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ABSTRACT 
Modifier gene models are used to explore the evolution of features of organisms, such as the 

genetic system, that are not directly involved in the determination of fitness. Recent work has shown 
that a general “reduction principle” holds in models of selectively neutral modifiers of recombination, 
mutation, and migration. Here we present a framework for models of modifier genes that shows these 
reduction results to be part of a more general theory, for which recombination and mutation are 
special cases.-The deterministic forces that affect the genetic composition of a population can be 
partitioned into two categories: selection and transmission. Selection includes differential viabilities, 
fertilities, and mating success. Imperfect transmission occurs as a result of such phenomena as 
recombination, mutation and migration, meiosis, gene conversion, and meiotic drive. Selectively 
neutral modifier genes affect transmission, and a neutral modifier gene can evolve only by generating 
association with selected genes whose transmission it affects.-We show that, in randomly mating 
populations at equilibrium, imperfect transmission of selected genes allows a variance in their marginal 
fitnesses to be maintained. This variance in the marginal fitnesses of selected genes is what drives the 
evolution of neutral modifier genes. Populations with a variance in marginal fitnesses at equilibrium 
are always subject to invasion by modifier genes that bring about perfect transmission of the selected 
genes. It is also found, within certain constraints, that for modifier genes producing what we call 
“linear variation” in the transmission processes, a new modifier allele can invade a population at 
equilibrium if it reduces the level of imperfect transmission acting on the selected genes, and will be 
expelled if it increases the level of imperfect transmission. Moreover, the strength of the induced 
selection on the modifier gene is shown to range up to the order of the departure of the genetic 
system from perfect transmission. 

ODELS of modifier genes have been developed M over the last 20 y r  to extend the synthetic 
theory of evolution to features of organisms which fall 
outside of the classical purview of heritable variation 
for fitness. The  biological phenomena encompassed 
in modifier gene models are diverse, and include 
features of the genetic system such as recombination 
and mutation, features of the mating system such as 
selfing, and ecological features such as migration 
rates. 

A principle for the evolution of neutral modifier 
genes, the “reduction principle,” has been developed 
by FELDMAN, CHRISTIANSEN and BROOKS (1980), LI- 
BERMAN and FELDMAN (1 986a,b; 1987) and FELDMAN 
and LIBERMAN (1 986). In models of recombination, 
mutation and migration modification in which the 
modifying gene is multiallelic, LIBERMAN and FELD- 
MAN have shown that there is a reduction principle 
that holds under a wide variety of conditions, and 
they suggest that complete reduction of each of these 
has the property of “evolutionary genetic stability” 
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(ESHEL and FELDMAN 1982). The possibility that these 
parallel results reflect an underlying unity among 
modifier gene models is the motivation for the current 
work. 

We introduce here a theoretical approach to the 
evolution of modifier genes that partitions the forces 
of evolution, other than drift, into two classes, selec- 
tion and transmission. Transmission is the determi- 
nation of offspring types by parental types. Imperfect 
transmission occurs whenever the gametes in off- 
spring are different from those in their parents. Selec- 
tion occurs when different types in the population 
differ in their relative contributions to the next gen- 
eration. A large class of modifier gene models can be 
unified once they are seen to involve genetic variation 
for transmission processes. In contrast to genes that 
produce differences in fitness, neutral modifier genes 
produce differences in transmission processes. Modi- 
fiers of recombination, mutation, segregation distor- 
tion, and migration are in this class. 

We investigate the initial increase properties of 
modifier alleles introduced into randomly mating dip- 
loid populations near genetic equilibrium for a set of 
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polymorphic loci undergoing viability selection and 
generalized transmission. The main results can be 
summarized as follows. First, selection for or against 
the modifier requires that there be a variance in the 
equilibrium marginal fitnesses of the selected loci. 
This in turn requires that the selected loci be imper- 
fectly transmitted. We obtain two results that gener- 
alize the reduction principle. First, we show that a 
population that maintains an equilibrium variance in 
the marginal fitnesses, due to imperfect transmission 
of loci under selection, can always be invaded by a 
new modifier allele that produces perfect transmis- 
sion. Second, we show that when the modifier and 
major loci are tightly linked, a new modifier allele 
that produces “linear” variation in the transmission 
process can invade if and only if it reduces the level 
of imperfect transmission. We also obtain results on 
the possible strength of selection induced on a tightly 
linked neutral modifier, and show that it is on the 
order of the variation in equilibrium marginal fit- 
nesses, which is bounded by the extent of imperfect 
transmission characteristic of the genetic system. 

GENERALIZED TRANSMISSION 

The term haplotype will be used to mean a gamete’s 
genotype, or a gamete’s contribution to a diploid 
genotype. Perfect transmission occurs when a diploid 
individual’s two haplotypes, as originally derived from 
its parents, are transmitted unchanged to its gametes, 
and in equal proportions. For a multilocus parental 
haplotype to be perfectly transmitted, the whole hap- 
lotype must behave as a Mendelian unit. Imperfect 
transmission occurs when gamete haplotypes differ 
from the parental haplotypes as a consequence of 
mutation, recombination, gene conversion, translo- 
cation, etc. 

To represent the transmission relations between 
parental and gamete haplotypes, we first enumerate 
all of the possible haplotypes, {i,  j, k, . ). The trans- 
mission can be represented by the set of probabilities 
T(i c j ,  k) that a gamete produced by a parent with 
haplotypes j and k has haplotype i;  

T(i c j ,  k) 2: 0 ,  1 T(i c j ,  k) = 1 

(1) 
i 

for all j ,  k. 
For simplicity we restrict our analysis here to 

autosomal systems so that there is symmetry in T: 
T(i + j ,  k )  = T(i k, j ) .  If there are n possible 
haplotypes, then the genetic transmission system can 
be represented as an n by n2 matrix: 

T = IIT(i + j i , j 2 )  l l&,j2=i- (2) 
This matrix is just the “segregation table” for all of 
the genotypes in the population. Matrices satisfying 
( 1) are called biparental transmission matrices. 

Varieties of transmission processes: Models of one 
locus without mutation or segregation distortion are 
examples of perfect transmission. The transmission 
probabilities with perfect transmission are 

T i d  (i tj, k) = Y2(6ij + a&), 
where 6, is the Kronecker delta (6) function, 

Different genetic systems may produce different 
levels of imperfect transmission during reproduction. 
A quantity that plays a central role in our analysis is 
the level of perfect transmission that is guaranteed by 
the genetic system for all possible parental genotypes. 
This upper bound (over all genotypes) on the proba- 
bility of imperfect transmission we refer to as a. Any 
transmission matrix can be written in the form, 

which involves a mixture of the perfect transmission 
matrix, T i d  and a transmission matrix, P. The value a 
is the minimum value for which the elements of the 
matrix 

T - (1 - c~)T;,j L 0 (4) 
are non-negative, so that 1 - a is a measure of the 
degree of perfect transmission present in T. 

Tables 1, 2 and 3 show the transition probabilities 
for several standard models of mutation, segregation 
distortion, and recombination, and an example of a 
model of gene conversion at two loci. The value of a 
for each of these models is given. 

E V O L U T I O N  OF HAPLOTYPES UNDER 
SELECTION A N D  GENERALIZED TRANSMISSION 

Here we formulate a general model of evolution 
for a diploid population undergoing random mating, 
viability selection, and transmission of haplotypes 
from zygote to gamete. Let z be the vector represent- 
ing the frequencies of all gametic haplotypes in the 
population. Let 

w = llwyll&, 
where w,, is the viability of a genotype composed of 
haplotypes i and j. We assume sex symmetry so that 
WI,12 = W,p,. 

With a life cycle consisting of random union of 
gametes, viability selection, and generalized transmis- 
sion, the recursion on the frequencies of gamete hap- 
lotypes is 

zik: = 
n n  

1 Z J Z J ( i  c j ,  K)W$ 
1=1 k = l  

(54  
(i = 1, 2, - - . ,  n) 
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TABLE 1 

Transmission table for mutation and segregation distortion 

Frequencies of gamete haplotypes 

Parental genotypes Ai 

With ml = mp = k = 0 we have perfect transmission. 
With k = 0, (Y = max(m,, mz) [see (3)]. 
With ml = m2 = 0,  (Y = I k 1 [see (3)]. 

TABLE 2 

Transmission table for recombination 

Frequencies of gamete haplotypes 

Parental genotypes AIBl Ai& AnBl AS& 

AiBiIAIBI 1 0 0 0 
A iBi/Ai Bz %J ‘/s 0 0 
AiBiIAzBi YZ 0 % 0 

AiBzIAiBz 0 I 0 0 

AiBz/AzBz 0 % 0 Y2 

AzBIIAdi 0 0 1 0 
AzBiIAzBz 0 0 L/n % 
AzBzIAzBz 0 0 0 1 

A I B I / A ~ B ~  %(1 - R )  %R %R %(1 - R )  

AiBzIAnBi %R %(1 - R )  %(I - R )  %R 

Here (Y = R .  

or in matrix form 

1 
Z’ = 1 111 LkwjhT(i t j ,  k) 11tj-1 2, (5b) 

w k  

where 

G = w+zjzj = zTwz (6) 
ij 

is the mean fitness of the population. 
A central quantity involved in our analysis is the 

marginal j tnes s  of a haplotype. The marginal fitness 

of haplotype a is w, = ZJ wyzy It represents the net 
effect of selection on a haplotype averaged over all 
the genotypes in which it appears. With perfect trans- 
mission, variation in marginal fitnesses is the sole force 
acting to change haplotype frequencies, in which case 
(5 )  becomes 

Gz: = L, w,,zJ, or, Gz’ = diag(Wz)z (7) 

(see EWENS 1979, pp. 40-4 1). The relative frequency 
of haplotype i changes in one generation by an amount 
proportional to ZJ wyz, - i. 

Employing the marginal fitnesses, the general re- 
cursion (5) can be written in the form 

J 

z’ = YDz, (8) 

where Y is a column stochastic matrix, and D is a 
positive diagonal matrix, as follows: 

and 

Y is column stochastic since 

wjk rkwjk 
zk - T(i t j ,  k) = - = 1. 

ik wj k Wj 

EQUILIBRIUM PROPERTIES OF POPULATIONS 
UNDER SELECTION AND IMPERFECT 

TRANSMISSION 

In this treatment we are concerned with the evolu- 
tion of modifier genes introduced into populations 
near equilibrium. Here we derive the most salient 

TABLE 3 

Transmission table for unbiased gene conversion at two loci 

Frequencies of gamete haplotypes 

Parental genotypes 

~ ~~ 

a = rate of gene conversion at locus A ,  b = rate of gene conversion at locus B. Here a = a + b - 2ab. 
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property of populations at equilibrium, which is the 
relation between imperfect transmission and variation 
in marginal fitnesses. 

Consider a population that is at an equilibrium for 
the frequencies of the haplotypes. Recursion (8) pro- 
duces the equilibrium identity 

i = ?Di. (10) 

With perfect transmission 2 = Di, so that 

.. 

* 
and z& = ZZI for all haplotypes i such that zi > 0. This is 
true regardless of any frequency dependence of the 
w’s. Hence, we have the well known 

Result 1: With perfect transmission, all the haplotypes 
present in the population have equal marginal jtnesses at 
equilibrium. 

In the presence of imperfect transmission, there can 
be differences at equilibrium in the marginal fitnesses 
of the haplotypes present. Moreover, the potential 
magnitude of the variation in the equilibrium mar- 
ginal fitnesses can be shown to depend on the maxi- 
mum level of imperfect transmission, a,  characteristic 
of the genetic system. On substituting the expressions 
(3) into the equilibrium equations (lo), since P 2 0 
we easily deduce that z&/k 5 (1 - a)-’ for all i .  

Later we show that the strength of selection on the 
modifier gene depends quantitatively on the magni- 
tude of the difference between the maximal marginal 
fitness in the population and the mean fitness. This 
quantity is a variant on the genetic load defined by 
CROW (1 958), and we call it the “selection potential”: 

Definition 1: The selection potential, V ,  present in a 
population is defined as 

- (1 1) 
max(wJ 

- 1 =- V = -  
W 1 - L ’  

L i 

where L is the genetic load, 1 - (z3/maxi(wi)), as 
defined by CROW (1958). 

The upper bound to the equilibrium selection po- 
tential is 

(12) 
a 

V 5 -  
1 - a’ 

which increases without limit as a increases toward 1, 
and approaches 0 as a tends to 0. This definition of 
selection potential corresponds to the less common 
definition of genetic load used by EWENS (1979, p. 
66). 

GENERAL MODIFIER GENE MODEL 

The general modifier gene model is a special case 
of formulation (5) with haplotypes undergoing both 
selection and imperfect transmission. The  haplotype 

is partitioned so that one part, the set of selected loci, 
A, undergoes selection and generalized transmission, 
while the other part, the modifier locus M ,  controls 
the transmission of the first part. Thus haplotypes are 
indexed with two subscripts, so that 

MaAz 

represents the haplotype with modifier allele a and 
multilocus haplotype i for the set of loci under selec- 
tion. Its frequency is zut. We assume that the modifier 
alleles have no effect on the fitness of their carriers. 
Thus, the fitness of genotype MaAJ/MJk will be WJk 

for all a, b .  We use the notation A, for haplotypes that 
consist of alleles Gl,G21G3t 1 . with the subscripts 1, 2, 
3, etc., indicating the selected gene locus. It will be 
assumed throughout that the location of modifier 
locus is external to the A haplotype. If GI  is the 
selected locus nearest the modifier locus, we denote 
by r the probability of recombination between M and 
G I .  

We assume that the modifier alleles are perfectly 
transmitted regardless of the processes acting on the 
selected haplotypes, so that the only force acting on 
the modifier locus is the induced selection resulting 
from its effect on the transmission of the other loci. 
To take account of recombination between M and GI  
we introduce two new transmission matrices, T* and 
?*, which describe the transmission of the complete 
system of modifier and selected genes and also keep 
track of each modifier allele during transmission. 

T*(ai t aj I bk) is the probability that haplotype M,A, 
is produced from haplotype M A in genotype M,AJ/ 
M J k ,  given that no recombination has occurred be- 
tween M and GI. F*(ai + ak I bj) is the probability that 
haplotype M,A, is produced from haplotype MaAk in 
genotype M,A,/Mt.& given that recombination has 
occurred between M and GI .  Conditioning in this 
way on recombination between M and GI  takes ac- 
count of any possible interference between crossovers 
in the region between M and GI and the transmission 
of the A haplotype. In the absence of interference, 
T*(ai t u j  I bk) = f* (a i  t aj I bk) for all a, b, i, j ,  K .  

The recursion (8) for the general modifier model 
with random mating can then be rewritten as 

a .  J 

W cjk 

In terms of T* and ?* 
can be written 

1 
2 

T(ai t u j ,  bk) = - (1 - 

r + -  
2 

(13) + rF*(bi t bk 1 c j ) ~ .  

the original T defined in (1) 

r)T*(ai t aj 1 bk) 
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T(ai t u j ,  ah) ing notation: 

1 
2 

= - (1 - r)[T*(ai c uj I ak) + T*(ai t ak I aj) ]  

r 
2 

+ - [F*(ai t aklaj) + T*(ai + ajlak)],  

and T(ai t bj, ck) = 0 if b # a and c # a, where Z, 
T(ai t ajlbk) = 1 for all a, b, j ,  K, and T(ci t ajl  bk) 
= Q c i  e- aj I bk) = o if c z a. 

The original T‘s are not used after this point, so for 
convenience the asterisks from the new sets of T’s are 
suppressed. The new T’s can be represented in matrix 
form as 

T a b  = IIT(ai ajl I b j Z ) l l ! ~ ~ ~ 2 = 1  

and 

+ab = IIF(ai aj1 I bj2)11:J]J2=1* 
In the absence of interference Tab = ‘kab. It will be 
assumed that there are no position effects between M 
and A .  That is, the linkage phase between M and A 
within the diploid genotype does not affect the trans- 
mission of A .  This is expressed as: 

T(ai t aj I bk) = T(bi t bj I ah) and 

q u i  t aj 1 bk) = q b i  c bj I ak), 
* * 

or in matrix form, Tab = Tba and Tab = Tbo. This 
excludes the possibility that the modifier controls 
transmission processes that occur during the haploid 
phase of the life cycle. 

Segregation distortion acting on the modifier locus 
is excluded here because this would constitute imper- 
fect transmission of the modifier. This entails Z, 
~ ( a i c  a j ~ b k )  = 1, Z, Q u i t  a j lbk )  = 1 for all a, b, j ,  
k. This restriction is actually necessary to ensure that 
T and ?’ satisfy condition (1) in the original definition 
of transmission matrices. 

If the selected haplotypes are perfectly transmitted 
in an organism of modifier genotype Ma/Mb, then 

(14) 
T&i t aj I bk) = F,&i t aj I bk) = 6, 

0 if i#j = i  1 if i = j 7  

Only if r = 0, however, will this constitute perfect 
transmission of the entire haplotype of both modifier 
and selected loci. 

ANALYSIS OF THE RECURSIONS 

In this section we investigate the fate of new modi- 
fier alleles introduced into the population in the 
neighborhood of a stable equilibrium. 

The equilibrium identity: We introduce the follow- 

and 

D = d i a g e ) ,  

as in (9). Qb are column stochastic matrices. 

must be satisfied: 

- 1  

At any equilibrium for (1 3), the following identity 

f b i  = ibji&wjk[( 1 - r)T(bi t bj I ck) 
(16) 

w cjk 

+ @(bi t b k l c j ) ] .  

i b  = QbDib. (17) 

This can be written in a vector form analogous to (8): 

The “external stability” of equilibria: T o  investi- 
gate the long-term evolutionary fate of the modifier 
locus, we need to know those characteristics of new 
modifier alleles that determine whether they will in- 
crease in the population when introduced near an 
equilibrium. Let a new modifier allele, Ma,  be intro- 
duced into the population near i, with f a ,  the fre- 
quency of haplotype MaAi. From (1 3 )  the vector form 
of the linearized recursion for the cui’s, ignoring terms 
of order t:i, is 

.. 
e’ = Q,De. (18) 

Assuming that the polymorphic equilibrium i is locally 
stable to perturbations in the frequencies of the hap- 
lotypes already present, the initial increase of the new 
modifier allele is determined by the spectral radius of 
the stability matrix, 

p(Q,@. (1 9) 

If p(QaD) > 1, the new modifying {llele increases. If 
p(QaD) < 1, it decreases and if p(QaD) = 1, the modi- 
fying allele cannot change at a geometric rate. We call 
these the “external stability” properties of the equilib- 
rium. 

REDUCTION PRINCIPLE 

Since Qa a column stochastic matrix’, the sp_ectral 
radius p(QaD) can be different from 1 only if D # I; 
i.e., only if there is a nonzero variance in the marginal 
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fitnesses of the selected haplotypes at equilibrium. 
Thus, when a population is near an equilibrium, se- 
lection cannot act on a newly introduced modifier 
allele to change its frequency at a geometric rate 
unless there is an equilibrium selection potential. 

In this section we present the main results about 
the initial increase properties of a new modifier allele 
introduced to the randomly mating population at a 
polymorphic equilibrium. These results concern exter- 
nal stability of the equilibria with respect to changes 
in the direction of the modifier frequencies. Although 
the assumption of the existence of the equilibria may 
entail constraints on the selection regimes and trans- 
mission probabilities, in none of the results do these 
constraints or closed form solutions of the equilibrium 
frequencies appear. The only generic assumptions 
made are as follows: ( 1 )  There is polymorphism in the 
selected haplotypes, and (2) new modifier alleles do 
not cause the selected haplotypes present at equilib- 
rium to be transformed into haplotypes not present. 

Our results regarding the evolution of reduced 
levels of imperfect transmission fall into two cases 
according to the effect of the new modifier allele on 
transmission: 

Case 1. Imperfect transmission eliminated at the 
selected loci 

Result 2: a) A population at equilibrium with a nonzero 
selection potential can always be invaded by a new modijer 
allele that eliminates imperfect transmission at the selected 
loci, for  any amount of linkage of the modijier to these loci. 

b) In particular, for a modijier locus that is absolutely 
linked to the selected loci (which are absolutely linked in 
the presence of the new modajier allele), the spectral radius 
of the external local stability matrix equals one plus the 
equilibrium selection potential, i.e., 

c) Moreover, for all r 5 1/2, the spectral radius of the 
external local stability matrix is always greater than one 
by at least the equilibrium marginaljtness variance, i.e.,  

d) For a given set of equilibriumjtnesses and haplotype 
frequencies, the selective advantage of a new mod$er allele 
that eliminates imperfect transmission decreases with 
looser linkage to the selected haplotypes. 

e) The selection potential is always greater than the 
population variance in the marginal jtnesses. 

The proofs of this and subsequent results are given in 
the APPENDIX. 

Remarks: (i) Result e) does not require that the 
population be at equilibrium, but holds for popula- 
tions in the transient phase of their dynamics as well. 

(ii) In principle, because the frequency vector v and 
the fitness matrix W are the only facts about the 
polymorphic equilibria that are relevant to the fate of 
the new modifier allele, Result 2 can be shown to hold 
no matter what linkage arrangements obtain for those 
modifier alleles and selected loci segregating at the 
polymorphism. Moreover, the modifier alleles present 
at the polymorphism may even control their own 
linkage to the selected loci without changing this 
result. The new modifier allele, however, must fit the 
assumptions given earlier (that it be external to the 
selected haplotype and have a single recombination 
rate r with the nearest selected locus) for the proof of 
Result 2 to hold. 

Case 2. Linear variation in the transmission 
So far we have considered only modifier alleles that 

produce large reductions in the imperfect transmis- 
sion acting on a set of selected loci. Now we consider 
modifiers that can change the level of imperfect trans- 
mission over a continuous range of values. Here, the 
way changes in T reflect variation at the modifier 
locus is critical in the evolution of modification. 

The simplest kind of variation in transmission con- 
stitutes a basic “building block” of variation for more 
complex systems. Suppose that each selected haplo- 
type, A,, has a certain probability, m, of being “hit” by 
some transforming process, and given that it is hit, 
it is transformed into various other selected haplo- 
types with different probabilities. These probabilities, 
T l ( i  c j I k), include possible dependence on both 
haplotypes A, and Ak in the diploid genotype. If the 
effect of the modifier gene is to scale the “hit” rate, 
m, up or down equally for all haplotypes, it will be 
said to produce “linear” variation in the transmission. 

Definition 2: For linear variation, the transmission 
matrix for modifier genotype MJMb can be repre- 
sented as a weighted average, 

T(mab) = (1 - mab)Ttd + mabT1, 

where T I  is a transmission matrix that is independent 
of the allelic configuration at the M locus, and the 
modifier’s sole effect to determine the parameters mab. 
Examples are discussed after Result 3. 

We consider here the initial increase properties of 
a new modifier allele that produces linear variation in 
the transmission. Attention is restricted to the intro- 
duction of new modifier alleles into populations that 
are fixed at the modifier locus, but all of the initial 
increase results extend to a class of modifier poly- 
morphisms discussed in LIBERMAN and FELDMAN 
( 1  986a,b; 1987). 

Consider a population at a stable equilibrium satis- 
fying (1 6) where the modifier locus is fixed for one 
allele, MI, which produces transmission matrices 
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T1 = Ili;(li c lj21 1j l ) l ly j , j2=l .  

Denote the total frequency of each selected haplo- 
type by 

vi = %hi. 
b 

In this case i l k  = 6 k  > 0 for all k. At equilibrium, from 
( 1  6 )  the selected haplotype frequencies must satisfy 
the identity 

i = I t lD)f  = [ ( l  - r)*l + T$~]D;,  (20)  
where 

and D is the diagonal matrix of relative marginal 
fitnesses defined in (15). 4, and Y are both column 
stochastic. 

Reduction principle for linear variation in 
transmission 

A new modifier allele Mz, yielding transmission 
matrices T 2  and ?‘z as a heterozygote with M1 is 
introduced into the population. A general way to 
represent linear variation between TI and T2, and 
between Tl and T 2  uses (14), and Definition 2, as 
follows: 

(234 
T(2i t 2jl l k )  = ( 1  - m21)c5ji 

+ mnlT(1i t l j l  l k )  

is the relation between T 1  and T2,  and 

f ( 2 i  c 2kl l j )  = ( 1  - mZ1)& 
(23b) 

is the relation between ? I  and ‘ f z .  Here mZ1 represents 
the parameter for MzIMl. 

Remark: Recall from the characterization of linear 
variation that ml1 and m21 are interpreted as being the 
overall probability that the selected haplotypes are 
“hit” by a transforming process. The above definitions 
of T2 and f‘2 in terms of T1 and ‘k, require that mll 
be scaled to 1.  Thus mZ1 is the “hit” rate for modi- 
fier genotype MJM1 relative to modifier genotype 
MI/MI .  We will refer to mzl as the value of the 
“modified parameter” for modifier genotype M2/Ml. 

+ m21f(li c 1 k J  l j )  

Define 

Therefore, 

where 

From ( 1  8), the recursion on the frequencies of 
haplotypes containing the new modifier allele is 

E’ = Q2De = [(l - r)?, + r$p]De. (26)  

M2 will increase when rare if and only if 

p ( ~ 2 D )  = p ( [ ( l  - r)+2 + r921D) > 1 .  

Result 3: A new allele at a modijier locus that is 
absolutely linked to a set of selected loci is introduced into 
a population near an equilibrium in which the modijier is 
f i e d ,  with a nonzero selection potential for the selected 
haplotypes. If the new modijier allele produces linear 
variation in the transmission of the selected loci, then if 
Q2 is irreducible (reducible) 

a) the new modijier allele will increase (not decrease) in 
frequency at a geometric rate if it brings the transmission 
closer to perfect transmission, i.e.,mnI/mll < 1 and 

b) it will decrease (not increase) in frequency at a 
geometric rate if it takes the transmission further away 
from perfect transmission, i.e., m21/m11 > 1 .  
Moreover, 

c) the asymptotic rate of change in the frequency of the 
modijier allele is an increasing function of the change it 
makes in the transmission probabilities. 

Remarks: (i) The  result is proven for r = 0 but will 
hold also for sufficiently small positive values of r 
(KARLIN and MCGRECOR 1972) when Y2 is irreduci- 
ble. 

(ii) The proof of this result employs Theorem 5.2 
of KARLIN (1982) and is included in the APPENDIX. 
The variation in the transmission for which this Theo- 
rem applies must be linear and this is the condition in 
the analysis of mutation modification by LIBERMAN 
and FELDMAN ( 1  986b) that yields reduction. In their 
model, the equilibrium relation with the modifier 
fixed on M1 is 
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and, setting r = 0, the recursion for the new modifier 
allele M2 is 

Set positive constants mll , f i l , f12,  f21, f22 such that 

wherefll + f 2 1  = f i 2  + f22 = 1; then linear variation 
requires that p12 and v12 satisfy 

which entails v I  l/pl 1 = v12/p12, i.e., there exists b such 
that uy = bp, for all i, j .  This is the assumption under 
which Liberman and Feldman obtain the reduction 
result, namely N = b M .  The definition of linear vari- 
ation here includes the previous models of recombi- 
nation modification by NEI (1 967), FELDMAN (1972), 
FELDMAN and BALKAU (1 973) as well as the migration 
and mutation modification models of BALKAU and 
FELDMAN (1 973), KARLIN and MCGREGOR (1 974) and 
TEAGUE (1 977). 

Linear variation embodies the fourth condition 
given in LIBERMAN and FELDMAN (1986a) for the 
reduction principle to hold for modifiers of recombi- 
nation, mutation, and migration, namely, that besides 
viability selection, the only evolutionary force in the 
system is that feature of the genetic system subject to 
genetic modification. This requirement is illustrated 
in the models of recombination modification in FELD- 
MAN, CHRISTIANSEN and BROOKS (1980). In their 
Model I, which produces the reduction result, with 
r = 0 the stability recursion on the new modifier allele 
is 

c‘ = (1 - r2)De 
* 

I 31Wll + 33w13 31Wl2 + 33w23 

I 0 0 

0 0 
0 0 

c 
3iw13 + 33w3, 6 I W 1 4  + 33w34 

32w23 + 34w34 32w24 + 34w44 

where r2 is the recombination rate produced by the 
new modifier heterozygote. This again fits the form 
for linear variation, and Result 3 can be seen to apply. 

Strength of selection on modifiers 
Previous treatments of modifier gene evolution 

have generally not examined the magnitude of the 
selective forces that act on modifier genes, one excep- 
tion being the work on inversions by CHARLESWORTH 
and CHARLESWORTH (1 973). WRIGHT (1964) stressed 
that pleiotropic effects of modifier genes could cause 
them to have intrinsic fitness differences. It has gen- 
erally been felt that such selection on the modifier 
locus would overwhelm any selection due to its effects 
on transmission (e.g., KARLIN and MCGREGOR 1974). 
Here we show that the selection on modifier genes 
due to their effects on transmission can be quite 
strong. 

From Result 2b, in the case of an absolutely linked 
modifier allele that eliminates all imperfect transmis- 
sion, its induced marginal selective advantage is equal 
to the equilibrium selection potential. This advantage 
decreases with looser linkage of the modifier but is 
always greater than the population variance in the 
equilibrium marginal fitnesses (Results 2c and 2d). 

For one special case of transmission, we can derive 
an estimate of the amount of selection on a new 
modifying allele that yields linear variation in the 
transmission. It will be a function of how far the new 
value of the modified parameter deviates from the 
parameter value of the population at the original 
equilibrium. The transmission for which this estimate 
can be obtained is the “house of cards” mutation 
distribution defined by KINGMAN (1980). This is sim- 
ply a mutation process which has no memory; all 
haplotypes mutate at the same frequency, and the 
probability that the mutant is a given haplotype does 
not depend on what the original haplotype was. There 
are several familiar analogs to “house of cards” ( i . e . ,  
memoryless) distributions for models of migration, 
including the Wright island model, the Levene model, 
and the Deakin model (see KARLIN, 1982). 

With linear variation in the transmission, and no 
interference between the mutation process and re- 
combination between M and A, the general form for 
the transmission matrix with a memoryless distribu- 
tion is 

T(ai t uj I bk) = (1 - mab)c$, + ma&. (27) 
where m,b is the overall mutation rate and p ,  is the 
probability of producing selected haplotype i given 
that there is a mutation, and T = T. The modifier, 
therefore, may change the overall rate but not the 
relative distribution of mutations. 

Suppose that the population is at an equilibrium, 
with a modified parameter of ml Substitution of (27) 
into (21) yields 

?I = (1 - m l l ) I  + m l l P ,  and = YIQ, (28) 

. . , pn) ,  and U is where P = diag(p)U, pT = ( P I ,  p 2 ,  
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the n by n matrix of ones. The  equilibrium value G 
solves the identity 

i = [(l - m11)I + mllP]  DG 
(29) 

= (1 - ml1)DC + m l l p  

for any r ,  which emerges from (20) using the identity 
QDG = DG. 

A new modifier allele, M 2 ,  is now introduced into 
the population with mZ1 as the value of the modified 
parameter in the M 2 / M 1  heterozygotes. From (26) the 
linearized recursion on the frequencies of the haplo- 
types bearing M2 is 

t’ = +2[(1 - r)I + r ~ l D t  

where mZ1 has been substituted for m11 in (28) to 
produce 9,. Since there is assumed to be no interfer- 
ence, G z  = ?2Q. Then we have the following 

Result 4: Consider the case of linear variation in 
transmission with a memoryless distribution specijied by 
(ZS), with p ,  > 0 for  all i. For a tightly linked modafaer, 
the spectral radius of the stability matrix for  a new modi- 
j j ing  allele with parameter m21 as a heterozygote, with mZ1 
close to ml > 0 ,  is approximately: 

p(e2D) r 1 + (mil - m21) 
* 

.(Dm:] P;’$GJ-’ P;~$(G,  - $1‘. 

Remarks: The spectral radius is the actual value for 
the asymptotic relative marginal fitness of the new 
modifier allele, i.e., 

I : 

WM, -- - P ( 9 2 D ) .  
W 

Consistent with Result 3, a new modifier allele can 
increase if and only if it reduces the amount of mu- 
tation. The term 

p;1qZi i  - i ) 2  (30) 
i 

is of the same order as the marginal fitness variance 
and is zero if and only if the variance of the marginal 
fitnesses is zero. Therefore, for small modifications of 
the transmission process the selection for or against 
the new modifier allele will be on the order of the 
equilibrium fitness variance in the population times 
the deviation of the value of its modified parameter 
from the equilibrium value before its introduction. 

The selective force on the modifier may be inter- 
preted as a consequence of the selection on the major 
genes rather than imperfect transmission. By substi- 
tuting from an alternative form of the equilibrium 
identity (29), namely 

(30) becomes 

i2m:l(1 - mil)-' - pi)’. (31) 
i 

If no selection were acting then under mutation) 
alone the equilibrium haplotype frequencies would all 
be 

4. = p .  
2 1. 

Thus the squared term is the deviation of the selected 
haplotype frequencies from what they would be under 
pure mutation. The  effect of adding selection to a 
system of pure mutation is to create selection for 
decreased mutation. 

Selection on inversions 
A new chromosomal inversion is formally the same 

as a new modifier allele that eliminates recombination 
between the loci flanking the inversion, and is tightly 
linked to them. If we consider the two flanking loci in 
isolation, a rate f of recombination between them, 
prior to the introduction of the inversion, permits a 
maximum selection potential of f / (  1 - f )  when there 
is a two-locus polymorphic equilibrium [see (1 2 ) ] .  Re- 
sult 2b can therefore be used to give an upper bound 
for the selective force on an inversion in terms of the 
map length alone. The  expression for the selective 
force given by CHARLESWORTH and CHARLESWORTH 
(1973) requires in addition an estimate of the linkage 
disequilibrium. 

Result 5: The relative amount of induced selective 
advantage on a chromosomal inversion can range up to 

1 - f ’  

where f is the map length of the inversion, in units of 
crossover frequency. 

Remark: In the examples of CHARLESWORTH and 
CHARLESWORTH (1 973), the strength of selection on 
the inversion is seen to approach f / (  1 - f )  as epistasis 
and f become smaller. From the case in Table 1 of 
KARLIN and CARMELLI (1975), where the initial in- 
crease of an appropriate new inversion violates the 
“mean fitness principle” (KARLIN and MCGREGOR 
1974), the strength of selection on inversions bor- 
dered by two loci that are 2.5 to 3 centimorgans apart 
can be seen to be more than 98.8% of f / (  1 - f ) .  

DISCUSSION 

General considerations: We have shown in this 
paper that many genetic models in the literature that 
incorporate complex transmission, selection, recom- 
bination, mutation, and modification, are special cases 
of recursion (5). A basic finding from this general 
framework is the intimate connection between imper- 
fect transmission, equilibrium selection potential (i.e., 
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variation in marginal fitnesses), and the evolution of 
transmission under the control of modifier genes. The 
“selection potential” we have defined enters quanti- 
tatively into the strength of selection acting on modi- 
fier genes by providing an upper bound for the poten- 
tial relative rate of increase in frequency of any hap- 
lotype in the population due to selection. With perfect 
transmission, this value vanishes at any equilibrium. 
In the presence of imperfect transmission, equilibria 
may be reached where the selection potential is kept 
above zero by an amount dependent on the level of 
imperfect transmission. This balance occurs because 
haplotypes that are depleted by selection are replen- 
ished from other haplotypes by imperfect transmis- 
sion, and conversely, haplotypes whose numbers are 
augmented by selection are depleted by imperfect 
transmission. 

Selective forces on modifier genes: When the mod- 
ifier locus is perfectly transmitted, as we have assumed 
throughout, the only force changing the frequencies 
of its alleles is selection, manifested as differences in 
the alleles’ marginal fitnesses. When the modifier 
locus is selectively neutral, the marginal fitness of each 
modifier allele is simply the average of the fitnesses of 
the selected haplotypes with which it is associated. 
Summing over i in (1  3) shows that 

where xb is the total frequency of modifier allele Mb, 
and 

wMb = zbjwjlxb 

is its marginal fitness. 
These marginal fitnesses would clearly be the same 

for all of the modifier alleles if they were randomly 
associated with the selected haplotypes. Evolution of 
modifier genes occurs because, through their effects 
on transmission, they may be able to create linkage 
disequilibrium between themselves and the selected 
haplotypes. Those modifier alleles that occur more 
frequently with the fitter types in the population in- 
crease in freqyency. This is known as “hitchhiking,” 
and is the fundamental mechanism by which neutral, 
perfectly transmitted modifier genes evolve. 

The dynamics of hitchhiking in populations that are 
in a transient phase of their evolution differ greatly 
from the dynamics in populations that are near equi- 
librium (CHARLESWORTH, 1976; STROBECK, MAY- 
NARD SMITH and CHARLESWORTH, 1976). Hitchhiking 
is usually thought of as a process whereby an allele at 
one locus increases in frequency by being linked to an 
allele at another locus that is increasing in frequency 
due to selection (EWENS 1979, p. 205). It might be 
expected that at an equilibrium, because there are no 
changes in the frequencies, there could be no hitch- 

hiking effects at all. But to the contrary, Result 2a 
demonstrates that in fact hitchhiking can occur in the 
absence of linkage between the modifier locus and the 
selected loci, and when the alleles of the selected loci 
are very close to equilibrium. 

This paradox is resolved by noting that when im- 
perfect transmission permits a positive selective poten- 
tial at equilibrium, there is a constant net “flow,” by 
imperfect transmission, from the fitter haplotypes to 
the less fit. By altering this “flow,” a modifier allele 
can come to be in disequilibrium with the selected 
haplotypes, and may therefore acquire a marginal 
fitness different from the mean of the population. For 
Result 2a, the linkage disequilibrium between the 
modifier and the selected loci that causes hitchhiking 
is generated by selection every generation, and even 
free recombination can no more than halve this dis- 
equilibrium by the next phase of selection. It should 
be noted that any continuous dependence of T p- W 
on allele frequencies does not enter into Q,D, so 
provided that p(Q,D) # 1 neither the magnitude nor 
direction of selection on a new modifier allele are 
affected by frequency dependence. 

What do the estimates from Results 2 and 4 for the 
strength of selection on a new modifier allele suggest 
for the order of magnitude of selection on modifiers 
in nature? The selection potential is the maximum 
possible rate of increase for modifier alleles, as well as 
selected alleles, and is exploited to its fullest by a 
modifier that stops all imperfect transmission and is 
tightly linked to the selected haplotype. 

As the guaranteed level of perfect transmission of 
the haplotypes decreases, i .e. ,  as the value of a in- 
creases, the upper bound on the equilibrium selection 
potential, a/(l  - a), increases without limit (as a goes 
to one). The typical values of a in nature depend on 
the particular imperfect transmission process. In the 
case of mutation, even though per-locus mutation 
rates are quite small, per-haplotype rates can be quite 
high, of order 1 .  Similarly, per-chromosome recom- 
bination rates can be on this order (VON WETTSTEIN, 
RASMUSSEN and HOLM 1984, p. 399). Therefore, the 
selection potentials that may be typical of natural 
populations at equilibrium, which are the potential 
strengths of selection that can be induced on neutral 
modifier genes, may be quite strong. So we may 
consider what happens when selection acts directly on 
the modifier locus, which may be a biologically more 
reasonable assumption given the ubiquity of pleio- 
tropy (WRIGHT 1964). We see that the induced selec- 
tion on a modifier due to its effect on transmission 
can overwhelm considerable direct selection acting on 
the modifier. If direct selection gives modifier geno- 
type M1/M2 a selective valuefi2, and interacts multi- 
plicatively with selection on the major loci, then the 
fitness of genotype MIA,/M2A, will befi2w8, and the 
rate of change in the frequency of modifier allele M2 

when rare will befinp(Q2D) - 1. 
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Reduction principle: In Result 2, the condition for 
the invasion of a new modifier allele was that it elim- 
inate imperfect transmission acting on the selected 
loci provided a nonzero selection potential is main- 
tained at equilibrium by imperfect transmission. This 
is seen to be true for all viability regimes, and all 
polymorphisms at the modifier and selected loci. Re- 
sult 3, for the case of linear variation, is more re- 
stricted in scope, applying only for tightly linked mod- 
ifier genes that produce linear variation in the trans- 
mission, with the population fixed on the modifier 
gene. In this case, a new modifier allele introduced 
into a population bearing a selection potential induced 
by imperfect transmission can increase if and only if 
it takes the transmission closer to perfect transmission, 
and is excluded if it takes the transmission further 
away. We conjecture that our results for linear varia- 
tion will hold for arbitrary levels of linkage between 
the modifier and selected genes. 

Result 3 has several implications. In previous treat- 
ments of recombination modification, only two loci 
under selection with two alleles each were allowed, 
and it was assumed that both double heterozygotes at 
the selected loci had the same fitness, and had the 
same crossover frequencies for any given modifier 
genotype. None of these assumptions enters Result 3: 
there may be multiple alleles at each selected locus 
and there may be multiple loci under selection. If 
there are more than two selected loci, however, for 
the variation of the transmission to be linear, there 
must be complete interference between crossover 
events among the loci, and the modifier must simul- 
taneously control every crossover event for the set of 
loci. Different fitnesses are allowed for the different 
linkage phases in the multiple heterozygotes at the 
selected loci (i.e., position effects on fitness are al- 
lowed). For any given modifier genotype, different 
recombination rates for the different double hetero- 
zygotes at the selected loci are also allowed. For mul- 
tiple loci under selection, the crossover frequency 
distribution among the loci need not be equal for the 
different heterozygotes. All that is required is that the 
modifier gene affect the crossover rates linearly. 

Most of the basic models of modification in the 
literature treat linear variation, including models of 
mutation modification (LIBERMAN and FELDMAN 
1986b; HOLSINCER and FELDMAN 1983b; KARLIN 
and MCGREGOR 1974), recombination modification 
(FELDMAN, CHRISTIANSEN and BROOKS 1980; TEACUE 
1976; CHARLESWORTH 1976) and migration modifi- 
cation (BALKAU and FELDMAN 1973; KARLIN and 
MCGRECOR 1974; TEACUE 1977; LIBERMAN and 
FELDMAN 1988). Several factors cause a model to 
deviate from linear variation, including nonrandom 
mating, and the involvement of more than one imper- 
fect transmission process during the life cycle. Also, 
the modifier may not simply vary the overall chance 
that a selected haplotype is “hit” by an imperfect 

transmission event, but may change the distribution of 
gametic haplotypes produced by a given parental gen- 
otype, and this also produces deviations from linear 
variation. 

Examples of nonlinear variation include models of 
recombination modification in the presence of muta- 
tion (FELDMAN, CHRISTIANSEN and BROOKS 1980), 
models such as recombination modification in the 
presence of migration (CHARLESWORTH and CHARLES- 
WORTH 1979b), the model of CHRISTIANSEN and 
FELDMAN (1975) where a modifier controls either 
recombination or migration in a population undergo- 
ing recombination and migration, and the model of a 
modifier acting on recombination between multiple 
loci by CHARLESWORTH and CHARLESWORTH (1 979a). 
In the next section we discuss some examples of non- 
linear variation that lead to increases in the modified 
parameter. 

Evolutionary genetic stability of perfect transmis- 
sion: ESHEL and FELDMAN (1 982) developed “evolu- 
tionary genetic stability” of a phenotype as a first order 
criterion for establishing that the long-term tendency 
of evolution is toward this phenotype. In their papers 
on the* general reduction principle in the cases of 
mutation, recombination, and migration modifica- 
tion, LIBERMAN and FELDMAN (1986a,b; 1988) con- 
jecture that for the models they consider, the pheno- 
types of zero mutation, zero recombination, and zero 
migration have evolutionary genetic stability given 
four conditions: 

1. The  selection of the major locus (or loci) is at 
the level of differential genotypic viabilities. 

2. These viabilities do not change over time. 
3. There is random mating. 
4, Besides viability selection, the only evolutionary 

force operating is that feature of the genetic 
system subject to genetic modification. 

In the cases analyzed here, we would expect that 
after its initial increase a new modifying allele would 
change in fTequency until a new equilibrium is ap- 
proached at which the population average parameter 
value is less than that at the initial equilibrium. In 
other words, perfect transmission should be the state 
towards which evolution proceeds in these cases. The  
proof of this result, analogous to that of KARLIN and 
LESSARD (1984), appears to be significantly more dif- 
ficult than that of our results here. 

Because perfect transmission is not the norm in 
nature, with the ubiquity of mutation and the preva- 
lence of different kinds of recombination, it is impor- 
tant to ask whether there are ever conditions under 
which a new modifier allele that increases the level of 
imperfect transmission in the population can invade. 
In fact, there are cases where it can. When selection 
fluctuates, recombination rates (CHARLESWORTH 
1976) or mutation rates (GILLESPIE 1981a) may in- 
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crease. When the population is of finite size and 
random genetic drift is included in the model, GIL- 
LESPIE (1 98 1 b) has shown that mutation rates may 
increase and the same has been shown for recombi- 
nation by FELSENSTEIN (1 974) and FELSENSTEIN and 
YOKOYAMA (1976). When one gene controls the seg- 
regation pattern at another locus, which is also subject 
to viability selection, the recombination between the 
pair is not necessarily reduced (PROUT, BUNGAARD 
and BRYANT 1973; THOMSON and FELDMAN 1974). 
Another example is provided by the case of recombi- 
nation modification analyzed by FELDMAN, CHRIS- 
TIANSEN and BROOKS (1980), where the loci whose 
linkage is controlled by the modifier also undergo 
mutation. In this case there are conditions where a 
new modifier allele can invade the population if it 
increases the frequency of recombination between the 
loci. 

How is this latter result possible in light of Result 3 
on modifiers producing linear variation in transmis- 
sion? The answer is that in the presence of mutation, 
the variation produced by a modifier of recombina- 
tion is not linear. In this example, condition 4 in the 
conjecture of LIBERMAN and FELDMAN (1 986a,b), 
above, is violated. In other cases where increases in 
imperfect transmission can evolve in populations near 
equilibrium, the variation in the transmission again 
does not fit the form for linear variation. This is the 
case, for example, when recombination can evolve to 
increase in the presence of migration (CHARLES- 
WORTH and CHARLESWORTH, 1979b), or selfing 
(CHARLESWORTH, CHARLESWORTH and STROBECK 
1979; HOLSINCER and FELDMAN 1983a), o r  mutation 
can increase in the presence of fertility selection (HOL- 
SINGER, FELDMAN and ALTENBERC 1986) or selfing 
(HOLSINGER and FELDMAN 1983b). The generalized 
reduction results we obtain here show that it is the 
nature of the variation in the transmission process that 
determines the direction of its evolution. Factors in- 
fluencing the functional form of this variation should 
therefore be the focus for developing further under- 
standing of the evolution of genetic transmission. 
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APPENDIX: PROOFS OF THE RESULTS 

Proof of Result 2 

hence 
Here the new modifier allele Ma yields perfect transmission, 

T(ai + a j  I bk) = f(ui t uj I bk) = 6, for all i, j ,  b,  k. 
Then ( 1  8) reduces to 

1 
W I 

e:, = y [(l  - r)eoaG, + rt, c ealw,], 

e’ = Q.De = [(l - r)I + rQ]De, 

or, in vector form, 

(32) 

where D is defined as before in (10) and Q = 113, $llrd=l = 

D I W D ~ ,  with D1 = diag(+), and D2 = diag(G;’). 
Result 2a: We must show that the spectral radius 

p(Q.D) = p([(l - r)I + rQ]Di > 1 ,  for all 0 5 r I !h. 

7% 

Observe first that all eigenvalues of Q are  real since both 
matrices D1WD2 and (D2DI)’/’ W(D1D2)’/2 have the same eigen- 
values and the latter, being symmetric, has all real eigenvalues. 
Since Q is stochastic its spectral radius is 1 (all eigenvalues of Q 
lie between -1 and 1)  and therefore the eigenvalues of ( 1  - r)I 
+ rQ are  confined to  the positive interval 0 5 X I 1 provided 
0 s r I %. T h e  symmetric matrix 

( D I D ~ ) I / ~  [(l - r)(D1D2)-I + ~ W ] ( D I D ~ ) ” ~  

is non-negative and symmetric and it has the same non-negative 
eigenvalues as the matrix ( 1  - r)I + rQ. Hence the former 
matrix is positive semidefinite. 

This enables us to  use Theorem 5.1 Corollary F.2 of KARLIN 
(1982), which states that for a positive diagonal matrix D = 
diag(D,) and a matrix M that is symmetrizable to  a positive 
semidefinite matrix (i.e., M = ElPE2 where El and E2 are  
diagonal positive matrices and P is positive semidefinite), with 

M( = l ,  e‘M = eT, and e‘[ = 1 ,  we have 

P(MD) 2 E E$,. 

In the present case [ is DG, since 

Thus  

[(l - r)I + rQ]D; = DG, 

and therefore 
* A  wi w, - 

p(Q,D) = p([(l - r)I + rQ]D) 2 3 , ~  T - 
I w w  133) 

Thus, when not all 6, are  equal, 

p(0.D) = p([(l - r)I + rQ]D) > 1 ,  

and the new modifier increases when rare. 
Result 2b: if r = 0 then Q, = I, and so p(Q,D) = p(D) = maxi 

Result 2c: See (33). 
Result 2d This is a direct result from Theorem 5.2 of KARLIN 

(1982), which states that ~ ( [ ( l  - a ) I  + aM]D) is a decreasing 
function of a, where M is a stochastic matrix and D a positive 
diagonal matrix. 

Result 2e: This is an incidental implication of Results 2b and 
2d and Definition 1 ,  which give 

(WJW).  

Proof of Result 3 
T h e  recursion on the frequency of M2 is, from ( 1  5) and ( 1  8) 

(34) 
e’ = [(l - m2,)((1 - r)I + rQ) 

+ mnl((1 - r)irl + r91)lDe, 

where Q, PI,  GI and D are  defined as in (25), (21), (22) and 

We know by the Perron-Frobenius theorem that since 
the strictly positive eigenvector i in (20) has eigenvalue 1 ,  
~ ( [ ( l  - r)*’ + rGl]D) = 1 .  At r = 0, equation (34) reduces to 

e’ = [(I - m2l)I + mzIirl]De = ~ 2 D c .  

(15). 

We now use Theorem 5.2 of KARLIN (1982), which states: 

Let M be an irreducible stochastic matrix. Consider the 
family of stochastic matrices 

Ma = (1  - a ) I  + aM. 

Then for any positive diagonal matrix D (D # cI ,  c > 0), 
p ( a )  = p(MnD) is strictly decreasing as a increases. 

Therefore, p(Q,D) is non-increasing in mZ1. If mZ1 = 1 ,  :hen 
p(Q2D) = 1 ,  so when r = 0, p(Q2D) 2 1 if m21 < 1 and p(Q2D) 5 
1 if mz1 > 1 .  

Implicit in these inequalities on mzl is the scaling m l l  = 1 .  
With respect to  the general situation, the previous inequalities 
on mZ1 are  replaced by inequalities in m2JmI1. From the theofy 
of small parameters (KARLIN and MCGRECOR 1972), when YI 
is irreducible, Result 3 holds also for some range of r > 0. The 
general case 0 < r < Yz is conjectured to hold also. 
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Proof of Result 4 

Assume first that p i  > 0 for all i, and that r = 0. We make 
use of a result due to KARLIN (1982, p. 173) to the effect that 
if the matrix S has the representation 

S = E + R ,  (35) 

where E = diag(el, e2, . . . , e,) and R = 11 uivl 11 with u,vj 2 0 for 
all i a n d j  and e, < 1 for all i then the spectral radius p ( S )  of S is 
that value of A for which 

I + uiv,/(e, - A) = 0. (36)  
i= I 

In the present _case the matrix of external stability is 
[( 1 - mnl)I + mz1P]D, and comparing this to (35) we may use 

E = ( 1  - m21)diag(&) (37) 

and 

R = m21 IIpici,It (38) 

where = &,/$. Note that from (29) 

q i  - ( 1  - ~ ~ J c J , / $ J  = mllp, 

so that 1 - ( 1  - ~ I I ) & / $  > 0. For mZl sufficiently close to m l l  
obviously (1 - m21)3,/$ < 1 also. Hence by KARLIN’S result 
quoted above the required spectral radius A. is the unique 
solution of 

;i 
U(A)  = 1 + mZ1 p,&/[(l - mZ1) - AI = 0. (39) 

Clearly when mZI  = mll, A, = 1 and for m21 close to ml l ,  A, is 
close to 1 .  For A, near 1 we have, by Taylor’s theorem, 

U(1) = U(A,) + U‘(l)(l - A,) + O(1 - &)2 

A” = I - U(l)/U’(l). 

with U(A,) = 0. Hence, to this order of approximation, 

(40) 

We then write 

by (29). We may then expand (39) at A = 1 and neglect terms 
O(mll - mZ1)’L to obtain 

In the same way, 

On substituting (42) and (43) into (40) we conclude that, except 
for terms O(ml I - mZ1)‘, 

(45) 

which upon substitution into (44) produces the conclusion of 
the stated Result 4. 

It should be noted that if p h  = 0 for some h then with r = 0, 
for any m2, with 0 5 mZ1 C 1 it can be shown that 

mll  - m21 - 1 - mZ1 
1 - m l l  1 - m l l  p(Y*D) = 1 + - 1 + ( I  -%)I? 

where fi is the selection potential at this equilibrium. 


