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ABSTRACT 
Ewens’ sampling distribution is investigated  for a structured  population.  Samples are assumed to 

be taken from a single  subpopulation  that  exchanges  migrants with other subpopulations. A complete 
description of the  probability  distribution  for  such  samples is not a practical  possibility but  an 
equilibrium  approximation  can be found.  This  approximation  extracts  the  information  necessary 
for constructing a continuous  approximation to the  complete  distribution  using known  values of 
the  distribution and its derivatives  in  randomly  mating  populations. It is shown that  this approxi- 
mation is as complete a description of a single  biologically  realistic  subpopulation as is possible  given 
standard  uncertainties about the actual size of the migration rates, relative sizes of each of the 
subpopulations  and other factors that might  affect  the  genetic structure of a subpopulation. Any 
further information must be gained at the  expense of generality.  This  approximation is used to 
investigate  the effect of population  subdivision on Watterson’s test of neutrality. It is known that 
the infinite allele, sample  distribution is independent of mutation rate when made conditional on 
the  number of alleles  in the  sample. It is shown that  the  conditional,  infinite allele, sample  distribution 
from this  approximation is also independent of population structure and hence  Watterson’s test is 
still approximately valid for subdivided  populations. 

T HE sampling  distribution  of alleles from a  finite 
population was determined by EWENS  (1972). 

This theory assumes that a  finite  sample  of selectively 
neutral alleles is obtained  from  a single finite and 
randomly  mating  population.  This  population  under- 
goes random genetic drift  at a rate  determined by its 
effective size ( N e ) ,  and  the alleles in this population 
mutate to new allelic forms  at  a  rate p. These  are 
the sole processes determining  the distribution of 
alleles. The formulas  for this distribution  permit  a 
complete  description of the sampling  properties  of 
alleles from a  population  and have  answered many 
questions  concerning hypothesis testing.  For  exam- 
ple,  the distribution  demonstrates that,  to estimate 
N , p ,  the  frequency  array  of alleles in  the sample  does 
not  contain any more  information  than  does  the 
number  of distinct alleles in the sample. 

Since its original  derivation, the distribution  has 
been extensively studied and its applicability ex- 
tended.  This has  included tests of neutrality (e .g . ,  
EWENS 1974;  EWENS and GILLESPIE 1974; WATTERSON 
1978),  generalizations  of the distribution (e .g . ,  KING- 
MAN 1977),  infinite sized populations with random 
selection (GIUESPIE  1977), and  the  addition of small 
selective effects on  the alleles (e .g . ,  WATTERSON 1977). 
In  addition,  the  theory  has  had  a  generally  stimulat- 
ing effect on various areas within population genetics. 

Almost every population  that exists in  nature  does 
not  mate at  random  and  one of the common  factors 
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which prevents  random  mating is isolation by distance 
(WRIGHT  1943). The idea  that  populations may be 
partially isolated and  that they may be related by 
migration was realized early by WRIGHT (1940). The 
extensive work within this area has been reviewed by 
FELSENSTEIN (1977). 

Methods of estimating  gene flow and population 
structure  are available (WRIGHT 195  1; WEIR and 
COCKERHAM  1984;  SLATKIN  198 1, 1985) but  there can 
be  many  sources of bias for these estimates, rendering 
their accuracy uncertain [see SLATKIN  (1985) for 
discussion]. Knowledge of population  properties  that 
are  independent of population structure is therefore 
desirable. 

It is the  purpose of this note  to  examine some of 
the effects of population structure  on  the sampling 
distribution of alleles. A  general solution of the 
sampling  distribution  in  subdivided  populations is 
not possible. It is possible to  find  a  numerical solution 
for simple cases (Le., when the  numbers of genes 
sampled is small and when the  number of subpo- 
pulations  considered is small) but this is impracticable 
for  larger samples. We  show here  that  an  approxi- 
mation  can  be used to  extend  EWENS  sampling dis- 
tribution  to  a  subpopulation  that  exchanges  migrants 
with other populations. This  approximation  incor- 
porates all information which is generally applicable 
to  any  subpopulation  and is accurate for many situ- 
ations. 
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It is further shown that WATTERSON’S ( 1 9 7 8 )  test 
of neutrality is still approximately valid for subdi- 
vided populations. This is because  any simple infinite 
allele approximation of the sampling distribution will 
be independent of both mutation and migration rates 
when conditional on  the  number of  alleles sampled. 
Thus, any conditional test will incorporate all  of the 
properties of subdivided populations that hold for 
any pattern of migration between populations. 

METHOD 

The model: Let the population be subdivided into 
s subpopulations. No restrictions will  be  placed on s 
in the following.  Only  samples  which originate from 
a single subpopulation will be considered at length 
but we must also examine the effects  of migration 
between the various subpopulations. Let mlj designate 
the probability that a randomly chosen allele from 
subpopulation 1 originated in the previous generation 
from subpopulation j .  Designate by 

S 

m = ml, 
j =  1 
j 4  

the total probability that a randomly chosen  allele 
from subpopulation 1 is a migrant in the previous 
generation from any other subpopulation. Let the 
lth subpopulation consist  of NI diploid individuals 
which undergo  random mating internally within each 
subpopulation. The total population size  is NT = 

Nt .  Generations are assumed to be discrete and 

non-overlapping. Mutation occurs at a rate p per 
gamete per generation and  there are only K distinct 
alleles  possible at a locus. 

Coeffkients: To describe the subpopulations a 
probability approach will be taken similar  to that used 
in GOLDING (1984) .  This involves setting up a system 
of  variables to describe the various  samples that  are 
possible and  then deriving a system  of recursion 
equations that can  be  solved for  the probabilities of 
these samples. 

Many different samples are possible and samples 
might not only contain different allelic  types but also 
may originate from more than  one subpopulation. 
To distinguish between  possible  samples a vector 
notation is used. Designate  possible  samples by the 
vector S1 = {nl, n2, . . . , nK}, where the subscript 1 
indicates samples from the lth subpopulation. The 
quantity nj  designates the  number of  alleles sampled 
that fall into the ith  identity  class. Those ni that are 
zero can be ignored and  the  number of nonzero ni 
define  the  number of  alleles  in the sample (designated 
by k). For example, when nl = 2 and ni = 0 for all 
i > 1 ,  this represents a sample of  size n = 2 from 
population I with both genes identical in state (k = 
1). When n l  = 1, 722 = 1 and n, = 0 for all i > 2, 

5 

I =  1 

this represents a sample of n = 2 genes that are not 
identical in state (k = 2). Suppressing zero elements, 
these samples  can be written as (2) and (1,  1). The 
numbering of  alleles  is arbitrary and is intended only 
to keep track  of the identity relationships between 
alleles  in the samples and not  to designate a particular 
allele. For example, the sample (1,  2, 3) is equivalent 
to the sample (3, 0, 2, 1). Ail samples are assumed  to 
be drawn  at  random, without replacement. Any sam- 
ple from a single population will  consist  of k (k 5 K )  

distinct alleles,  with a total  of n = ni genes 

sampled. 

K 

a= 1 

RESULTS 

Recursion Equation: A general recursion equation 
can be found  for  the sampling probabilities  using 
standard probability arguments. The general system 
of simultaneous equations for each subpopulation 
for arbitrary samples is not difficult to find but it is 
quite lengthy. Considering samples from only a single 
population permits some  simplification. 

Let E(S1) designate the probability of some sample 
S with k alleles from subpopulation 1. The expectation 
is taken over conceptually replicate populations. Let 
E(Sl[ni  - 11) designate the probability of a sample S 
but with the number of  genes  of the ith allelic  type 
decreased by 1. Similarly,  let E(Sl [n i  - 1,  nj + 11) 
designate the probability of the sample S with the 
number of genes of the ith allelic  type reduced by 
one,  and  the  number of genes of the jth allelic  type 
increased by one. Let E(Sj[n!- I]), be the probability 
of the same sample from subpopulation 1 with one 
fewer gene of the ith allelic  type and  an allele of the 
ith type sampled from  another subpopulation j .  Ig- 
noring terms smaller than 1/2N1, p and ml, the 
recursion equation for E(S1) is 

n(n - 1) 

j # i  

x E(S1[na - 1,nj + 13) 
k k t 1  1 

jPi 

x E(Sl[ni - 1,nj + 11) 
k s  
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where E(St[nK+ 1 + 11) = 0. The prime indicates the 
value in the next generation and 6(x) is a Dirac delta 
function such that 6(x) = 1 if x = 0 and 6(x) = 0 if 
x # 0. Equation 1 is derived using probability argu- 
ments as in GOLDING (1984). 

The first term in this recursion relationship is the 
probability that  there has been no change from  one 
generation to the next. That is, none of the n genes 
sampled are duplicate copies  of one gene from  the 
previous generation, none of the genes are mutants 
and none are migrants. The second term calculates 
the probability that any pair of genes are identical in 
state due to a common ancestor in the previous 
generation. In this case, the identity between these 
two  alleles is assured and  the probability that  the 
remaining alleles are identical is given by the prob- 
ability that  the original sample of  alleles,  less one, 
are identical. The third  and  fourth terms correspond 
to the probability that  one of the alleles is a mutant 
since the last generation but that the sample specified 
by S I  is  still obtained. The last term is the probability 
of obtaining the sample when  any one of the genes 
(of the ith allelic type) is a migrant from  the jth 
subpopulation. 

For example, the homozygosity can be  calculated 
by considering the probability  of  picking two identical 
genes from population 1. In this  case n = 2 ,  k = 1 ,  
nl = 2 ,  ni = 0 for all i > 1 and  the recursion 
relationship is 

1 ( 2N1 
E’ ( (2 ) )  = 1 - - - 2 p  - 2m 

1 

j # l  

The first term on  the  right measures the probability 
of no change. The second term is the probability that 
these two genes were made identical by descent. The 
third is the probability that  the two  identical genes 
were made identical in state by mutation. The last 
term is the probability that one of the genes is a 
recent migrant from subpopulation j ;  where E({:}) 
indicates a sample of one  gene  from subpopulation 
N and  one gene of the same allelic  type from sub- 
population j .  This equation was first determined by 
MALBCOT (1948). That this method could be extended 
up to samples  of four genes from a single population 
was first shown by EWENS and KIRBY (1975). 

The known solution: It is not possible to solve,  in 
closed form,  the general system  of equations for 
arbitrary migration rates between an arbitrary num- 
ber of subpopulations. Attempts to solve  some  sim- 
plified  systems using computer-based algebraic ma- 
nipulation languages suggests that even for small 
samples, the  corresponding solution consists  of the 
ratio of  two  very high degree polynomials.  However, 
when m = 0 we  know from WATTERSON (1976) that 

the resulting distribution is given by 

&(SI) = 
K! 

(K - k)! 

where 8 = 4Nlp and where the caret designates the 
expectation at equilibrium. As demonstrated previ- 
ously in GOLDING (1984), Equation 2 does not include 
the  number of ways of obtaining a particular sample 
of  alleles. Thus to make  this result identical to EWENS 
(1972), multiply Equation 2 by the  number of  distinct 
combinations of k alleles  falling into ni classes. 

The derivatives: Although a general solution is 
not practicable, it is possible  to  ask  how  this  solution 
changes when m # 0. But in order to do this, we do 
not want to place  any conditions on mlj ,  the pattern 
of migration. Interestingly, this is indeed possible by 
considering the derivatives  of E ( S l )  around Nlm = 
0. Multiplying Equation 1 by 4 N l  and solving at 
equilibrium gives 

n(n - 1 + e + 4Nlm),!t(Sl) 
k 

= 2 ni(ni - 1)B(~t[ni - 11) 
i =  1 

j#i 

x &(Sl[ni - 1,nj + 13) 
k k + l  , 

j # i  

X & ~ l [ n i  - I, nj + 11) 

+ 2 ni4Nlmlj&Sj[n!- 
k s  

i = l j = 1  
j P l  

Taking  the derivative of this equation with respect 
to 4Ntm, gives 

n(n - 1 + 4Nlm + 0) -  

k 
= ni(n1- 1) d8(Sl [ni  - 11) 

i= 1 4 4 N l m )  

k k +  1 

+ 2 - 1) 
K - (k + 6(nj) - 1) 

is= 1 i =  1 K - 1  

j # i  



724 E. R. Tillier and G. B. Golding 

j # l  

The last term is necessary  since 
S 

m = mt,. 
j= 1 
j # l  

Evaluating  this equation at m = 0 (mlj = 0, for all j 
and  thus  the subpopulation 1 is completely isolated) 
yields a great simplification.  Since  samples from 
different subpopulations are  independent when 
there is no migration, the value  of &(Sj[n!- 13) is 
known. It is either 1/K (if ni > 1) or 1 - (K - 1)/K 
(if ni = l) ,  times the probability of the  remainder of 
the sample from subpopulation 1. Including these 
values  makes the recursion relationship ( 4 )  indepen- 
dent of the population structure. 

A solution can be found by a multiple series  of 
proofs by induction; first for &({n}), then  for &({n, 
1)) and so on. Continuing this, the derivatives  of the 
probabilities (evaluated at m = 0, mlj = 0)  can be 
found as 

k ni-1 / n \  

- - 
(K - k)! n -  

i = O  

2 
i =  1 

n l -  1 c 
j = O  

- c, (i + ">-'I* K -  1 

The solution can be confirmed by substitution into 
Equation 4 .  Note that dl?(Sl)/d(4Nlm) Im=o = (1 - 1/ 
K)d&(Sl)/d(B) I m = O .  The rate of change of the prob- 
abilities  with respect to migration and mutation differ 
by a factor which is dependent only on  the  number 
of alleles. 

It is apparent when 4Nlm >> 1, such that 4Nlmlj 
>> 1 for all 1, j, that the solution  to the recursion 
Equation 1 is again well known. In this  case the 
probabilities are given by Equation 2 with N I  replaced 
with N T .  We have  still more knowledge  of the prob- 
abilities  since their derivatives  with respect to Nlm 
asymptotically approach zero  when Nlmlj >> 1 for 
all 1, j .  This is because the  rate of change of the 
probabilities slows  as the  amount of migration in- 
creases. 

It is not possible to obtain any more knowledge  of 
the general pattern of the sampling distribution. To 
show  this, consider the requirements for  determining 
the second  derivatives  of the probabilities around 
Nlm = 0. Evaluation  of the second  derivatives re- 
quires knowledge of the derivatives and probabilities 
of samples with  alleles  chosen from more than one 
subpopulation. To find d2&(Sl)/d(4Nlm)2 requires 
values for 

dl?(Sj[nt-  I])/d(4Nlm) 

which depends  on  the functional form of 

k(sj[n;- 
This would  in turn depend  on  the particular migra- 
tion rates between subpopulations and could  easily 
be different  among  the subpopulations. For example, 
if a large circular system  of subpopulations is consid- 
ered  then, with  very  small migration rates, the  prob- 
ability  of identity between  alleles  chosen from neigh- 
boring subpopulations will be much larger than  that 
probability  when  alleles are chosen from  subpopu- 
lations on opposite sides  of the circle. This would not 
be true  for subpopulations that exchange migrants 
at  random regardless of  physical distance between 
the subpopulations. Hence, the derivatives  would 
necessarily  be different  for these two models. 

At the  other extreme of migration, the derivatives 
are known  to approach zero when Nlm >> 1 but the 
rate of approach to  this  limit is dependent  on  the 
migration structure of the population. To show  this 
an example has been constructed. The system  of 
equations necessary  to  describe a sample of up to 
five  alleles from one subpopulation was derived 
under the infinite allele model of KIMURA and CROW 
(1964). This subpopulation is one of either four 
circularly arranged populations or  four populations 
with random migration between each. These systems 
were then solved  numerically.  For circular migration, 
a system  of 32 linear equations is required. The 
migration structure is defined with m12 = m23 = m94 
= m41 = m and mlj = 0 otherwise. The solutions of 
these equations are compared with the numercial 
solutions for  four subpopulations that have equal 
migration rates between  each  of the subpopulations 
(mlj  = m/3  for all 1, j ;  leading to a system  of 16 linear 
equations). In both cases,  all subpopulations are 
assumed to  be  of equal sizes. 

The first derivative  of the probabilities &({5)) and 
&({4, 1)) around Nlm = 0 with e = 0.1 have the 
values  given by Equation 4 ( -  1.59 and 0.16, respec- 
tively) and  are indeed zero  when Nlm >> 1. The 
behavior of the probabilities was found  for both the 
circular population structure  and  the  random migra- 
tion  scheme  when the  rate of migration is large. Both 
models of migration show different behaviors  when 
N l m  >> 1 for  bothg((5))  and k ( ( 4 ,  1)). The derivatives 
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with respect to 1/4Nlm when 4Nlm is large are 0.09 
and -0.02 with the  random migration scheme and 
are 0.1 and - 0.03 with the circular migration scheme 
respectively for 8({5}) and 8({4, 1)).  Similarly,  in the 
circular migration scheme, the second derivatives  of 
E((5)) and E({4, l ) ) ,  evaluated at Nlm = 0 with 8 = 
0.1, are 16.0 and - 1.76,  respectively,  while for 
random migration they are 12.12 and - 1.43. There- 
fore, the behavior of the probabilities  when Nlm >> 
1 and  the second derivative evaluated at Nlm = 0 
are both dependent  on  the actual migration structure. 

A PADE APPROXIMATION 

In total there  are  four pieces  of information avail- 
able about samples from a subpopulation which  apply 
generally. These are (1)  the sample distribution when 
m = 0, (2) the derivatives  with respect to Nlm when 
m = 0 (as derived above), (3) the sample distribution 
when NlmG >> 1, and (4) the derivatives  with respect 
to NImlj when NImlj >> 1 .  Each  of these is indepen- 
dent of the population structure.  These pieces  of 
information can be combined into a single continuous 
approximation with one restriction. Here, we impose 
the limitation that ml, and m are generally of the 
same order of magnitude. In this way, when the mlj’s 
are very large, they  can  be approximated, with  little 
loss  of  accuracy, by setting them equal to an equivalent 
large m value.  An approximation can be found which 
interpolates all  of these properties. Of several ap- 
proximations tried, a Pad6 approximation, the ratio 
of  two  polynomials (ATKINSON 1978; p. 206), ap- 
peared to work  best. The Pad6 that combines the 
four  properties listed  above is given by 

&SI) = 
A(C - A )  + BC(4Nlm) 
C - A + B(4Nlm) (6) 

where A is given by Equation 2, B is  given  by Equation 
5 and C is  given by Equation 2 with NL replaced with 
N T .  This approximation has  value A when 4NIm = 
0, a value  of C when 4NIm >> 1 (equivalently, ml, >> 
1 for all & j ) ,  a derivative (with respect to 4Nlm) equal 
to zero when 4Nlm >> 1 and equal to B when 4Ntm 
= 0. 

CONDITIONAL SAMPLE PROBABILITY 

The test  of neutrality developed by WATTERSON 
(1978) makes use of the sampling probabilities con- 
ditional on k, the  number of  distinct  alleles  in the 
sample. In light of this, it was interesting to look at 
the behavior of the conditional probabilities in the 
approximation when migration is present. 

It was found  that  the conditional probabilities  of 
samples given k, are  independent of the migration 
rate as K + a. This result is  easily shown. When K 
is infinite, the Pad6 approximation can  be written as 
the product of  two terms: one  that is dependent  on 

the actual distribution of the alleles in the sample 
(the nj’s) but  independent of 4Nlm, and  another  that 
is independent of the ni’s and contains 4Nlm. When 
the probability is made conditional on k, the term 
dependent  on 4Nm is a constant and  thus can be 
cancelled. When K is finite, the ni’s can not be 
factored and this result is no longer true. 

DISCUSSION 

The approximation given here extracts all  of the 
information that is generally  applicable to any struc- 
tured population. Of course, more information could 
be extracted which  would  be  specific for a particular 
model (or set of models)  with  known migration rates, 
but it seems  clear that relatively  small changes in 
these parameters could  easily alter the resulting 
solution. Given the uncertainties with  which  such 
quantities are measured, the approximation given 
here may  be just as accurate. 

It is necessary  to compare the Pad6 approximation 
to the exact solution under  different circumstances. 
The exact solution was obtained by deriving the 
required systems of equations and  then soIving nu- 
merically. We have restricted comparisons to the 
infinite allele model and samples  of up to ten genes 
of one allelic  type (sampled from one of  two popu- 
lations), samples  of eight genes of  two  allelic  types 
(sampled from  one of two populations) or samples 
of  two genes (from  one of ten populations). These 
systems require up to 134 equations and  the  number 
of equations increases exponentially with the  number 
of subpopulations and genes sampIed. 

The probabilities  of the samples {3}, (5 )  and { l o }  
are given in Figure 1 with 8 = 0.1 when sampling is 
from  one of  two populations of equal size.  For 
comparison the Pad6 approximations using Equation 
6 are also  given. It is evident from Figure 1 that  the 
approximation is very accurate over a wide range of 
values for  the migration rates (the results do not 
change qualitatively if different mutation rates are 
used). Indeed,  for  k((3))  and k({5}), the approxima- 
tion and  the  true probability are visually indistin- 
guishable. The  error between the actual probability 
and  the approximation is greatest with intermediate 
values  of migration. This is sensible,  since  this is the 
region where the least amount of information is 
available to construct the approximation. 

It also appears  that  the error increases  as the 
number of genes sampled (n) increases. This may, 
in part, be due to the  greater difference in the size 
of the probabilities when 4Nlm = 0 and 4Nlm >> 1. 
If the probability is relatively large when 4NIm = 0 
and relatively  small  when 4NIm >> 1 ,  the approxi- 
mation must span a greater  range  and  the error may 
depend  on  the magnitude of the largest versus the 
smallest  value in the approximation. 
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FIGURE 1.-The  probabilities of sampling  three genes ({3}, 

upper curve), five genes ({5}, middle curve) or ten genes ({lo}, 
lower curves) all of which  are  identical (K + 00 and tl = 0.1). All 
genes are chosen from one of two  subpopulations. The PadC 
approximation to these probabilities  is given as a dashed line. 

The accuracy  of the Pad6 approximation was also 
checked for  an increased number of subpopulations 
with  several migration schemes. Figure 2 shows the 
homozygosity  within one of ten subpopulations. All 
subpopulations are of equal size and  the migration 
pattern is either  random, circular or linear. The Pade 
approximation is quite good and agrees perfectly 
with the  random migration pattern; less  well for 
other migration patterns. The differences in the 
sample probabilities that can  be  caused by different 
patterns of migration are obvious from  the  figure. 
Nevertheless, each pattern of migration has  all  of the 
properties used to construct the approximation. From 
this figure, it can  be  seen that in a real situation, 
even a minor amount of migration between popula- 
tions that are not immediately adjacent in the case  of 
circular or linear migration could  greatly change the 
sample probabilities. This migration might be so small 
as to be  impossible to detect. It should also  be noted, 
that such a close  fit  between the approximation and 
the  true homozygosity  with random migration is not 
generally found  for  other probabilities. 

Each  of the above  probabilities are relatively  well 
behaved functions of mutation and migration. For 
these probabilities, the Pad6 approximation has been 
found to  be  reasonably accurate. However, there are 
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1000.0 

FIGURE 2.-The homozygosity  (probability of sample  {2}) in one 
of ten subpopulations of equal  size  as  given by the PadC approxi- 
mation (solid line), with a random  pattern of migration  (solid line), 
with a circular  pattern (dashed line) and  with a linear array of 
subpopulations (dotted line; genes are  sampled  from one of the 
middle subpopulations in the array of ten). K + and 0 = 0.1. 

also  classes  of sample probabilities that are less  well 
behaved and less  accurately approximated. 

One such class  of samples occurs when A > C and 
B > 0 (or C > A and B < 0), where A ,  B and C are 
defined  after Equation 6.  In this  case, there is a 
positive  value  of 4Ntm for which the denominator of 
the Pad6 equation is zero. This causes a local singu- 
larity in the approximation (Figure 3). This singular- 
ity  will never occur when there is only one allelic 
type in a sample (such  as for  the homozygosity).  For 
these samples B is  always negative and A greater  than 
C. 

These singular points  can  be predicted a F o r i  
from  the values  of A ,  B and C and  the problem  can 
be  avoided by considering a  different approximation. 
One way to do this is to force the second  derivative 
at 4Ntm = 0 to  be zero, as  is  commonly done with 
spline approximations. This restricted Padk approx- 
imation is given by 

&SI) = 
A + CD(4Ntm) + CD2(4Nlm)2 

1 + D(4Ntm) + D2(4Ntm)2 (7) 
B 

C - A' 
D = -  

This approximation is usually a more well behaved 
function of 4Nlm than  the Pad6 approximation, as 
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FIGURE 3.-The probability of sample {5, 1) (dotted line), the 
Pad6 approximation  (solid line) and the restricted  Pad6  approxi- 
mation (dashed line), for a sample  chosen  from one  of two 
populations (K + 00 and 8 = 0.5). 

shown in Figure 3. Here  the probability  of the sample 
(5 ,  1) is  given  when K is infinite and 8 = 0.5 for  the 
Pad6 approximation, for this restricted Pad6 approx- 
imation and  for  the actual probability. As can be seen 
each approximation is accurate only near  the values 
of 4 N l m  from which information was extracted. 

The  error of the Pad6 approximation may also 
increase when the actual sampling probability is not 
monotonic with increasing migration rate. An ex- 
ample of  this  case is given in Figure 4, for  the sample 
(7, 1) with 8 = 0.1. The nonmonotonic shape of  this 
curve is dependent  on  the actual migration pattern 
between subpopulations. This type  of behavior can 
not be predicted a priori and hence can not be 
corrected. Because  of  this dependence  on migration, 
the  nature of  this nonmonotonic behavior (even its 
presence) may change with  small changes in the 
migration rates. 

The Pad6 approximations given here  are only  two 
of  many  possible functions that could be written 
which include the four known  pieces  of information 
on the probability distribution with migration. Any 
function that includes these four properties could 
potentially be  used  to approximate  the distribution. 
Most reasonable approximations will  yield sampling 
probabilities, conditional on R (the  number of  alleles 
in the sample), that are constant with migration under 
the infinite allele model. This is due to the fact that 

0.0001 1.0 

4Nm 

10000.0 

FIGURE 4.-The Probability of sample {7, 1) (dotted line), the 
Pad6 approximation  (solid line) and  the  restricted  Pad6  approxi- 
mation  (dashed line), for a sample chosen from one of two 
populations (K -f 03 and 8 = 0.1). 

the term containing migration will factor when the 
probability is made conditional on R. 

The accuracy  of using a constant to approximate 
the conditional probabilities was investigated in a 
population split into two subpopulations. Since the 
WATTERSON  test  uses cumulative conditional proba- 
bilities,  it was necessary  to  observe the behavior of 
the  error as the conditional probabilities are summed. 
The probabilities  of the samples (7, l), (6, 2), (5,  3) 
and (4, 4) were made conditional on k = 2 (by 
dividing by the sum  of these probabilities) and  then 
summed in order of increasing homozygosity. The 
result is shown  in Figure 5.  The relative error is  less 
than 10% and it decreases relatively  quickly  as dif- 
ferent probabilities are  added. Again, the  error is 
largest for intermediate values  of migration, as ex- 
pected. 

Since  WATTERSON’S  test  uses conditional probabil- 
ities and since the approximations given here incor- 
porate all  available information, we conjecture that 
Watterson’s  test (or any other test  of conditional 
probabilities) is the best that can be constructed with 
complete generality. 

MARUYAMA (1977) has  analyzed the distribution of 
gene frequencies within an arbitrary subpopulation 
which forms part of either a circular or a lattice 
stepping stone model. He constructed an approxi- 
mation to these distributions by first determining  the 
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FIGURE 5.-The relative error in  approximating the cumulative 
probabilities conditional on k = 2 for  the samples {4,4},  {5,3} and 
{6, 2) (K + m and 0 = 0.1). The samples originate from  one of 
two subpopulations with equal population size. The  top curve 
corresponds to the relative error of the conditional probability of 
sample {4, 4}, the second is that of the cumulated conditional 
probabilities of the {4, 4) and (5, 3}, and  the bottom curve is that 
of the cumulated conditional probabilities of the (4, 4}, {5, 3) and 
{6, 2) samples. 

local  homozygosity  within one subpopulation. A value 
of 8 is calculated from this homozygosity using the 
relationship between 6 and homozygosity in the ab- 
sence of migration. The probabilities of samples are 
then approximated using standard formulas without 
migration but with the altered value  of 0. This 
approximation and  that given here are numerically 
very  similar but distinct. In addition, the approxi- 
mation given here is independent of a theoretical 
knowledge of the local  homozygosity. 

MARUYAMA (1974) was also  able to demonstrate the 
remarkable property  that some population param- 
eters are independent of the geographical structure 
of the population. We have  used here those prop- 
erties of a single subpopulation that are also inde- 
pendent of structure. Because each property is itself 
independent of the patterns of migration, the  ap- 
proximation is  also independent of population struc- 
ture (with a K allele model of mutation). 

The probabilities derived here  are known to be 
related to  allele frequency moments. To an  approx- 
imation on  the  order of 1/N, there is a one to one 
relationship between these probabilities and  the ex- 
pected frequency of allelic  combinations. This was 
shown by MAL~COT (1948), who noted that Z?({2}) is 

approximately E , where p i  is the frequency 

of the ith allele  in the population. In general 

E ( { ~ I ,  n2, nd, . . .}) 
K K  K 

i j+ i  k#iJ 

where each of the sums extends over all  alleles 
different  from those preceding (for more applications 
of  similar relationships see COCKERHAM and WEIR 
1973). The above results therefore apply to  all equi- 
librium gene frequency moments and to  any quantity 
that can  be expressed as a function of gene frequen- 
cies. 
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