Skip to main content
. 2025 Mar 18;28(5):112235. doi: 10.1016/j.isci.2025.112235

Table 3.

Model network structural parameters

Index Layer Weight parameters Trainable parameters
1 Conv2d (4, 8, kernel_size=(3, 1), stride=(2, 1)) 4 ∗ 8 ∗ 3 ∗ 1 = 96 96
2 Conv2d (8, 16, kernel_size=(3, 1), stride=(2, 1)) 8 ∗ 16 ∗ 3 ∗ 1 = 384 384
3 Conv2d (16, 64, kernel_size=(3, 1), stride=(2, 1)) 16 ∗ 64 ∗ 3 ∗ 1 = 3,072 3,072
4 Linear (in_features = 64, out_features = 64) 64 ∗ 64 = 4,096 4,096
5 MultiheadAttention (out_proj = 64, 64) 64 ∗ 64 = 4,096 4,096
6 Linear (in_features = 64, out_features = 64) 64 ∗ 64 = 4,096 4,096
7 MultiheadAttention (out_proj = 64, 64) 64 ∗ 64 = 4,096 4,096
8 Linear (dense_soh: in_features = 64, out_features = 1) 64 ∗ 1 = 64 64