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ABSTRACT 
Predictions are made of the equilibrium genetic variances and responses in a metric trait under the 

joint effects of directional selection, mutation and linkage in a finite population. The “infinitesimal 
model“ is analyzed as the limiting case of many mutants of very small effect, otherwise Monte Carlo 
simulation is used. If the effects of mutant genes on the trait are symmetrically distributed and they 
are unlinked, the variance of mutant effects is not an important parameter. If the distribution is 
skewed, unless effects or the population size is small, the proportion of mutants that have increasing 
effect is the critical parameter. With linkage the distribution of genotypic values in the population 
becomes skewed downward and the equilibrium genetic variance and response are smaller as 
disequilibrium becomes important. Linkage effects are greater when the mutational variance is 
contributed by many genes of small effect than few of large effect, and are greater when the majority 
of mutants increase rather than decrease the trait because genes that are of large effect or are 
deleterious do not segregate for long. The most likely conditions for ‘‘Muller’s ratchet” are investi- 
gated. 

N recent years there has been much interest in the I production and maintenance of variation in pop- 
ulations by mutation, stimulated by the presence of 
abundant variation in natural and artificial popula- 
tions at the protein and DNA levels. Also, the genome 
is now seen as a fluid entity with transposition a 
particularly potent force in generating molecular var- 
iability. Variation at the phenotypic level must also 
originate from mutation, but the rate at which such 
variation is generated has been thought to be slow. 
This belief was derived mainly from observations of 
experimental populations of Drosophila. For example, 
the gain from new mutations in bristle score variation 
is of the order of one thousandth of the environmental 
variation per generation (discussed by LANDE 1976; 
HILL 1982b), and mutagenesis experiments have 
failed to produce large amounts of new variation in 
such quantitative traits (CLAYTON and ROBERTSON 
1964; KITACAWA 1967; HOLLINCDALE and BARKER 
1971). 

Despite the apparent slowness of accumulation of 
new mutational variance, theoretical analyses of the 
interaction of mutation and natural selection in the 
absence of drift have shown that mutation may be a 
powerful force in maintaining variation in natural 
populations (LANDE 1976), although the extent pre- 
dicted depends on assumptions in the model (TURELLI 
1984). Theoretical studies in finite populations have 
concentrated on the combined effect of mutation and 
directional selection in influencing quantitative vari- 
ability and selection response rates (HILL 1982a,b). 
The equilibrium variance of a quantitative character 
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is attained more quickly in the presence of selection 
than in its absence, and is highly dependent on popu- 
lation size. Thus in the early generations of a selection 
experiment or breeding program the response from 
variation generated by new mutations is expected to 
be small. In later generations, however, the contri- 
bution to the total variation present and hence to the 
response can be very important, especially in large 
populations. The results of long-term selection exper- 
iments can be interpreted in light of these analyses. 
The continued response after 120 generations of di- 
rectional selection for increased pupal weight in Tri- 
bolium (ENFIELD 1980), after at least 75 generations 
of selection for increased bristle score of Drosophila 
( Y o 0  1980), and after 76 generations for increased 
oil content in maize (DUDLEY 1977) were likely to 
have been strongly influenced by variation arising 
while the experiment was proceeding. 

In a previous paper (KEIGHTLEY and HILL 1983) 
Monte Carlo simulation was used to investigate the 
effect of linkage on asymptotic selection responses in 
small populations with new mutations and it was con- 
cluded that the asymptotic response rate is little af- 
fected by linkage, especially for species with many 
chromosomes. Moreover, the variance of effects of 
mutants on the trait was not an important parameter 
of the model for asymptotic selection responses were 
little affected by whether the new mutational variance 
arose from a few genes of large effect or many genes 
of small effect. Mutant effects on the trait were, 
however, assumed to be symmetrically distributed 
about zero. 
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In this paper we attempt to develop a theoretical 
framework to predict the amount of quantitative var- 
iation maintained and selection responses in finite 
populations from the simultaneous segregation of 
newly arising linked mutations. The analysis is based 
on the ‘infinitesimal model’ first used by FISHER 
(1 9 18), which provides a reference point to allow us 
to better understand the results of the more complex 
Monte Carlo simulation. 

As an extension of the previous work, we shall also 
investigate cases where the effects of new mutations 
come from a skewed distribution, i.e., mutations of 
increasing or decreasing effect on the character are 
not equally likely. While it may be reasonable to 
assume that mutant effects are symmetrically distrib- 
uted for bristle number, it is likely that mutations 
affecting characters close to fitness are mainly detri- 
mental (MUKAI et al. 1972). We also discuss the impli- 
cation of the behavior of the model in theories of the 
evolutionary advantages of recombination, and in par- 
ticular, investigate the conditions necessary for the 
operation of “Muller’s ratchet” (MULLER 1964; FEL- 
SENSTEIN 1974), where the population mean can de- 
cline due to the fixation of recurrent mutations of 
negative effect. 

ANALYSIS O F  T H E  INFINITESIMAL MODEL 

Definitions 

The quantitative character is assumed to be deter- 
mined by the sum of an infinite number of genes of 
infinitely small effects. Dominance and epistasis are 
assumed to be absent and expression are given for the 
case of two alleles per locus. At the ith locus, a, is 
defined as the difference between homozygotes and 
qz is the frequency of the higher valued allele. 

We utilize the following symbols for three funda- 
mental quantities which are essentially the same as 
defined by BULMER (1 976): 

V, = Za?q,(l - qJ/2 is the genic variance in the 
population. It is the genetic variance which would be 
present if the frequencies of each individual gene were 
measured and it were assumed that both correlations 
between loci due to linkage and deviations from 
Hardy-Weinberg equilibrium were zero. 

VA is the additive genetic variance in the population. 
It is the variance of breeding values among individ- 
uals. 

is the disequilibrium covariance in the population, 
where D,  = J3 - q,q,, and J3 is the frequency of the 
corresponding gamete. It is the sum of the covariances 
between the values of pairs of loci in the population, 
and can be either negative or  positive. At any gener- 

ation, t, the above three quantities are related by 

v A , t  = vg,t + cot. (2) 
There is also a covariance component due to devia- 

tions from Hardy-Weinberg equilibrium (BULMER 
1976). We ignore this in the model since it is transient 
and disappears after one generation irrespective of 
linkage . 
Change of variance 

In an isogenic population, all three quantities V,, VA 
and Z D  are zero. With constant forces of mutation, 
selection and drift, they approach equilibria when the 
rate of loss of variation due to selection and drift is 
balanced by the rate of gain from new mutations. In 
a finite population the variances will drift stochasti- 
cally about the equilibrium. A prediction of the infin- 
itesimal model is that the genic variance (V,) is unaf- 
fected by selection (see CROW and KIMURA 1970, pp. 
236-239; BULMER 1980, Ch.9) and therefore in an 
infinite population with mutation V, will never reach 
an equilibrium. Designating VM the expected incre- 
ment in variance in the population per generation 
from new mutations, the expected change in genic 
variance in one generation is given by 

V,,t+I = V,,t(l - 1/2N) + VM, (3) 
where N is the effective population number. In a finite 
population, the expected equilibrium value of V, is 
2” (cf CLAYTON and ROBERTSON 1955). 

The equilibrium value of the additive genetic vari- 
ance is affected by selection, mutation, drift and re- 
combination, and is less simply derived than that of 
the genic variance. As a starting point, we consider 
the effects of selection in an infinite population with 
free recombination in the absence of mutation. 

Selection: The effect of selection on genetic varia- 
bility in the infinitesimal model has been discussed by 
BULMER (1971, 1980, pp. 153-154), and by FAL- 
CONER (1981, pp. 179-189). After one generation of 
selection of parents and breeding of progeny, the total 
genetic variance in the population can be divided into 
fractions between and within full-sib families. With 
random mating, the between family component is one- 
half of the genetic variance among parents. Selection 
by truncation reduces the variance in the parents by 
a factor of 1 - h2k,  where h2 is the heritability ( h 2  = 
VA/VP, the squared correlation between phenotype 
and genotype; with selection on an arbitrary index h 2  
is replaced by the squared accuracy of the index), and 
k is a constant factor describing the strength of selec- 
tion. For truncation selection of a normally distrib- 
uted population, K = i(i - x), where i is the intensity 
of selection (standardized selection differential) and x 
is the standardized deviation of the truncation point. 
Thus after one generation, the between family com- 
ponent is given by (1 - h2k)VA/2. 
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Selection leads to a reduction in the genetic variance 
between family means, which appears as a negative 
disequilibrium covariance component within families. 
With free recombination the within family variance 
component is simply given by Vg/2  because recombi- 
nation completely eliminates disequilibrium within 
families, but only half of the total genetic variance is 
initially present within full-sib families. 

The total additive variance in the population after 
one generation of selection is obtained by adding the 
between and within family components, 

(4) 
The recurrence relation (4) corresponds to Equa- 

tion 9.30 of BULMER (1 980). Its validity depends on a 
normal distribution of genotypic values in the prog- 
eny, since skew in the distribution can affect the 
amount of variation removed by selection, but the 
results of BULMER (1980, Ch. 9) and ZENC (1987) 
indicate that, in many cases, skewness effects are small 
and can be ignored. Here, we use simulation to inves- 
tigate possible effects of such skewness. 

Mutation: As with the genic variance, the additive 
variance increases by VM units each generation from 
mutation. Equation 4 becomes 

vA,i+i = (1 - h:k)V~, t /2  vg, t /2  + VM.  ( 5 )  

Finite population size: With a poisson distribution 
of family size the expected reduction in the additive 
genetic variance in the population is by a proportion 
1/2N in the absence of selection. With truncation 
selection, the within family variance is independent of 
the population size, but the expected reduction in the 
between family component is by a proportion 1/N 
due to sampling of parents with replacement. Equa- 
tion 5 becomes 

V&+l = (1 - 1” - hTk)V~,t/2 (6) 
+ vg,t/2 + VM- 

Linkage: Linkage does not affect the variance be- 
tween family means after one generation of selection, 
but affects the within family variance by reducing the 
amount of variation recovered from the disequilib- 
rium covariance component due to recombination 
between loci. If cg is the recombination fraction be- 
tween loci i and j ,  the disequilibrium remaining in the 
within family component is given by 

2 Dy,t (1 - 2cg)ai~j = Cot - PC(:(O&), 
i#3 

where EDt is defined by ( 1 )  and similarly 2Z(Dtc) = 
Z;Z+j Dqaiujcq. More generally (6) becomes 

(7) VA,t+l = (1 - 1/N)( 1 - hPk)VA,t/2 
+ [ v g , t  + cot - 2 c ( D t c ) ] / 2  + VM. 

The recurrence relation for the disequilibrium com- 

ponent is obtained by combining equations ( 2 )  and (7) 
to give 

(8) CD*+l = D t  - C W ( 2 N )  - W t c )  

- h:kQ - l /N)(Vg, t  - C W 2 .  

Asymptotic variance 

As t -+ CO for finite N, the variances reach expected 
equilibrium values about which they fluctuate sto- 
chastically due to sampling. For free recombination 
(6) can be reexpressed as a quadratic 

(9) 
e( 1 + k + 1/N - k / N )  ?A( VE - ~ N V M )  

*(I  f 1/N) - 2vMvE(N -k 1) = 0, 

where vA is the equilibrium value of VA. Ignoring 
second order terms, (9) is approximated by 

e( 1 + A) + ?A( vfj 2NVM) - 2mMvE = 0. (1 0) 
Thus, QA is a function of mutation rate and population 
size as their product NVM. 

For complete 1inkal;e ( c  = 0 for all possible pairs of 
loci) a quadratic in VA is obtained by combining ( 2 )  
and (V, 

(1  1)  
1?i(Nk + 1 - k )  -k GA(vfj - 2 m M )  

- 2mMvE = 0. 

Here, the relationship of ?.,, to VM and N is not as 
simple as in (lo), but is a function of NVM and Nh. 

When recombination is finite, the simultaneous re- 
currence relations (3), (7) and (8) do not appear to 
have a simple solution. Their properties were investi- 
gated by iterating until steady state was achieved with 
initial values of Vg, VA and ZD set at zero, as would be 
the case in an isogenic population. The effect of a 
finite chromosome length was modeled by dividing 
the chromosome into a large number of equivalent 
segments (typically 100) and calculating the recombi- 
nation fraction and hence the disequilibrium contri- 
bution from each possible pair of segments. This 
method exactly models the case of infinitesimally small 
effects as the number of segments approaches infinity, 
but increasing the number of segments beyond 100 
made almost no difference to the results. The total 
amount of recombination was specified by L, the map 
length of the chromosome, and HALDANE’S (1919) 
mapping function was used to related recombination 
fraction to map distance ( lq)  between pairs of loci: cg = 
[ 1 - exp(-2Ey)]/2. Previous analyses (AVERY and HILL 
1979) indicate that other models relating recombina- 
tion fraction to map length (e.g. with crossover inter- 
ference) make little difference in this type of model. 

THE SIMULATION MODEL 

The model is similar to that described by KEICHT- 
LEY and HILL (1983), except here we have simulated 
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1. 
truncation selection rather than the previous fertility 
selection model. 

Population structure and truncation selection re- 
gime: The parental population consisted of N mono- 
ecious diploid individuals with random family size and 
mating, but selfing excluded. The present simulations 
were restricted to one chromosome pair per individ- 
ual, with the number of crossovers per chromosome 
pair per generation sampled from a Poisson distribu- 
tion with parameter L. The positions of crossovers 
were uniformly distributed on the chromosome. Each 
generation, T progeny were bred from the parents 
and to the value of each progeny, an independent 
environmental deviate of mean zero and variance VE 
= 1 was added. The N individuals of highest value 
were selected for breeding in the following generation 
so NIT is the fraction selected. 

Mutation effects: The expected number of new 
mutations per haploid genome (constant each gener- 
ation) was A, and their effects a, the difference be- 
tween homozygotes, were sampled from a time-invar- 
iant distribution. The expected increment in geno- 
typic variance, VM, each generation is given by 

VM = h?(a‘)/2 (1 2) 

(HILL 1982a). Importantly, VM is independent of the 
sign of the mutations ( i . e . ,  whether they have a nega- 
tive or positive effect on the value of the character). 

Mutations occurred in the T offspring and were 
assumed to have an immediate effect on their pheno- 
type. Mutations had two basic attributes of a position 
on the chromosome and a value. They were assumed 
to be equally likely to occur at any position on the 
chromosome, and the number of mutations per chro- 
mosome was sampled from a Poisson distribution with 
parameter A. The choice of distribution for muta- 
tional effects is essentially arbitrary, but since it is 
likely that mutations of small effect are much more 
common than those of large effect (MUKAI et al. 1972) 
the effects of both positive and negative mutations 
were assumed to have a gamma distribution with 
shape parameter one-half. For example, for positive 
mutants, 

f ( a )  = a1/2e-OQa-’ /Z /r(1/2), o c a c 00 (13) 

with moments E(a)  = 1/(2a), E(a2)  = 3/(4a‘), and the 
root mean square is defined as E = [E(a2)/VE]’/‘. 

This model was used to investigate the effect on 
genetic variability and selection responses of different 
proportions of positive and negative mutational val- 
ues. In practice, therefore, mutational effects were 
sampled from a gamma distribution of parameter 
with sign randomly allocated, and probability P of 
being positive. For the resulting distribution, referred 
to as the ‘reflected double gamma,’ E(a) = 
(2P - 1)/(2a), and E(a2) and thus E are unchanged. 

- I  ___ ‘Reflected 
Ooub I e Gamma’ I 

r i  
I I  ’ Two G a m m a  

1 - - - -  Distributions’ 
I I  

121 

0 

FIGURE 1 .-Comparison of ‘reflected double gamma’ and ‘two- 
gamma distributions’ for the same values of E(a) and E(a2). In the 
‘reflected double gamma’, [E(a‘)]’” = e = 0.1 and P (proportion 
positive) is 0.1. In the ‘two-gamma distributions,’ €1 = 0.0517, = 
0.132 and one-half are positive. 

As an alternative, to compare the ‘reflected double 
gamma’ with a different skewed distribution we used 
a scheme referred to as ‘two-gamma distributions.’ 
The expected number of positive and negative effects 
were equal (P = 0.5), but the values of positive muta- 
tions were sampled from a gamma distribution with 
parameter € 1  and negative mutations were sampled 
from a gamma distribution with parameter t 2 ,  and 
allocated a negative sign. An example of a ‘reflected 
double gamma’ along with two-gamma distributions 
together giving the same E(a) and E(a’) is given in 
Figure 1 .  Values of €1 and €2 were chosen so that the 
mean and variance were the same as for the reflected 
double gamma with specified P. 

The case of an infinite number of infinitesimally 
small effects was simulated by adding a random nor- 
mal deviate of mean zero and variance vM/2 to the 
value of each chromosome. This was only possible for 
the simulation of zero recombination where it was not 
necessary to store individual effects. 

Computer simulation programs: The simulation 
programs were essentially the same as described by 
KEICHTLEY and HILL (1 983) except that selection was 
by truncation rather than through fertility differ- 
ences. In order to check the validity of the programs 
we used two main techniques: (1) running of ‘marginal 
cases’ which produce known results, e.g., N = T gives 
VA = Vg = 2 M M ,  ZD = 0; and (2) the programs for 
free recombination, no recombination and specified 
L were separate and used slightly different algorithms, 
so could independently check each other at the mar- 
gins. 

Computation of results: The population was ini- 
tialized in an isogenic state and the simulation started. 
To allow the system to reach steady state, the early 
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FIGURE 2.-The equilibrium variance is shown for the infinites- 
imal and simulation models for various population sizes and 50% 
truncation selection. V,&’, = lo-’. In the simulation model, a range 
of values of t and corresponding X were used, with mutations 
coming from a symmetrical ‘reflected double gamma’ distribution 
(P = 0.5). 

generations (200 for the populations simulated) were 
ignored. Thereafter the asymptotic response rate was 
calculated from the difference in mean value every 
other 10 generations and the mean genotypic vari- 
ance, skew and kurtosis were computed every 10 
generations. For a given VM the computing time was 
approximately proportional to N 2  and inversely pro- 
portional to 6’. So results for small f (e .g . ,  0.05) were 
only obtainable for N of 40 or less. 

RESULTS 

Comparison of the simulation and the infinitesi- 
mal model: Predictions of PA from both the Monte 
Carlo simulation and from the infinitesimal model for 
varying population size are shown in Figure 2. A value 
of VM of 10-’VE was used, but in the simulation a 
range of sizes of effects was compared with corre- 
sponding values for the number of mutants per gen- 
eration to satisfy (1 2). 

With free recombination, the infinitesimal and sim- 
ulation models are in good agreement. Surprisingly, 
the agreement is close even with relatively large effects 
and few mutants (t = 0.4). The disequilibrium present 
in the populations simulated can be estimated by 
subtracting the observed P A  from the genic variance 
(given by 2NVM in the infinitesimal case). As expected, 
with free recombination the amount of disequilibrium 
is small. 

With complete linkage, the curves for different t 

values differ substantially, larger values of t giving 
higher predictions of P A .  The infinitesimal model is a 
poor predictor for complete linkage especially when 
effects are large, but it also overestimates PA when 

TABLE 1 

Equilibrium skewness of genotypic progeny values, computed as 
gl = [c(X - 3)’/NYVA, given for the case of no recombination 

(L = 0) 
~~~~~~~~~ 

Population size (A’) 

10 20 40 80 

c Equilibrium skewness (gl) among progeny 

4 -0.0794 -0.147 -0.180 -0.184 
0.05 -0.0592 -0.105 -0.149 -0.145 
0.1 -0.0533 -0.0540 -0.0717 -0.0381 
0.2 0.0142 0.0220 0.0465 0.0852 
0.4 0.0289 0.0568 0.138 0.0735 

V,lVE = lo-’ and mutants come from a symmetrical ‘reflected 
double gamma’ distribution. Fifty percent truncation selection was 
simulated. 

E + 0. The overestimation can be explained by the 
presence of negative skew in the distribution of gen- 
otypic values of individuals (Table 1). Negative skew 
leads to a greater loss of variance each generation 
than predicted by the constant factor i(i - x), and 
hence a lower P A .  

The effects of a finite amount of recombination are 
shown in Figure 3. The simulation and infinitesimal 
models agree at the free recombination limit but there 
is an increasing discrepancy at low recombination 
fractions. At the population sizes simulated, most of 
the effect of linkage is eliminated by one or two 
crossovers per chromosome per generation. The re- 
sults are in agreement with those of KEIGHTLEY and 
HILL (1 983) which used a fertility model of selection 
rather than the present viability model. 

Asymmetrical distribution of mutational effects: 
Previous analyses (HILL 1982b; KEIGHTLEY and HILL 
1983) have indicated that if the distribution of muta- 
tional effects is symmetrical ( i .e . ,  the mutational vari- 
ance contributed by negative and positive mutations 
is equal), then the shape of the density function of 
effects does not have much influence on selection 
responses and variation maintained. 

Predictions of CA from simulations of different pop- 
ulation sizes using the ‘reflected double gamma’ are 
plotted in Figure 4 for free recombination and values 
of P representing cases where mutants are mostly 
negative (P = O. l ) ,  positive (P = 0.9) or symmetrically 
distributed ( P  = 0.5). The results show that P A  is 
higher than the infinitesimal prediction (also shown 
in the figure) when mutants have predominantly pos- 
itive effects and lower when most are negative. As the 
expected value of mutational effects approaches zero, 
however, the results approach the infinitesimal pre- 
diction. In the limit all the effects become infinitely 
small and the models must coincide. With finite ef- 
fects, there are two reasons for the discrepancy from 
the infinitesimal prediction. Firstly, most negative mu- 
tations are lost almost immediately and contribute 
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FIGURE S.-Equilibrium variance ( Q A )  predicted from the simulation and infinitesimal models for three different values of mutational 

variance are plotted for different chromosome lengths (15) with 50% truncation selection. (A) N = 10; (B) N = 40. 
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FIGURE 4.-Equilibrium variance ( P A )  in the simulation and the 

infinitesimal models for various population sizes and three values 
of P (proportion of mutants positive). Free recombination, other- 
wise parameters as in Figure 2. 

little to the variance maintained (HILL 1982b), while 
many positive mutations get fixed and contribute sub- 
stantially to variance especially when at intermediate 
frequencies. The variance maintained is therefore 
proportional to the fraction of the mutational variance 
contributed by positive effects, E'(a2) (HILL 1982a). 
Secondly, the mutation pressure generates skew in the 
distribution of genotypes (negative or positive de- 
pending on the sign of the mutations) since the density 
function of mutational effects is itself skewed (Table 

Where the skewness in the distribution of mutations 
is generated by two gamma distributions of different 
scale we obtain a similar pattern. In Table 3, we 
compare the results from the 'reflected double 

2). 

TABLE 2 

Equilibrium skewness of progeny genotypic values computed as 
in Table 1 for the reflected double gamma distribution of 

mutants, V,IV, = IO-' and free recombination 

Proportion of mutants positive ( P )  

0.1 0.5 0.9 

c Equilibrium skewness (gl) among progeny 

0.05 -0.1 18 0.0312 0.0785 
0.1 -0.285 -0.01 21 0.0539 
0.2 -0.699 0.0514 0.134 
0.4 -1.67 0.0773 0.385 

The population size (N) = 20 and 50% truncation simulation 
was simulated. 

gamma' with results from two such distributions to- 
gether giving the same mutational variance and the 
same mean effect. With small effects ( E  = 0.1) there is 
little difference in ?A, but where effects are large ( E  = 
0.4), the dominating influence of the positive mutants, 
which are much more likely to get fixed and hence 
contribute to ?A, leads to noticeable differences be- 
tween the models. 

Response to selection: The response is given by R 
= i V A / u p  where UP is the phenotypic s.d. If the distri- 
bution of genotypes and environmental effects are 
normal and independent of one another, the regres- 
sion of A on P is linear (e.g., FALCONER 198 1). When 
the mean value of mutational effects is non-zero, there 
is an additional change in mean, A, = 2xE(a), due to 
the mutational pressure. In the 'reflected double- 
gamma' distribution E(a) = t(2P - l)/&, so 

(14) A, = 2Xt(2P - l)/d?. 

The responses to selection for various population 
sizes with both free and zero recombination and three 
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FIGURE 5.-Response rates where mutant effects have a reflected double gamma distribution with three values of P (proportion positive) 

in various population sizes. VM/V, = lo-’ and 50% truncation selection. (A) 6 = 0.1; (B) c = 0.4. 

values of P are plotted in Figure 5.  Since A, is inde- 
pendent of population size but v A  is highly dependent, 
net responses become negative in small populations if 
most mutations are deleterious (P = 0.1). 

Restating (1 2) and (1 4), VM 0: At2  and A, Q. At.  It is 
clear that for a given VM, as the expected magnitude 
of effects decreases (t + 0) and hence the number of 
mutations increases, A, must increase. Thus, if the 
new mutational variance is due to a large number of 
small negative effects, the mean value of a population 
will decline faster than if the mutational variance is 
due to a small number of large effects. 

Paradoxically, the effects of linkage, i .e. ,  the differ- 
ence between response rates for free recombination 
and complete linkage, are most severe when most 
mutations are positive (P = 0.9). Both positive and 
negative mutants interfere with each other’s fixation 
probabilities (HILL and ROBERTSON 1966), but when 
most mutations are of positive value, there are more 
segregating so linkage effects are more important. 

The response to selection from the fixation of freely 
recombining mutants can be approximated analyti- 
cally if we assume that disequilibrium effects are small, 
so that the fate of each mutant is independent. In this 
case the response is given by 

R = 2NX 1: au(a)f(a)da (15) 

where f ( a )  is the density function of mutant effects 
and .(a) is the fixation probability of mutants of effect 
a (HILL 1982a). For a gamma-distribution of muta- 
tional effects an approximation for R can be obtained 
by replacing u(a) by the diffusion approximation of 
KIMURA (1 957) for the fixation probability of additive 
genes [see HILL and RASBASH (1 986) and Appendix]. 

Predicted response rates from simulation and Equa- 

tion 15 are compared in Table 4. In general, the 
simulation agrees quite closely with the model of 
independent mutants. Comparing the results from the 
‘two-gamma’ mutational distribution with those from 
the ‘reflected double gamma’ substantial differences 
in response rates can occur. The differences in re- 
sponse are consistent with the differences in variance 
maintained (Table 3). Also the differences are most 
extreme in small populations when the proportion of 
positive mutants (P) is 0.1. In this case, response rates 
are near zero so any difference is magnified. 

DISCUSSION 

Models: The computer simulation model is in itself 
of interest because it has been set up as far as possible 
in terms of known or measurable parameters, parental 
and progeny population sizes, map length of the chro- 
mosome, new mutational variance and distribution of 
mutational effects (assumed to be gamma form). The 
number of genes in the model is not fixed as in other 
models (e.g., LANDE 1976; TURELLI 1984), but more 
naturally the number of loci with alleles segregating 
varies while the simulation is running. Furthermore, 
mutations which occur very close together on the 
chromosome can be considered either as alleles at 
separate loci or multiple alleles at the same locus. The 
model therefore connects and concurs simultaneously 
with the infinite locus models of BULMER (1 97 1, 1976) 
and the ‘infinite alleles’ model of KIMURA (1 965), and 
the possibility of intragenic recombination is ac- 
counted for. There are also similarities to a ‘stepwise 
mutation’ model (e.g., TURELLI 1984). Any model of 
the mutational process, however, needs to be justified 
in terms of the effect on series of mutations on a gene 
(for say an enzyme) which in turn affects a quantitative 
character (say a flux), for which models have been 
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TABLE 3 

Additive genetic variation maintained (VA) for ‘reflected double gamma’ (RDG) and ‘two-gamma distributions’ (TG) 

Population size (Nj 

P c c l  62 Model 10 20 40 80 

Maintained Additive Variation (CA) 
0.1 0.1 RDG 0.0119 0.0173 0.0262 0.0451 
0.5 0.05 17 0.132 TG 0.0105 0.0165 0.0259 0.0474 

0.9 0.1 RDG 0.0264 0.0579 0.120 0.239 
0.5 0.132 0.05 17 T G  0.0280 0.0587 0.1 14 0.214 

0.1 0.4 RDG 0.00646 0.0103 0.0165 0.0294 
0.5 0.207 0.527 TG 0.00660 0.01 16 0.0228 0.0399 

0.9 0.4 RDG 0.0224 0.0617 0.121 0.234 
0.5 0.527 0.207 TG 0.0256 0.0554 0.110 0.217 

~~ 

VM/VE = IO-’ and 50% truncation selection was simulated. 

TABLE 4 

Response rate in the character predicted by the analytical model of independent mutants (IM) and simulation where mutational effects 
are sampled from a ‘reflected double gamma’ (RDG) distribution and ‘two-gamma’ distributions (TG) 

Population size (Nj 

10 20 40 

P c e, CY Model Response rate in character 

0.1 0.1 RDG -0.00072 0.00427 0.0197 
0.1 0.1 IM 0.00009 0.00428 0.0 108 

0.0517 0.132 TG 0.0031 1 0.00883 0.0130 
0.0517 0.132 IM 0.00376 0.0081 1 0.0162 

0.5 
0.5 

0.9 
0.9 

0.1 
0.1 

0.5 
0.5 

0.1 
0.1 

0.1 
0.1 

0.4 
0.4 

0.4 
0.4 

RDG 
IM 

RDG 
IM 

0.132 0.051 7 T G  
0.132 0.05 17 IM 

RDG 
IM 

0.207 0.527 TG 
0.207 0.527 IM 

RDG 
IM 

0.0149 
0.0143 

0.0304 
0.0304 
0.0258 
0.0242 

0.00245 
0.00208 
0.00377 
0.00347 

0.0120 
0.01 10 

0.0278 
0.0268 

0.0512 
0.0529 
0.0484 
0.0479 

0.00551 
0.00435 
0.00849 
0.00688 

0.028 1 
0.0220 

0.0554 
0.0572 

0.152 
0.104 
0.0890 
0.0959 

0.0111 
0.0088 
0.0190 
0.0137 

0.0543 
0.0440 

0.9 0.4 RDG 0.0240 0.0452 0.0890 
0.9 0.4 IM 0.0199 0.0396 0.0791 

0.527 0.207 TG 0.0256 0.04 12 0.0835 
0.527 0.207 IM 0.0179 0.0359 0.07 19 

VM/VE = lo-’, and 50% truncation selection was simulated. 

developed and explored by KACSER and BURNS (1 973, 
1981). It also needs to be justified in terms of the 
possible effects of mutations on the enzyme activities 
themselves. 

This study has extended work done previously 
(KEIGHTLEY and HILL 1983), and our understanding 
of the behavior of the model has been greatly im- 
proved. The results agree with the previous paper, 
where a fertility model of selection was investigated, 
although in that case the predicted value of VA main- 
tained was slightly lower since selection has more 
impact on the effective population size. 

With V,lV, of the order of 1 0-3, it is clear that with 
directional selection and free recombination, disequi- 
librium will be a minor part of the total variation 
present, and a small number of crossovers goes most 
of the way to free recombination. This is not to say 
that disequilibrium between alleles at closely linked 
loci will be absent, only that the disequilibrium vari- 
ance which depends on the effect of the alleles on the 
character will be low. 

Using the ‘infinitesimal model’ we have developed 
an analytical solution for the equilibrium genetic var- 
iance under the joint effects of mutation, linkage and 
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selection in a finite population. The model agree well 
with the Monte Carlo simulations both where effects 
are small (e 3 0), and also where mutational effects 
are relatively large. This behavior is consistent with 
the results of HILL (1 982a) where independent genes 
give vA of 2WM, irrespective of the mutational distri- 
bution. The higher fixation probability of mutants of 
large effect and their higher contribution to the vari- 
ance in the character is nearly exactly balanced by 
their shorter fixation times and fewer number when 
compared to genes of small effect. 

Asymmetry of mutant effects: When mutants come 
from an asymmetrical distribution the behavior is not 
as simple. As e + 0 for any population size, the 
equilibrium additive variance will be essentially the 
same as predicted by the infinitesimal model. This will 
be true irrespective of the selection regime, selection 
only generating disequilibrium. With larger effects, 
v A  becomes dependent on the proportion of mutants 
of positive effect ( P ) .  When the value of most muta- 
tional effects exceeds o/Ni,  vA is approximated by 
4PNVM. This is so because the fixation probability of 
such mutants (and therefore the probability that they 
will reach intermediate frequencies and contribute 
substantially to the population variance) is propor- 
tional to a and independent of N. The number of 
mutants appearing in the population is, however, pro- 
portional to N. For small effects or in small popula- 
tions, terms for which I a I < u/Ni become more im- 
portant and QA will approach the infinitesimal predic- 
tion of 2NVM. Figure 4 shows, however, that effects 
must become very small or N very small before PA will 
be much different from 4PNVM. 

With an asymmetrical mutational distribution, the 
distribution of genotypic values becomes skewed in 
the same direction as the mutational skew. A skewed 
distribution will lose more or less variance from direc- 
tional selection depending on the sign of the skewness, 
so equilibrium variances are affected by such skew- 
ness. The simulations show that skewness is more 
important when mutational effects are large. At this 
point, we should mention that directional selection 
also generates skewness (positive) in the genotypic 
distribution (BULMER 1980, Ch. 9) so predicting the 
asymptotic distribution of genotypes when mutational 
effects are skewed is a difficult task. 

The behavior of the system where genes are linked 
is also strongly affected by skewness in the genotypic 
distribution. When effects are small (e.g., E = 0.05), 
the infinitesimal model overestimates the equilibrium 
genetic variance. The most likely explanation is a 
negatively skewed mutational distribution generated 
due to the loss of all but the best ‘haplotype’ and the 
presence of a ‘tail’ of individuals of lower value from 
mutation. This tendency to generate negative skew- 
ness is partially opposed by truncation selection gen- 

erating positive skewness as mentioned earlier. The  
effect of linkage in generating skewness has been 
noted in earlier two locus studies (HILL and ROBERT- 
SON 1966). Where effects are large, and therefore 
fewer mutations are occurring per generation, genes 
behave more as if they were independent and there- 
fore higher VA is maintained. 

As a consequence of a negatively skewed mutational 
distribution, the rate of fixation of deleterious genes 
can exceed the rate for beneficial mutants and the 
population mean can decline; an effect corresponding 
to “Muller’s ratchet” (MULLER 1964). We have iden- 
tified a number of conditions necessary for the oper- 
ation of the ratchet: (1) small population size since the 
fixation of deleterious mutants depends on chance; 
(2) many mutants of small effect (as opposed to a few 
of larger effect) since the ‘mutation pressure’ on the 
population mean is greater in this case; and (3) tight 
linkage since less standing variation will be available 
to oppose the mutation pressure. Linkage is also more 
important with small effects (CJ: Figure 2). 

Somewhat surprisingly the simulations show that 
linkage has most influence where most mutants are of 
positive value, and linkage effects can all but disappear 
when most are negative (CJ: Figure 5). The explana- 
tion, however, is simple: deleterious genes almost 
never get fixed, while positive mutants get fixed with 
probability proportional (if independent) to a. In this 
latter case, however, linked positive mutants present 
simultaneously in the population can form unfavora- 
ble repulsion combinations leading to a reduction in 
fixation probabilities. 

Directional vs. stabilizing selection: We should 
now point out that the free recombination results 
differ markedly from models of the maintenance of 
heritable variation in quantitative characters under 
mutation-stabilizing selection balance (e.g., LANDE 
1976; TURELLI 1984). In these models, the predicted 
equilibrium genetic variance vA is finite in an infinite 
population. With directional selection, ?A will become 
infinite in an infinite population. The underlying 
cause of this discrepancy is the presence of mutants of 
positive effect on the character and hence on repro- 
ductive success with directional selection, but mutants 
of both positive and negative effect on the trait are 
deleterious for fitness with stabilizing selection (ROB- 
ERTSON 1956). Further consequences of the models 
are discussed elsewhere (HILL and KEIGHTLEY 1987). 
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A P P E N D I X  

Equation 15 can be restated in terms of s = i a /up ,  the selective 
advantage of an allele of effect a: 

R = (2NXap/i) Jm -m u(s)sf(s)ds. ( ’ 4 1 )  

For positive mutants, an expression for the response, R(+), is 
obtained by replacing u(s) by KIMURA’S diffusion approximation 
for the fixation probability of a mutant of effect s andJ3) by 
the density function for the gamma distribution ( 1  3): 

Expanding (A2), we obtain 

Integrating (A3): 

R(+)  = (2NXup/2) [ 1  + 1/(2N/(u + + . . . I  

[ i  + I / ( z N / ~  + 1) ’12+ .  . .I + . . . 1/2(1/2 + 1)(1/2 + 2) 
2!a3 

- 

Convergence was accelerated using the Gregory integration 
formula (HAMMING 1962, p. 138). 

For negative mutants, a similar series expansion is obtained, 
and the total response is given by 

R = PR(+) - ( 1  - P)R( - ) .  


