects of saturation. 

DISCUSSION 

As a limiting case, we have in the first place inves- 
tigated dominance in systems of monomolecular trans- 
formations with no saturation o r  feedback inhibition. 
This is a reasonable approximation to ‘real’ systems 
when the metabolite concentrations are  less than their 
respective Michaelis constants. O u r  conclusions apply 
to any arbitrary network of any structural complexity. 
An important result is that this type of system has 
identical Dominance Indices for all fluxes and pool 
levels with respect to variation of any of the enzymes. 
T h e  reason for this behaviour is to  be found in the 
fact that in such systems, the pools and fluxes are 
linearly related to one another. Real metabolic systems 
are not of course all monomolecular as many reactions 
involve splitting and combining substrates. For ex- 
ample, a bimolecular step in a divergent metabolic 
system could be the reaction S,  --+ SI + Sk, where S, 
and Sk are  the beginning of two further pathways. 



Dominance and Pleiotropy 325 

This reaction is constrained by its stoichiometry and 
the rates of production of S, and Sk must be identical. 
If two outputs arise from such stoichiometrically con- 
strained fluxes, no question of competition for a 
shared metabolite arises. No difference in dominance 
relationship will therefore be observed, no matter 
what the saturation state or feedback conditions are. 

For nonlinear systems we have had to use numerical 
simulations to assess the effects on independently var- 
iable fluxes. It has been shown that saturation at one 
enzyme can lead to differences in the dominance 
relations of two outputs. We have defined the direc- 
tions of the differences in Dominance Indices for 
enzyme variation at different parts of the system. We 
have not explicitly considered systems with saturation 
in both the competing branches. The directions of 
any differences in dominance will depend on the 
relative saturation in each of the branches. The dom- 
inance relations in the presence of such nonlinear 
enzymes are dependent on their Michaelis constants 
as well as on the concentrations of external substances 
which affect the degree of saturation. Dominance and 
any possible differences are thus a function of the 
environment in which organisms are operating as well 
as of their genes. 

The effect of saturation on the Dominance Indices 
is essentially through the resulting nonlinearity of 
some fluxes to substrate concentration. The presence 
of a feedback inhibition loop in the system can also 
lead to differences in the dominance between the 
outputs. The mechanism is essentially the same as for 
the case of saturation, with feedback inhibition intro- 
ducing nonlinear relationships between fluxes and 
pools. This qualitative explanation of the behaviour 
of the saturable system and the system with feedback 
inhibition is robust to changes in parameters and 
consistent. 

How do the above considerations relate to the dom- 
inance relations for pleiotropic effects of enzyme var- 
iation actually found in vivo? An enormous amount of 
work has gone into studies of human inborn errors of 
metabolism. These are frequently caused by near null- 
mutations at enzyme loci (HARRIS 1980). In most 
cases, heterozygotes are detectable if measurement of 
the enzyme activity is possible when it will show an 
activity which is usually the mean of wild type and 
mutant (STANBURY et al. 1983). In spite of this, the 
clinical phenotype of the heterozygote is ‘recessive.’ 
It has been shown that ‘recessive’ does not mean 
‘complete recessive’ (e.g., KNOX and MESSINGER 1958; 
BULFIELD and KACSER 1974; KACSER and BURNS 
198 1) as the heterozygote phenotype will invariably 
exhibit a small average difference from the wild type. 
Detection of heterozygotes will therefore depend on 
the ability to measure small differences and on the 
noise in the system. We have not, however, found any 

case in the literature where the heterozygote for a 
clinical phenotype is distinguishable from the wild 
type in the ‘main effect’ or any other manifestation of 
autosomal genes. 

In Drosophila, a vast number of mutants are now 
known, many of which are null-mutants at enzyme 
loci. In these cases the situation appears to be the 
same as that for human inborn errors of metabolism- 
the mutations tend to be recessive for the ‘main effect’ 
and all the other pleiotropic effects (LINDSLEY and 
GRELL 1968). 

There are, however, some cases in the literature 
where mutants show unequal dominance relations for 
different characters. In mice for example homozy- 
gotes for Wf alleles at the W locus are extensively 
depigmented, and there is no obvious pattern to the 
depigmentation (GUENET et al. 1979). Heterozygotes 
resemble the wild type except, however, for the pres- 
ence of white spots on the forehead and belly. In these 
areas, the mutant allele is therefore ‘dominant’ for 
hair color, and in the rest of the animal, it is ‘recessive.’ 
The ‘internal environment’ of the gene in the differ- 
ent tissues must clearly be different. The two charac- 
ters “pigment on dorsum” and “pigment on be!!y” can 
be compared to the example discussed in Figures 5 
and 6 where the two branches would represent the 
melanin production in the two tissues. In the model 
X ,  and X ,  would be the same substance (melanin) in 
the two tissues. The enzymes would be the ‘same’ in 
the sense that they are specified by the same genes. 
The two tissues could however be different by, e.g., 
sustaining different substrate concentrations and/or 
different activations or  inductions of some of the 
enzymes. The effect of genetic substitution at one 
locus (Wf) could therefore have different conse- 
quences when the Dominance Index is measured in 
the two tissues. 

A further example of differences in dominance 
relations occurs in the well known gene in pigs for 
halothane sensitivity (reviewed by WEBB 198 1). 
Homozygotes for this allele are sensitive to the an- 
aesthetic halothane, are stress susceptible, have im- 
proved meat colour and have improved performance 
for a number of economically important traits. Het- 
erozygotes are not detectably different from the wild 
type for sensitivity to the anaesthetic, stress suscepti- 
bility, or meat colour, but are nearly intermediate for 
the other traits (e .g . ,  growth rate and carcass quality). 
The allele is therefore ‘recessive’ for some of the 
characters it affects, but is ‘additive’ for others. We 
have found one less clear cut example of this type of 
phenomenon in Drosophila melanogaster. The allele 
scabrous-like found in an abdominal bristle number 
selection line (HOLLINGDALE 197 1) is a recessive sem- 
ilethal, but has a substantial effect on bristles in the 
heterozygote. The biochemical bases of all these ef- 
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fects are of course obscure. On the whole, however, 
it would appear from the literature that most muta- 
tions, especially where the mutation is shown to be at 
an enzyme locus, have similar dominance relations for 
the characters they affect pleiotropically. 

We must now enquire how relevant the conclusions 
of the very simple model are to the very much more 
complex ‘real’ metabolic system and to the ‘characters’ 
arising from its operation. The behaviour of our 
model has established four conditions which must be 
simultaneously satisfied if substantial differences in 
dominance of pleiotropically related characters are to 
be observed. 

1. Nonlinearity of metabolites tofluxes must occur. The 
fact that, in principle, all enzymes are nonlinear con- 
verters and that feedbacks are frequent features of 
metabolism is not in itself a sufficient condition. Sat- 
uration must be high or the feedback function must 
be steep for significant deviation from linearity to 
occur. Evidence concerning in vivo saturation is very 
sparse. What there is (e.g., FLINT, PORTEOUS and KAC- 
SER 1980; HESS 1973) suggests that most enzymes 
operate below or near their substrate Michaelis con- 
stants, although co-factors, such as NAD, appear to 
be present in saturating concentrations. ‘Strong’ non- 
linearities may therefore be an exception rather than 
the rule. 

2. The allelic dverences must not affect enzymes in the 
branch in which the nonlinearity occurs. This condition 
eliminates a good fraction of loci for which dominance 
differences can be expected. 

3 .  The fluxes must not be stoichiometrically constrained. 
Such fluxes cannot give rise to differential dominance 
indices with respect to any variation. 

4. Finally, the variation with respect to which the dom- 
inance indices are calculated, must affect a step which is 
reasonably sensitiue to changes in enzyme activity. This 
means that the heterozygote phenotype will have to 
show a clear difference from the wild type (i.e., the 
mutant must not be effectively ‘recessive’). If such 
complete recessivity of the flux through the enzyme 
obtains, it will necessarily imply that the pools (includ- 
ing the pool at the branch point) will show no variation 
in the heterozygote. Since any effect on other pleio- 
tropic fluxes is only mediated via a change in the 
branch pool(s), such other fluxes will also show reces- 
sivity and no substantial difference in indices can arise. 
In terms of the concepts of control analysis (e .g . ,  
KACSER and PORTEOUS 1987) this means that the 
affected step should have a reasonably high control 
coefficient (as indicated by the slope of the enzyme us. 
flux relationship). It will be noted that the two cases 
(Figures 5 ,  6 and Figures 7, 8), where we demon- 
strated differences in Dominance Indices, had signif- 
icant coefficients for the affected step. Thus the slope 
of vs. C in vs. A in Figure 6c, and the slope of 

Figure 8c, both have values 0.2 and higher. 
In  vivo such steps with high coefficients are rela- 

tively rare (KACSER and BURNS 1973, 1981). In our 
simulation, the enzymes in the branches were ‘con- 
densed’ to a single step for which a high coefficient 
could easily be devised. In general, however, branches 
will have a number of enzyme steps and the magnitude 
of the overall coefficient will be divided among them 
all. Genetic variation affecting any one of these is 
therefore likely to act on a low coefficient step with 
consequently much smaller differences in the indices. 
Feed-back loops have, as one of their consequences, 
the lowering of all control coefficients inside the loop 
and proximal to it (KACSER and BURNS 19’73; STUART 
et al. 1986). The stronger such feedback effects are, 
the more the system is buffered with respect to genetic 
and environmental changes. 

It  therefore appears, from our knowledge of the 
kinetic structure and from the experimental evidence, 
that the four necessary conditions for dominance dif- 
ferences are rather unlikely to be met and that the 
rarity of observed cases is consistent with our analysis. 

There are also implications for the effects of enzyme 
activity variation on metric characters. Due to the 
nature of multienzyme systems, we expect that null 
or near-null mutants will be ‘recessive’ with respect to 
fluxes and pools. Small variations in activity on the 
other hand, will be ‘additive’ for these characters. Our 
results suggest that such small variations in enzyme 
activity will produce similar additivity for other, per- 
haps distantly pleiotropically related traits. We have 
not addressed the question of how variation occurring 
simultaneously at many enzyme activity loci affects 
the dominance variation present in populations. This 
question together with the problem of epistasis in 
multienzyme systems will be the subject of a future 
publication. 

We are indebted to BILL HILL for many useful comments and 
invaluable assistance in the preparation of  the manuscript. P. D. K .  
acknowledges the support of  the .4gricrrltural and Food Research 
Council. 
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APPENDIX 1 

Here we derive a set of equations for the fluxes in the 
nonsaturable branched system (Figure 1 b). Consider the follow- 
ing monomolecular step within one branch, catalyzed by a 
Michaelis-Menten enzyme, a t  steady state. 

EJ . . . * S , $ S , * . . .  

T h e  rate, U,, of the reaction is given by 

(CLELAND 1963), where VI is the maximal velocity (V,,,J; M ,  and 
MJ are the Michaelis constants (K,)  for the forward and back- 
ward reactions respectively; S, and SI are the concentrations of 
the substrate and product and K, ,  is the equilibrium constant 
for the step which is, of course, independent of enzyme activity. 
When S, << M ,  and S, << M, (absence of saturation), Eq. 1.1 
reduces to 

where e, = Vl/M,, the genetically determined enzyme activity. 
Since the three branches of the system are symmetrical in 

structure, we can take the “A-pathway” (common branch) as an 
example. The  steady state flux is obtained when all the individ- 
ual rates in the branch are equal to one another and hence 
equal to the branch flux, i .e . ,  u1 = U:, = vs = . . . J.. All the 
intermediate pools will have time-invariant values. J A  is given 
by the solution of a set of linear simultaneous equations of the 
same form as Eq. 1.2: 

Solving these equations gives: 

where K A  = K i . , . K f , : , . K $ , s .  . . . K;- ,J ,  i .e . ,  the equilibrium 
constant, KA,S  between X A  and S. Similarly the equilibrium 
constant between X A  and S!-l is KA,,-], etc. (Figure lb).  

Expression (1.3) can be reexpressed by grouping the sum of 
the reciprocals of enzyme activities and the equilibrium con- 
stants in Eq. 1.3 into a ‘group enzyme activity,’ A: 

where 

‘/A = KA. , - l / d  ,= 1 

and the first term contains KA.0 = 1. 
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Since each branch on the system has the same structure, we 
can write down similar expressions for the fluxes in the two 
competing branches: 

J B  = B(S - X d K B ) ,  

J c  = C(S - XcIKc) ,  

(1.5) 

(1.6) 

where B and C represent the group enzyme activities of the two 
branches and K B  and K c  are the equilibrium constants between 
S and X,j and X(;, respectively. T h e  three linear equations can 
be solved by eliminating S .  We obtain expressions for each of 
the fluxes in terms of external parameters ( X A ,  XB and Xc:) and 
of the internal (enzyme) parameters A ,  Band C. Each expression 
will be a dfferent function of all the parameters. 

APPENDIX 2 

Proof of the identity of the dominance indices of all the 
variables with respect to variation at one enzyme in an unsatu- 
rated system. 

T h e  steady-state system is fully described by the three linear 
rate equations (Aplpendix 1) (1.4), (1.5) and (1.6) and by defi- 
nition (2). There are  four consistent equations in four unknown 
variables J;I ,JR,  J(,  and S. Explicit solutions for the variables can 
be obtained from the matrix: 

T h e  solution to the column vector z is obtained from 

z = M-’y.  (2.1) 

Any system of monomolecular nonsaturable enzymes can be 
expressed in these terms. Importantly (see Appendix I) ,  each 
enzyme activity term is first order and only occurs once in the 
matrix M .  Defining the nonsaturable system in these terms 
simplifies the algebraic treatment of the simultaneous effect of 
changing one enzyme activity on all the fluxes and pools which 
at-e pleiotropically related to each other. 

We consider the two-allele case, ‘wild type,’ mutant and 
heterozygote. If e is the wild type enzyme activity (in any units), 
we can write the wild-type phenotype asf(e), wheref(e) is the 
ineastired value of one character. We can also express the 
homozygote mutant enzyme activity as ( e  + m) and the pheno- 
type asf(e + m). (For example, in the case of a ‘null’ mutant, 
i . e . ,  the mutant allele is a ‘loss-of-function’ mutation, the value 
of m would be -e,  hence e + m = 0. The  phenotypic value,f(e 
+ m) in such a case would not necessarily be equal to zero since 
not all characters are equally dependent on a single enzyme 
activity.) The  heterozygote enzyme activity can be expressed as 
( e  + Am) and the corresponding phenotype asf(e + Am). T h e  
value of X would, in  most cases be 0.5 (heterozygote enzyme activity 
is intermediate between wild type and mutant (see t.g., KACSER 
and BURNS 1981; MIDDLETON and KACSER 1983). though of 
course, not the heterozygote phenotype. If we specify the three 
enzyme activities, the three phenotypic functions,f(e),f(e + m) 
andf(e + Am), can be calculated from the kinetic equations or 
the matrix (2.1). Theffunction could, for example, be one of 
the branch fluxes, say.,J~. Similarly, taking another function of 
the same three enzyme activities (the character, say, flux](;) we 
can obtain g(e), g(e + m) and g(e + Am). These functions are now 

inserted into the Dominance Index definition giving: 

D/ f ( e )  - f ( e  + Am) 
f ( e )  - f (e  + m) ’ 

Equations 2.2 and 2.3  can be expanded as a laylor’s series: 

(2 .4)  
f(e) - [ f ( e )  -I- Am.@)  + X‘my(e)/2! + . . . ]  

f ( e )  - u(e) + m y ( e )  + m y ( e ) / 2 !  + . . .I 7 Df = 

g(e) - [ g ( e )  + Xmg’(e) + A‘m‘g”(e)/2! + . . . I  
g(e) - [g(e) + mg’(e) + m2g”(e)/2! + . . .I . (2.5) D, = 

From (2.1), z = hf-’y, i t  follows that 

(see e.g., GRAHAM 198 1 )  where e is an eniyme activity occurring 
in matrix M .  Noting that the vectory contains no elements with 
enzyme activity parameters (and therefore its derivative is zero) 
we can reexpress the derivative of the inverse matrix, and obtain 

Similarly the second derivative is given by 

Since e occurs only once and linearly in hi’, dM/de is an elemen- 
tary matrix with nonzero element at the position of enryme 
activity e multiplied by a scalar. Turning now to Eq. 2.7, the 
term 

dM dn/l 
- & - I  - 
de de 

is the same elementary matrix multiplied by a different scalar. 
Clearly therefore, expressions (2 .6)  and (2 .7)  are proportional 
to one another as are higher order derivatives. Thus for any 
complexity of a linear system, 

Relation (2.8) together with Eqs. 2.4 and 2.5 imply that: 

D/ = D,. 

Therefore, for a system of any structural complexity having 
unsaturated enzymes, the dominance index for any character 
will be identical to that for any other character. 

APPENDIX 3 

Here, we derive functions for the fluxes of the branched 
pathway with saturation in the “B” branch (see Figure 3). At 
steady state, relations (1.4) and (1.6) give the fluxes in the linear 
“A” and “C” pathways. ForJB there are three equations: 

J B  = P(s  - S,/K,,), 

J B  = D(s, - XdK,) ,  

(3.1) 

(3.2) 

where P and D represent the (linear) ’group e n q m e  activities’ 
in the “P” and “D” sections, and K P  and K ,  are the equilibrium 
constants for the reactions S -+ S, and S, -+ X,, respectively. 
From Eq. 1 . 1  we can also write down the flux for the step with 
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saturation containing the relevant Michaelis constants. 

(3.3) 

The  variable S terms can be eliminated from the above three 
equations and from (1.4) and (1.6) to yield a quadratic inJB. 

Jz[M,/(DM,) - KP (]If‘ + 1/(AK, + C))] 

+ J,[V,/(DKt,) + XBMJWIK~)  

+ V,K,(l/P + I/(A/K, + C)) + M, 

+ KP(AXA + CXc/Kc)/(A/k + C)] 

+ XBV,/K,,,Kn - V,Kp(AXA + CXc/Kc)/(AKA + C) = 0. 

For an asymptotically stable steady state this has only one 

The  expression for J(; is obtained by eliminating S from Eqs. 
positive real root. 

2, 1.4 and 1.6. We obtain 

(3.5) 

where K A < ;  is the equilibrium constant for the reaction X ,  + X c .  
The root of Eq. 3.4 (if known) can then replace J B  in (3.5) 
giving an expression for J( ,  in terms of parameters only. 

APPENDIX 4 

We derive equations for the fluxes in the branched system 

with feedback inhibition. At steady state, the set of simultaneous 
equations defining the fluxes in the system, defined in Figure 
10 is given by (2), (1.4) and (1.6) together with four equations 
for J.: 

J B  = P(S - S J K P ) ,  

J B  = Q(S, - S d K d ) ,  
JB = R(Sb - xB/KR), 

(4.1) 

(4.2) 

(4.3) 

where the equilibrium constant (K) terms are as defined in the 
legend to Figure 10 and P,  Q and R represent the ‘group 
enzyme activities’ of the “P ,” “4” and “R” sections respectively. 
A simple expression for the rate of the reaction S, 4 S, catalyzed 
by E, can be 

(4.4) 

(CLELAND 1963), where SI is the concentration of the metabolite 
which acts as an allosteric inhibitor, and K ,  is the inhibition 
constant. The  solution to the set is a quadratic as follows: 

J i I ( R / K i )  + J B [  1 + XB/(KRKI) + V,KP/(PW) 

+ V,/(QM,KJ + V,/(RMJLJKd 

+ V,Kd(M,(A/KA + C))] + V,Xs/(MZKt,,K&) 

- V,Kp(AX, + CX</Kc)/(M,(A/K, + C)) = 0. 

T h e  flux through the “C” pathway is given, as before, by Eq. 
3.5. 


