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ABSTRACT 
It is shown that the mean phenotype monotonically approaches the optimum in a class of symmetric, 

two-locus, two-allele models with stabilizing selection. In this model, mean fitness does not change 
monotonically. Thus, Fisher’s fundamental theorem does not hold, even though another quantity of 
evolutionary interest, the mean phenotype, can be shown to change monotonically. Using this quantity, 
it is proven that global stability results for this model. 

NE of the most celebrated results in theoretical 0 population genetics is FISHER’S (1 930) funda- 
mental theorem, which shows that mean fitness is 
nondecreasing in single locus models with constant 
fitnesses. Both because this notion is intuitively ap- 
pealing and because it is useful in analyzing models, 
there have been many attempts to extend FISHER’S 

theorem to multiple locus models (e.g., EWENS 1969; 
KARLIN and FELDMAN 1970a; NACYLAKI 1976). How- 
ever, early in the study of two-locus models, examples 
were found that showed that FISHER’S result did not 
hold in general for multilocus models. 

Another approach to studying multilocus models is 
to consider the change in the mean and variance of a 
phenotype, determined additively by a number of loci, 
undergoing selection. This quantitative genetics ap- 
proach can be used to show that under stabilizing 
selection that the change in the mean phenotype is 
approximately proportional to the deviation of the 
mean from the optimum times the genetic variance 
(BULMER 1980; FALCONER 198 l), ignoring the role of 
recombination, disequilibrium or epistasis. 

Here, I describe a class of two locus models for 
which a quantity of evolutionary interest, namely the 
negative of (the absolute value of) the deviation of the 
mean phenotype from the optimum, can be shown to 
always increase. I then use this result to prove global 
stability results, The reason that the behavior of the 
model can be analyzed this way for two loci is that the 
mean of the phenotype is unchanged by recombina- 
tion, and the number of different values (contribu- 
tions to the phenotype) of gametes is only three. Thus, 
the selection aspect of the system can be described by 
two variables. Consequently, the mean and the vari- 
ance provide an adequate description of the response 
to selection. 

MODEL AND RESULTS 

Let there be two loci with two alleles each: A0 and 
A I  at the A locus and Bo and B1 at the B locus. Let the 
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frequency of the gametes A d o ,  A&, AI&,, AIBl be 
given by X I ,  x2 ,  x3 ,  x4 ,  respectively. Define the linkage 
disequilibrium D to be x 1 x 4  - ~ 2 x 3  and let r be the 
recombination rate. Let ai take the values -1, 1, 1, 
-1 for i = 1-4, respectively. Let wv = wji  (with w23 = 
w14 = 1) be the fitness of the individual with the 
gametes whose frequencies are xi and xj. Denote the 
marginal mean fitness of the gamete i by: 

4 

w i  = 1 x,wq, 
j=  1 

and the mean fitness of the population by: 
4 

w = 1 xjwj .  (2) 
j= 1 

Then the dynamics of this system are given by: 

X :  = ( x ~ w ;  + G,rD)/W (3) 

for a discrete time system with nonoverlapping gen- 
erations. 

Let the allele subscripted 0 at each locus contribute 
0 to the phenotype and let the allele subscripted 1 
contribute 1. Assume that the phenotype is deter- 
mined additively across alleles and loci in a model of 
stabilizing selection with an optimum of two, which is 
symmetric about the optimum. This leads to a special 
case of the symmetric model (KARLIN and FELDMAN 
1970b), as in Table 1. It is easy to show that mean 
fitness can decrease in this model. The first result 
concerns the mean phenotype. (Sketches of proofs are 
given in the APPENDIX.) 

Result 1: The mean phenotype of the population 
approaches its optimum monotonically, starting from 
any initial condition where the population is not 
homozygous for both ‘ 1 ’ alleles or both ‘0’ alleles. 

Also, starting from initial conditions with all alleles 
present, the system either ends up homozygous for 
the gamete A d l  or  the gamete A&, or possibly at an 
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TABLE 1 

Fitnesses in a two-locus phenotypic model with an intermediate 
optimum 

In a model of stabilizing selection, either 0 i < 6, or 0 < P 5 
6. 

unstable balance where at each locus both alleles are 
equally represented. 

Result 2: The only possible outcomes of the model 
(3) with the fitnesses in Table 1 are fixation with x2 = 
1 or x3 = 1, or an equilibrium with x1 = x4 and xz = 
xg. This last equilibrium is unstable, so it is approached 
only from initial conditions satisfying particular equal- 
ity constraints. 

DISCUSSION 

The result here is that in a two-locus model of 
stabilizing selection, the mean phenotype changes 
monotonically. Note that the mean fitness does not 
always increase in this model. The result of the current 
paper represents the first step in providing an alter- 
nate way of extending the approach embodied in 
FISHER'S fundamental theorem to more than two loci. 
While the result here is encouraging, it is important 
to recognize the strong limitations imposed here. 
First, the model is limited to two loci. Second, the 
optimum is assumed to be achieved when both loci 
are homozygous. Third, both loci are assumed iden- 
tical and contribute additively to the character. 

What are the positive implications of this result? 
Models of quantitative inheritance (e.g., FALCONER 
1981; BULMER 1980) have predicted that the mean 
changes in proportion to the variance and approaches 
its optimum monotonically. The importance of the 
result here is that it is exact, and the effects of recom- 
bination and disequilibrium are explicitly included. 

It is natural to consider the possibility of extensions 
to more loci. With more loci, the third moment may 
be important (6 BARTON 1986), so extensions will 
not necessarily be straightforward. In a four (or 
more)-locus model there are additional unstable inter- 
nal equilibria, where the mean of the character is not 
at the optimum. These correspond to cases where the 
third moment of the phenotype is nonzero ($ BAR- 
TON 1986), and indicate that the mean of the pheno- 
type cannot behave as it does in two-locus two-allele 
models. This necessarily complicates the analysis, but 
suggests the possibility of additional phenomena of 
evolutionary interest. 
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APPENDIX 

Here I sketch the proof of the results in the paper. Instead 
of xi, use the following three variables (KARLIN and FELDMAN 
1970b): 

U = xt - xq 

Y = xp - x g  

t = X I  + x4 - x 2  - XQ. 

('41) 

('42) 

('43) 

Note that these three variables satisfy the inequalities: 

1 2: U, #, 2 2 - 1 .  ('44) 

The  mean of the phenotype is 2u + 2. 

(KARLIN and FELDMAN 1970b): 
For the fitnesses in Table 1,  the dynamics of the system are 

W u '  = U - 6 u ( l  + z)/2 - pU(1 - r ) / 2  

WU' = # - P u ( 1  - 2 ) / 2  

('45) 

('46) 

W z '  = z - 6(( l  + 2)' + 4u2)/8 - r ( t  + u p  - U'), (A7) 

where 

W = 1 - S ( ( 1  + 2)' + 4 ~ ' ) / 8  - p(l - z 2 ) / 2 .  (A8) 

Proof of Result 1: Write equation (A5) as: 

U! = uw,/W. ('49) 

where 

w, = 1 - 6(1 + 2)/2 - p(1 - t ) / 2 .  ('410) 
The conclusion of the theorem will follow immediately from 
the inequality: 

W > W" > 0. 

To see that w, > 0, note that 6, fi  and I z I are less than one. 
To demonstrate the other half of the inequality, begin by noting 
that 

(A1 1 )  

U' 5 (x, + x4)9 = (t + 1)'/4. (A131 
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where the equality comes from the constraint that the gametic 
frequencies sum to one. Equations A8, A10 and A13 imply 

ri, - W, 5 6[(1 + z)/2 - (1 + z)‘/4] 

+ 8[(1 - %)/2 - ( 1  - 2)/2]. 

By taking derivatives, one can show that the minimum of the 
right hand side of (A14) in the range 1 > z > -1 is positive, 
which implies that (A1 1) holds for 1 > z > -1. 
Proof of Result 2: Result 1 implies that the system ap- 

proaches a state where U = 0. If U = 0, the variable U either 
remains 0, or else monotonically increases (if initially positive) 

or monotonically decreases (if initially negative), as shown by 
the following argument. If U = 0, Equation A8 becomes: 

U’ = U/$. (‘415) 
For ri, 5 1, unless z. = -1, the conclusion follows because z 
cannot remain at - 1, and cannot approach - 1, unless the system 
i s f ixedwi thxz=10rx3=  l . N o t e t h a t i f z = - 1 ,  

z ‘  = -1 + T(1 - UZ), (A 16) 
so unless U is plus or minus 1, z ’  is greater than - 1. Note that 
if U is plus or minus one and U is zero, the system is a t  an 
equilibrium where the population is homozygous for the gamete 
A d ,  or for the gamete AIBO.  


