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ABSTRACT 
Some stochastic theory is developed for monoecious populations of size N in which there are 

probabilities and 1 - 0 of reproduction by selfing and by random mating. It is assumed that 0 >> 
N-I. Expressions are derived for the inbreeding coefficient of one random individual and the 
coefficient of kinship of two random separate individuals at time t .  The mean and between-lines 
variance of the fraction of copies of a locus that are identical in two random separate individuals in 
an equilibrium population are obtained under the assumption that there is an infinite number of 
possible alleles. It is found that the theory for random mating populations holds if the effective 
population number is Ne = N ’ / ( l  + Fls), where Fls is the inbreeding coefficient at equilibrium when 
N is infinite and N ’  is the reciprocal of the probability that two gametes contributing to random 
separate adults come from the same parent. When there is a binomial distribution of successful 
gametes emanating from each adult, N ’  = N .  An approximation to the probability that an allele A 
survives if it is originally present in one AX heterozygote is found to be 2(N’/N)(Flssl  + (1 - F,)s,), 
where SI and SP are the selective advantages of AA and AX in comparison with xx. In the last section 
it is shown that if there is partial full sib mating and binomial offspring distributions N ,  = N/(1  + 
3F1s). 

LMOST all the theory that now exists for finite A populations is based upon the assumption that 
reproduction is wholly by random mating. There is, 
nevertheless, a substantial amount of inbreeding in 
many populations, such as those consisting of plants 
that reproduce normally by self-fertilization. This fact 
has been incorporated in models under which it is 
assumed that there is an infinite population and prob- 
abilities /3 and 1 - 0 of mating of relatives and mating 
randomly. Thus, if 6 is the probability of selfing, 
the equilibrium value of the inbreeding coefficient is 
p/(2 - P) ,  which is a result that was first derived by 
HALDANE (1924). If there is reproduction partially by 
full sib mating, it was shown by LI (19’76) that the 
inbreeding coefficient in a population at equilibrium 
is p/(4 - 3 4 .  

The earliest reference that I know of in which there 
are models that incorporate a finite population size 
and partial inbreeding is a paper of WRIGHT (1951). 
He derived equations that hold when there is partial 
selfing or partial mating of the full sibs that are 
offspring of permanent couples, but only solved them 
in some special cases. 

My main objective in this paper is to  further develop 
the theory for partially selfing finite populations, while 
noting resemblances and differences between it and 
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the usual theory for random mating populations. A 
secondary objective is to discuss which of the results 
for partial selfing are likely to apply to other partially 
inbreeding populations and point out one result which 
does not. 

Thus, for example, if there is no selection or mu- 
tation and Ft is the inbreeding coefficient in genera- 
tion t, it turns out that for moderately large t l - Ft 
is proportional to 1 - (2NT’)t ,  where Ne is a suitably 
defined effective population size. T o  this extent there 
is a formal resemblance to the usual theory. If, how- 
ever there is an infinite number of possible alleles, we 
must calculate the probability that two copies of a 
gene in random separate individuals are identical, in 
place of the probability of homozygosity. 

I will also derive the probability of the ultimate 
survival of an allele A that is initially present in one 
heterozygote in a large population. It turns out that 
it is a linear combination of the selective advantages 
of AA and AX in comparison with TA, rather than a 
multiple of the selective advantage of AX, as in the 
usual theory. The calculations are based upon an 
approximation of the model by a branching process 
with two types of individuals, which are the homozy- 
gotes and heterozygotes that have A in their geno- 
types. If there is weak selection we may then use an 
approximate expression for the probability of survival 
of a line descended from a single heterozygous indi- 
vidual (of type A a ,  which was derived rigorously by 
ESHEL (1 984). An essentially equivalent formula was 
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derived heuristically, but checked on numerical ex- 
amples, by POLLAK (1 972). 

I shall conclude the derivations by demonstrating 
that, under WRIGHT'S model of partial full sib mating, 
Ne A N/(  1 + 3F,s), where N is the population size and 
FIs is the equilibrium value of the inbreeding coeffi- 
cient when N is infinite. This contrasts with Ne * N/(  1 
+ Fls), the expression for his model of partial selfing. 

PROBABILITIES OF IDENTITY OF PAIRS OF 
GENES 

We consider a monoecious population having a 
constant population size N ,  in which there is self- 
fertilization with probability P and the union of ga- 
metes from random separate individuals with proba- 
bility 1 - p. It is also assumed that there is an infinite 
number of possible alleles and that U is the probability 
that a particular allele mutates in one generation. Let 
F ,  and 8, respectively denote the probabilities that two 
gametes uniting to produce one individual and two 
gametes contributing to random separate individuals 
of generation t carry the same allele at a locus. Then 

(1 + F,) + (1 - $) 8,]. 
1 1  
N 2  

8,+1 = (1 - U)' [- - 
When U = 0, equations (1) reduce to those found by 
WRIGHT (1 95 1). 

We henceforth assume that N is large, U is of the 
same order of magnitude as N-' and P >> N-'. Then 
at equilibrium F,+1 = F, = F and 8,+, = 8, = 8, where 

1 + 2NPu 
1 + 4N(1 - P / ~ ) u '  F =  

1 
1 + 4N(1 - P / ~ ) u '  8 =  

approximately. At a finite time t ,  however, F, = F + 
d, and 8, = 8 + e,, where, by (I) ,  

The characteristic equation corresponding to the ma- 
trix of coefficients in (3) has the roots 

+ O(N-') 
4N(1 - P / ~ ) u  + 1 

X 1 = l -  
2N(1 - P/2) 

and 

P A' = - + O(N-1). 
2 

If, therefore, we define an effective population num- 
ber 

and set M = 4N,u it is evident that the general solution 
of (1) is approximately 

(4) 

1 + 2NPu 
1 + M  

F, = 

\ ' I  

8t = - + c (1 - M+) + d (5)'. 
1 + M  

where a, b,  c and d are constants. 

0, equations (4) reduce to 
In the particular case in which U = 0 and Fo = 80 = 

where F ,  and Ot are now probabilities of identity by 
descent rather than identity in state. Because Fo = ro 
= 0, the left sides of (5) refer to identity by descent 
that is induced during the t generations in which 
partial selfing has been applied to a finite population. 
Equations (2), as well as equations (1 )  in the special 
case in which U = 0, have also been given by STROBECK 
(1 983). 

THE F-STATISTICS FOR THIS SITUATION 

The form taken by the right-hand sides of (5) is no 
accident, but has a connection with the F-statistics 
introduced by WRIGHT (1943, 1951). We note first 
that as t increases, these equations may be written as 

This is the same in form as 

1 - FIT = (1 - FIs)(l - FsT). 

Thus, at least in a formal sense, we can equate Ft to 
Fir, 8, to b a n d  P/(2 - P)  to Fis. 

But there is more to it than this. Let us suppose 
that in generation 0 there is an infinite population. 
Randomly chosen sets of N individuals are chosen to 
be the founding members of subpopulations, or lines. 
These lines are then each subjected to the same reg- 
ular system of inbreeding as the others, generation 
after generation, and develop in complete isolation 
from each other. Then F, is a multiple of the expected 
reduction of the proportion of heterozygotes in the 
population as a whole, brought about by the combined 
effects of partial selfing and random drift. Also, if x is 
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the frequency of a particular allele A in a random 
subpopulation at time t and px is the average of such 
frequencies in the population as a whole, 

E(x2)  = U: + p: 
is the probability that two gametes contributing to 
random separate individuals in one of the subpopula- 
tions carry allele A. Since, however, two such copies 
of A originate from separate ancestral genes with 
probability ( 1  - and from a common ancestor 
with probability etpX it follows that 

E ( X ) ~  = pX[8, + ( 1  - e , ~  = p: + etpx(i - p x ) .  

Thus 

so that 0, is measuring the reduction in heterozygosity 
from random sampling in finite subpopulations. 
Therefore, finally, Fls = @/(2 - B) is approximately 
equal to a multiple of the expected amount of reduc- 
tion in heterozygosity within subpopulations that is 
caused by partial selfing. It is also, not surprisingly, 
the limiting value, as t increases, of the inbreeding 
coefficient at time t in an infinite population in which 
there is selfing with probability /3 and random mating 
with probability 1 - B and an initial Hardy-Weinberg 
structure. We note also that 

N 
1 + F I S ’  

Ne = - 

which is a form that was also derived by LI (1976). 

SOME HIGHER ORDER PROBABILITIES OF 
IDENTITY 

The expression 0, is equal to the expected fraction 
of gene pairs from random separate individuals of 
generation t that are identical in state. It is the analog 
in the partially inbred population of the expected 
fraction of homozygotes when /3 = 0. Thus, consistent 
with the terminology of KIMURA (1983), we may call 
1 - et the expected value of the virtual heterozygosity 
at time t. 

In this section, I shall derive an expression for the 
equilibrium value of the between-lines variance of the 
virtual heterozygosity from fourth order probabilities 
of identity. Since, however, nth order probabilities of 
identity at time t + 1 depend upon probabilities of 
orders 2 through n - 1 at time t when n is 3 or 4, it 
will be necessary to first calculate equilibrium values 
of third order probabilities. The reasoning will be 
based on that employed by COCKERHAM (197 1). 

We consider separate individuals I, 11, I11 and IV 
and denote random copies of a gene from these indi- 
viduals by 1 ,  2, 3, and 4, respectively. Two separate 

copies of a gene carried by an individual will be 
denoted by an arabic numeral and the same arabic 
numeral with a prime. In this notation, F, and dt  are 
written as&( 1 1 ’) andJ( 12). 

If there are three copies of a gene, the probabilities 
of identity to be calculated are J;( 123) and &( 1 1 ’2), 
These respectively refer to the identity of copies in 
three separate individuals and to the identity of three 
copies when two are in individual I and a third is in 
individual 11. Now two among three random gametes 
that contribute to adults I, I1 and 111 in generation 
t + 1 originate in one parent with probability 3N-l. 
( 1  - N-’). In this case the conditional probabilities 
that one gene is copied twice and two separate genes 
are copied once are both equal to Yz. Hence 

Since individual I can arise from selfing or random 
mating with probabilities @ and 1 - B, we have as a 
second recurrence equation 

J+1(11’2) = (1  - U ) 3  a G(12) +f(11’2)) [e (8) 
, I  

+ (1 - NJ;w)]. 

At equilibrium f,+1(123) = J(123) = f(123) and 
$+I( 1 1’2) =ft( 1 1’2) =f( 1 1’2). It can be shown that if 
U = O(N-’) and >> N-I ,  then 

l +  2(1 ’) f(l23) B f(11’2) - - 
2 - / 3 1 + M  2 - 8  

and 
c) 

(9) 
L 

(1 + M)(2 + M)’ 
f(123) 

I shall now obtain recurrence equations for the 
fourth order probabilities of identity &( 12,34), 
$( 1 1 ’,23) and&( 12,1’3). In this notation the identity 
of a pair of representatives of a locus is symbolized by 
preceding or following the corresponding set of num- 
bers by a comma. Note, however, that the comma 
neither implies nor excludes the possibility that all 
four genes are identical. 

The probability that two randomly chosen success- 
ful gametes among four originate from a single par- 
ent, while the other two come from two other parents, 
is equal to 6W’(  1 - W’)( 1 - 2N-’). Also, there are 
two mutually exclusive ways in which successively 
chosen copies of a gene from I can be identical to 
copies from 11 and 111. Therefore 
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+f,(11’,23) + 2f,(123) + 2$(12,1’3)] . I 
Because an individual results from self-fertilization 
with probability P, the other two recurrence equations 
are 

At equilibrium we have the approximate expressions 

and 

@f( 1 2 3 ) 
1 

f(12,1‘3) 5 - 
2 - P  

+ 2(1 - P)f(12,34)]. (15) 

Thus, finally, if we substitute the right sides of (2), 
(9), ( I  4) and ( 1  5) into ( 1  3) we obtain 

(16) 
6 + M  

( 1  + M)(2 + M)(3 + M)’ 
f(12,34) 5 

Now if x, is the frequency of A, in the equiiibrium 
population and N is large 

I9 f E(? x:) = 1 - E ( H ) ,  

where H is the virtual heterozygosity. Similarly 

- 6 + M  - 
( 1  + M)(2 + M)(3 + M)’ 

so that the between-lines variance of the virtual het- 
erozygosity is 

Var(H) * E [ ( :  x i r ]  - 8‘ 
- 2M - 

(M + 1)‘ (M + 2)(M + 3)’ 

When P = 0, (17) reduces to the between-lines vari- 
ance in the heterozygosity, which is a result derived 
in other ways by LI and NEI (1975) and STEWART 
(1976). In P > 0, it is the analogue of this expression 
that applies to a partially inbred population. 

A MORE GENERAL EFFECTIVE POPULATION 
NUMBER 

In what follows, I define a successful gamete to be 
one that contributes to a surviving adult. As when 
there is a completely random mating population, it is 
possible to replace N in the foregoing calculation by a 
more general expression N ‘  that depends upon the 
distribution of the number of successful gametes em- 
anating from a single individual. 

Let G and I, respectively, denote the number of 
successful gametes produced by a particular adult and 
the number of offspring this adult produces by self- 
fertilization. Then, given G = g and I = i, the number 
of ordered pairs of successful gametes from one adult 
that contribute to random separate adults is g(g - 1 )  
- 2i. Therefore, if we average over the distribution 
of I, we obtain g(g - 1 - P)  because the conditional 
expectation of 21 is gP. 

Let us now assume that there is a fixed number ON 
of adults that arise from self-fertilization. There are 
then 2N ways to choose the first of a pair of successful 
gametes and 2N - 1 - NP ways to choose a second 
that is not a participant in a self-fertilization. The 
reason that PN is subtracted is that this is the number 
of gametes that are of the opposite sex to the one first 
chosen and are used in the formation of selfed prog- 
eny. Therefore the number of ordered pairs of ga- 
metes that contribute to separate adults is 2N(2N - l 
- PN). It then follows that if the number of progeny 
from selfing is a fixed number, the probability that 
two gametes forming random separate adults come 
from the same parent is equal to 

- 1 E[G(G - 1 - P ) ] .  - 
4N(1 - P/2)  - 2 

Since E ( G )  = 2 because of our assumption that all 
alleles are neutral, we may also write 

4N(1 - @/2) - 2 N’ = Var(G) + 2(1 -@). 
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If N’ is large we may use it in place of N in (7) and 
(1 0) because it is then practically certain that a third 
or fourth random gamete came from different parents 
than two gametes that come from the same parent. 
Since the second of equations (1) may be written as 

even when N is small, all the results in the foregoing 
section still apply if N is replaced everywhere by N’. 

If there is a random number of progeny S from 
selfing, E ( S )  = PN. Thus (18) still applies if it is 
considered to refer, when N is large, to the asymptotic 
equality of its right side to the reciprocal of the 
probability that two gametes contributing to random 
separate adults came from the same parent. The sec- 
ond of equations (1) then becomes an approximate 
equation when N is large. Therefore, in summary, it 
has been shown that 

where N’ is given by (1 8). 
We conclude this section by noting that if N ’  = N ,  

CTG’ = 2(1 - N - ’ )  = 2 N  X N-’(1 - N-I). One way to 
get this variance is for there to be a binomial offspring 
distribution with 2N trials and a probability of success 
equal to N-’ at each trial. 

T H E  PROBABILITY OF SURVIVAL OF A 
SLIGHTLY ADVANTAGEOUS MUTANT 

The following formulation of the problem is due to 
BHEL (1984). He presented it as a special case of a 
general model for the growth of a line, descended 
from a single individual, which has a slight tendency 
to increase in size in the long run. There is one error 
in his calculations, which will be pointed out. In ad- 
dition, I shall generalize the expression for the a p  
proximate probability of survival, so that it holds even 
if N‘ # N. 

We assume, to begin with, that there is a large 
population in which a mutant allele A is originally 
present in one individual of genotype AX, where T 
represents any allele that differs from A. If there is 
not strong selection in favor of the mutant allele, its 
fate is almost certain to be determined in early gen- 
erations, while it is rare. Thus any individual that has 
at least one A in its genotype is almost certain to mate 
with an individual of type A X  if its does not reproduce 
by selfing, and it is extremely unlikely that descend- 
ants of two separate individuals carrying A in genera- 
tion t will mate. Hence we may say that, at least 
approximately, each individual carrying A at time t 
gives rise to a line that develops independently of lines 
descended from other individuals of the same gener- 
ation. Since selfing is assumed to occur with a non- 
negligible probability, each of such lines can contain 

individuals of types AA and AX. Therefore we may 
model the process of change in the numbers of AA 
and AX individuals by a two dimensional branching 
process. 

We assume that if there were no selection each 
individual would produce, on the average, two ga- 
metes that succeed in forming zygotes that survive to 
adulthood, regardless of how it reproduces. The ele- 
ments of the first moment matrix of the branching 
process are then derived as follows. We note first that 
an AA individual has AA offspring if it reproduces by 
selfing and A71 offspring if it reproduces by random 
mating. Second, an individual of type AA respectively 
REduces arrays of offspring 1/4 AA + 1/2 A T  + 1/4 
AA and 1/2 A x  + 1/2 xx, depending upon whether 
it undergoes selfing or mates randomly. 

Now let AA and AX be defined to be of types 1 and 
2, respectively, and Yq be the number of offspring of 
type j produced by a parent of type i. Then if the 
probabilities of survival of AA, AX and xx zygotes to 
adulthood are in the proportions 1 + sl: 1 + sz: 1, the 
means m, of the random variables Yq are 

mll = P(1 + s1) 

~ I Z  = 2(1 - P)(1 + s2) 

m21 = f P(1 + s l )  

m22 = 6 P(1 + sp) + 2(1 - P )  $ (1 + sp) 

= (1 - @)(1 + sp). 

Thus the first moment matrix is 

A matrix like M, which has only positive elements, 
has a single dominant positive characteristic root p. 
Corresponding to p are characteristic vectors p’ = 
(PI ,  p p )  and v = (vl, vp)’ such that p’M = pp’, Mv = 
pv, Cif, = p’l = 1 and &pjv, = p’v = 1 .  

Then if qi is the probability of ultimate extinction 
of a line descended from an individual of type i, the 
result proved by ESHEL (1 984) is that 

In the special case that we are considering, 

in my notation. The expression in the denominator 
of (2 1) can be shown to be equal to 
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+ 4(1 - P) Var(2Y21 + Yzz)]  + O(s1, SZ).  

Now if G is equal to the number of successful 
gametes produced by any particular individual when 
there is no selection, Var(2Y11 + Yip) = Var(G). Fur- 
thermore, regardless of whether an AX individual 
reproduces by selfing or random mating, half its suc- 
cessful gametes are expected to be of type A if there 
were no selection. Thus, given that G = g ,  2Y21 + YZZ 
would, with no selection, be a binomially distributed 
random variable associated with g trials and a proba- 
bility of success equal to ?4. Therefore 

Var(2Y~1 + Y ~ z )  = &[Var(PYZI + YZZ)  I G)] 

+ VarG[E(2Yp1 + Y p p )  I G)] i EG($ G)  

+ VarG($ G) = [2 + Var(G)]. 

This implies that the expression in the denominator 
of (21) is approximately equal to 

[Var(G) + 2(1 - P) ] .  UP 

2(2 - P) 
Hence 

1 - q 2 =  4[@s1 + 2(1 - P)s21 + o(s1, sp). (22) Var(G) + 2(1 - 6) 
Since, however, we are assuming that N is large, a 
comparison of expressions (1 8) and (22) reveals that 

N’ 
N = 2 - [Frssi + (1 - FIS)SP] 

+ & I t  S P ,  N-I) 

is the probability that A survives if it was initially 
present in one individual of type AX.  

The form of the right-hand side of (23) is not 
surprising if we recall two facts. First, a partially selfed 
population that has the initial genotypic array 
CzCj~zpfiJ, rapidly approaches one with the genotypic 
array FIsC,P,A,A, + (1 - FIS) CzC3p2P~,AI.  We have 
seen, in the discussion concerning the F-statistics, that 
this is true even if the population is finite. Thus, if a 
rare allele A has a frequency p ,  the ratio of the 
frequencies of A A  and AX individuals is 

F/S 

2(1 - FLY)’ 
F I S ~  + (1 - FIS)~‘ ~ 

2(1 - F/s)p(l - p )  
The second fact is that the ratio of the survival prob- 
ability of a line descended from an individual of type 
A A  to that of a line descended from an individual of 
type A A  is approximately vI/vp = 2. It is thus natural 

that 1 - q2 should be proportional to an average of sI 
and sp,  with weights F ~ ~ a n d  1 - FIS. 

In the special case in which there is a Poisson 
distribution of offspring, Var(G) + 2(1 - P) = 
4 - 2P, N’ = Nand, by (22), 

= 2(p - 1) + O(SI, sp, N-’). 

ESHEL (1 984) mistakenly assumed in this case that the 
denominator of the first term in (21) is equal to 1, so 
that he wrote 2(p - 1)vp in place of 2(p - 1). 

Now let us suppose that Var(G) is not necessarily 
equal to 2. It is then easy to show from (22) that 1 - 
q2 is an increasing function of P is s1/2s2 > Var(G)/ 
[Var(G) + 21 and a decreasing function if this in- 
equality is reversed. So, for example, if s1 > sp = 0, so 
that A is a recessive favorable allele, 1 - q 2  increases 
with @. This is also true if s1 = 2s2, in which case AX 
has half as much of a selective advantage as A A  in 
comparison with xx. In contrast, 1 - 9 2  is a decreasing 
function of P if A is a competely dominant favorable 
allele and Var(G) > 2. 

Now let us suppose that s1 > 0 and sp = --Kp < 0, so 
that A A  heterozygotes are inferior in viability to indi- 
viduals of genotypes A A  or xx. Expression (23) then 
implies that the survival probability 1 - q z  is positive 
if slP > 2(1 - P)kp and increases with N’/N if this 
inequality holds. Thus the conditions most favorable 
to the establishment of an allele A with disadvanta- 
geous heterozygotes are that P be large and Var(G) 
small. 

THE EFFECTIVE POPULATION NUMBER WHEN 
THERE IS PARTIAL FULL SIB MATING 

It is tempting to assume that an expression of the 
same form as (19) always remains valid if the partial 
inbreeding occurs in some other way than by selfing. 
This is false, as can be shown by making use of an 
expression derived by COCKERHAM (1 969) for the 
variance of the frequency of an allele among samples 
of N individuals drawn from populations with positive 
coefficients of inbreeding and kinship. 

Let us assume that the distribution of the number 
of successful gametes produced by an individual is 
binomial, so that, in particular, N’ = N if there is 
partial selfing. Then, if is the frequency of an allele 
A among parents and N is the number of offspring, 
the variance of the mean frequency f i  of A among the 
offspring is p (  1 - P)/2N if there is no inbreeding and 
no relationship between separate individuals. More 
generally, it follows from a formula derived by COCK- 
ERHAM (1 969) that 

where F is the mean of the inbreeding coefficients 
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and 6 is the mean of the coefficients of kinship among 
the N ( N  - 1)/2 pairs of separate offspring. 

If there is partial selfing, we can replace F and 6 by 
FIs and 0, the values they would attain at equilibrium 
if N were infinite. This leads to the variance effective 
population number 

which is consistent with (6). More generally, it should 
still be legitimate to replace F by the equilibrium value 
FIs of the inbreeding coefficient in an infinite popula- 
tion because inbreeding occurs more rapidly than the 
loss of variability from random genetic drift. There is 
no reason, however, to expect 8 to be replaceable by 
zero in all cases because a substantial fraction of 
separate parents may be related under some systems 
of partial inbreeding. Let /3 be the probability that 
relatives mate and d l t  be the average coefficient of 
kinship in generation t of the mating relatives. We 
assume that @ >> N-'.  Infinite population theory then 
leads us to suspect that 081, = FtiI = FIs, whereas 8 Z t ,  
the coefficient of kinship among mates that are not 
relatives, is negligible in comparison with dit. 

If, for example, there are Np = N / 2  permanent 
couples in every generation, PNP pairs of parents in 
each generation are expected to be full sibs. There- 
fore 

if N is large and p % N - ' ,  so that 

Var@) 5 (1 + ~ F I s ) .  
2N 

Hence the variance effective population number is 

which is not consistent with (6). 
This expression for Ne can also be derived from 

inbreeding theory. The recurrence equation for Pt = 
1 - Ft that was derived from WRIGHT ( 1  95 1) is, in the 
notation of this paper, 

+ (-& - $)Pt-5 

The corresponding characteristic equation is 

B 
2 NP 

g(X) = X3 - ( 1  + - - 1) - (& - $) 
- (& - a) = 0 

and its roots are X 1 ,  h2 = (0 + 40' + 4P)/4 and 
X3 = ( p  - e ; 4  when N p  is infinite. If Np is 
finite but large and /3 >> N-' ,  the largest characteristic 
root is 

Hence the inbreeding effective population number is 

N - N 
N,I t- 2Np (1 - y )  = 1 + 3 8 4 4  - 3p) - 1 + 3FIs' 

DISCUSSION 

The results in this paper suggest that the usual 
theory for neutral alleles essentially carries over to 
partially selfing populations if ( 1  9) is used in place of 
Ne = (4N - 2)/(ac2 + 2) .  It seems that the only changes 
that need to be made are that inbreeding coefficients 
and homozygosity must respectively be replaced by 
coefficients of kinship of random separate individuals 
and identity in state of two copies of a gene if one 
copy is in each of two such individuals. If there is 
selection, however, ( 2 3 )  differs in two ways from the 
approximate expression for the survival probability 
that applies when there is completely random mating. 
First, as has been mentioned in the introduction, there 
is a linear combination of s1 and sp  rather than a 
multiple of s2. Second, there is a multiplier 2 ( N ' / N )  
in place of 2(Ne /N)  and N' # Ne if p > 0. 

The results in the section on the F-statistics suggest 
how a complete theory for finite partially self-fertiliz- 
ing populations could be developed. What they reflect 
is the fact that if 0 >> N - ' ,  the loss of genetic variability 
from inbreeding is occurring much more rapidly than 
is the corresponding loss associated with random ge- 
netic drift. Consequently, the inbreeding coefficient 
is essentially the same in a short time as FIS, the 
equilibrium value of the inbreeding coefficient in an 
infinite population. Thus, we have a stochastic process 
with two time scales, and it is reasonable to suppose 
that the diffusion approximation theory developed 
for such processes by ETHIER and NAGYLAKI (1980) 
can be shown to be applicable. The results for neutral 
alleles give support to this conjecture because, if there 
were only random mating, expressions (4), (5 )  and 
(1 7) still hold and they can also be derived from the 
diffusion approximation. I suspect that diffusion the- 
ory can also be developed when there is selection if 
the genotypic array among the generation of parents 
before selection is taken to be approximately of the 
form FIs E, p i A A  + ( 1  - FI,) Ci2, pipjAiAj. This 
approximation should be good if p >> 0 and selection 
is weak. 

I see no reason to doubt that we would also have 
two times scales with other systems of partial inbreed- 
ing if there is a substantial probability that relatives 
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mate. If, however, there is some other system of 
inbreeding than partial selfing, it has been shown that 
it is no longer ~ / ( 1  + F , ~ )  

sequences of partial sib mating will be discussed in 

HALDANE, J. B. S., 1924 A mathematical theory of natural and 
artificial selection. Part I. Trans. Camb. Phil. Soc. 23: 19-41. 

KIMURA, M., 1983 The Neutral Theory of Molecular Evolution. 
Cambridge University Press, New York. 

Press, Pacific Grove, Calif. 

true that N, 
when there are Offspring ‘On- LI, C. C., 1976 First Course in Population Genetics, The Boxwood 

more detail elsewhere. 
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