
Copyright 0 1988 by the Genetics Society of America 

The Maintenance of Single-Locus  Polymorphism. 
I. Numerical  Studies of a  Viability  Selection  Model 

Hamish G. Spencer,**t9’ and R. William Marks* 
*Department ofBiologica1 Sciences, Stanford University, Stanford, Calqornia  94305, tMuseum of Comparative Zoology, Haruard 
University,  Cambridge, Massachusetts 02138, and $Department of Biology, Villanova University, Villanova, Pennsylvania 19085 

Manuscript received October 5, 1987 
Revised copy accepted July 1 ,  1988 

ABSTRACT 
The ability of viability selection to maintain single-locus polymorphism is investigated with two 

models in which the population is bombarded with a series of mutations with random fitnesses. In the 
first model,  the population is allowed to reach equilibrium before mutation resumes; in the second 
the iterations and mutation occur simultaneously. Monte Carlo simulations of these models show  that 
viability selection is  easily able to maintain stable 6- or 7-allele polymorphisms and that monomorphisms 
and diallelic polymorphisms are uncommon. The question of how monomorphisms arise is also 
discussed. 

H OW large amounts of genetic variation are pre- 
served in populations has  been a  recurring ques- 

tion in theoretical population genetics  since the advent 
of electrophoresis in the late 1960s revealed that such 
variation was widespread  [see  LEWONTIN (1  974) for a 
discussion]. However, most  of the theoretical models 
so far examined suggest that multiallele  (one-locus) 
polymorphisms are extremely difficult to construct. 
LEWONTIN, GINZBURG and TULJAPURKAR (1  978) 
showed that  under constant viability  selection the 
proportion of randomly generated fitness  matrices 
that lead to stable, feasible  polymorphisms for more 
than five  alleles was vanishingly  small  (see  also  GIL- 
LESPIE 1977). They also  looked at the cases  in  which 
the loci  were  pairwise heterotic (i .e. ,  each heterozygote 
had greater viability than both the corresponding 
homozygotes) and totally heterotic ( i . e . ,  all  heterozy- 
gotes were fitter than the fittest homozygote).  Again 
they found that  the chances  of stable feasible  poly- 
morphisms  were  miniscule. 

In  a study of structured fitness  matrices, KARLIN 
(198 1) showed that  the probability  of a (globally) 
stable equilibrium was greater than in the purely 
random case.  For example, in the “generalized domi- 
nance fitness model” (in  which the alleles  have a 
dominance ordering A I  < A2 < . . . < Ar and  the fitness 
of A, A, is given by a, for i < j and  that of A, A, by bj) 
the probability  of a stable  5-allele  polymorphism is 
about 0.0062, about 100 times the probability for  a 
“random” matrix. When the aj and bj are ordered (ai 
< a, and bi < b, for all i < j )  then the probability 
increases t o  about 0.1  113. This  latter model  also 
maintains a fairly large number of alleles at equilib- 
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rium (given a larger number in the initial frequency 
distribution) (KARLIN and FELDMAN 198 1). For ex- 
ample, when starting with eight alleles, the average 
number at equilibrium was 3.17 compared to 1.68 in 
the random case. 

CLARK and FELDMAN (1986) found no qualitative 
difference between random single-locus fertility and 
random viability  models  in their ability to maintain 
large levels  of  polymorphism. 

The theoretical population genetics problem of  how 
alleles are maintained is analogous to  the stability vs. 
complexity problem in theoretical ecology. The 
greater  the number of  species present in a community 
the smaller is the proportion of the ecological param- 
eter space that permits all the species to coexist (MAY 
1974). One approach to  the ecological problem has 
been to change the question from “Are stable  multi- 
species  communities rare in parameter space?” to  “Are 
multispecies  communities hard to construct?” (TAY- 
LOR 1985). TAYLOR has  shown that by introducing 
species one at a time to an already stable  multispecies 
community, the number of  species present can  be 
increased to quite high  levels.  Sometimes the intro- 
duction of the new  species  can trigger a partial collapse 
of the system, but over time the number of  species 
will increase. Hence, although multispecies  commu- 
nities are  rare in the total parameter space,  they may 
not be hard to reach. 

The analogous approach has  been  used here to see 
if multiallele  polymorphisms are hard to construct. 

DYNAMICS OF VIABILITY SELECTION AND 
MUTATION 

Given a stable  n-allele  polymorphism, a new (mu- 
tant) allele A,, + 1 will invade if its  marginal  fitness is 



606 H. G. Spencer and R. W. Marks 

greater  than  the mean fitness of the population at  the 
equilibrium, i .e. ,  w, + 1 ,  . w, + . > zlr (KINCMAN 196 1). 
If it does invade then  the  changes in allele frequencies 
will be  governed by 

p l  = wi , . wi, . pi  p;/G, for 

i = 1, 2, . . ., n + 1  (1) 

in  which pi is the frequency of the  ith allele at  gener- 
ation t ,  

p l  is the frequency at generation t + 1, 
w;,. = wit, p,  is the marginal fitness of the  ith allele 

at  generation t ,  
wij is the viability  of an individual with genotype 

AiA, and 
zlr = x w,,&p, is the mean fitness of the population 

at generation t .  
An equilibrium is reached when p i  = pi for all i = 

1,  2, . . ., n + 1. For the  one locus  viability model 
KINCMAN (1  96 1) has shown that at most one (n + 1)- 
allele polymorphism is stable  for  a given set of w;j 
values and  that it is globally stable. Hence it will be 
reached irrespective of the value of the n-allele poly- 
morphism.  Of  course, the successful invasion of the 
(n + 1)th allele may not  result in a stable (n + 1)-allele 
polymorphism, but instead in the extinction of one  or 
more of the alleles present in the n-allele polymor- 
phism. 

AOKI (1980) used this dynamic to see how often  a 
stable n + 1 allele polymorphism was reached  after  an 
unbroken  run of n successful increasing invasions. (By 
an increasing invasion we mean an invasion leading 
from  a stable n-allele polymorphism to a stable (n + 
1)-allele polymorphism. By contrast,  a  decreasing in- 
vasion leads to a  decrease in the  number of alleles 
present at  the new equilibrium, while  in a  replacement 
invasion the invading allele drives one  other  to extinc- 
tion leaving the system  with an n-allele polymor- 
phism.) AOKI looked at  the stability of the new  system 
in  which the fitnesses of the  mutant (i.e., the wi,, + 1’s 
i = 1, 2, . . ., n + 1) were drawn  from  the  uniform 
distribution on (0,  1). His results indicated  that the 
most likely outcome was the repulsion of the invading 
allele, i .e. ,  it did  not successfully invade. The next 
most likely was a  replacement or a  decreasing invasion, 
and always the least likely  was an increasing invasion. 
Moreover, the probability of an increasing invasion 
given that  there was an invasion was a  decreasing 
function of n. These results held for n = 2, 3, 4 and 
5 and when the w , , ~  + 1’s were drawn  from  a p (3,  3) 
distribution. Furthermore,  the probability of  success- 
ful invasion decreased as the  number of alleles in- 
creased, but this is confounded by the fact that zir 
increases monotonically over time and  the  greater zir 
the  harder it is for  a  mutant  to  invade,  everything else 
being equal (see below). 

AOKI also conducted two runs in  which he looked 

at all systems, not  just those with unbroken  runs of 
increasing invasions. If the  mutant invaded success- 
fully he  iterated  Equation  1 to equilibrium and  found 
that some polymorphisms were remarkably  stable to 
invasion, one  run maintaining  a seven-allele polymor- 
phism  in the face of 94,266 mutations. The other  run, 
however, was unable to sustain more  than two alleles, 
although it ran  for only 36  mutations. 

MODEL 1-MUTATION WITH INTERVENING 
EQUILIBRATION 

This first model was very similar to AOKI’S latter 
model. The initial system consisted of one allele with 
w1,l = 0.5 and was bombarded with  new mutants 
(potential second alleles), the w;,2 (i = 1,2) being  drawn 
from  the  uniform  distribution  on (0,  1). If the mar- 
ginal fitness of a new mutant was greater  than  the 
mean fitness, i.e., w2 , . wp> zlr (w1,p > wl ,  1) we had  a 
successful  invasion and Equation  1 was iterated to 
equilibrium. The invading allele was given an initial 
frequency of an allele was considered  extinct if 
its frequency fell below 5 X and equilibrium was 
defined  as the point at which the maximum change in 
allele frequency in one  generation was  less than  5 x 

This sequential invasion process was repeated 
until the  required  number  of invasions had  occurred. 
The simulations were  written in Pascal, compiled with 
the TURBO-87 compiler and  performed  on  an IBM- 
XT microcomputer. The (pseudo)random  numbers 
came  from  a lagged Fibonacci generator (KNUTH 
1981), as the  TURBO  generator does  not  correctly 
supply a  uniform  distribution. 

MODEL  1-RESULTS 

The levels  of polymorphism for seven replicate runs 
(runs  1.1-1.7) are shown in Figure  1 and  Table  1. 
Run 1.4  had  25 invasions, run 1.7  28 and  the rest 40. 
Clearly the  number of alleles maintained under this 
scheme is much larger  than  might  be  expected  from 
a naive reading of LEWONTIN,  GINZBURC and TULJA- 
PURKAR’S (1978) results. The minimum number of 
alleles after 1 O4 mutations (which was about  the  length 
of time until the system settled  down) was 4,  and it 
was not unusual to observe 7 or  8.  This was also true 
if we restrict ourselves to “common” alleles, by which 
we mean those with frequencies of 0.01 or greater. 

Many multiallele polymorphisms were resistant to 
invasion. The most resistant was run  1.4, in  which a 
7-allele polymorphism repulsed 4,2 10,363 mutants. 
The vulnerability of a polymorphism to invasion is a 
function of zir and  the  number  and frequencies of 
those alleles present. Clearly, if zir increases then, if 
the  number  and  frequencies of the alleles in the pol- 
ymorphism remain the same, the invadability of the 
polymorphism decreases. The distribution of alleles 
in the polymorphism affects the invadability in a  more 
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TABLE  1 

H. G. Spencer 

Model  1-levels of polymorphism 

No. of alleles 

Run  attempts No. successful Total  Common ui 
No. invasion 

1 . 1  15,814,342 40  5 4  0.9718 
1.2 1,098,893 40 7 6 0.9672 
1.3 1,506,796 40 9 5  0.9785 
1.4 7,006,429 25 8 7  0.9703 
1.5 20,446 40 6 2  0.9940 
1.6 11,161,155 40 12 7  0.9704 
1.7  1,742,571 28 11 6 0.9624 

TABLE 2 

Model  1-measures of evenness for three 7-allele 
polymorphisms 

Run 
Theoretical  mini- 

Measure" mum/maximum 1.2 1.3 1.4 

2 0.00000 0.02718  0.04178 0.02533 
H 0.8571 0.6669  0.5647  0.6799 
E 1.9459 1.3649  1.0500  1.3662 
liJ 1 .oooo 0.96564  0.97851  0.96963 

No. mutations 105,650 164,013  4,210,363 
repulsed 

2 = variance = x(#; - # / n ,  where of course n = 7 and ji = 
%; H = heterozygosity = 1 - x p : ;  E = entropy = -CpJnp;. 

complex way: more even allelic distributions are more 
resistant to invasion. This is because more of the 
w,,, + matter in the calculation of w, + ,. . If,  for 
example, allele k is rare,  then it is irrelevant what 
wk,, + is-it contributes very little to wn + ,. . The 
success  of the  mutant  thus  depends on  the w,,, + 1's in 
which allele i is common, and  the fewer of these the 
greater  the chance of  success. This boils down to  the 
probability that  the weighted sum of n uniform  ran- 
dom  numbers  on (0, 1) will exceed zir, a  constant (%). 
In general the weighted sum has mean L/2 and variance 

p?/12. For  an absolutely even  distribution the 
weights ( i . e . ,  the pi's) are all l /n  and so the variance is 
1/(12n). As n becomes larger,  the distribution of the 
weighted sums becomes bell-shaped ($ the  central 
limit theorem). At the  other  extreme, a very uneven 
distribution has n - 1 of the pi's close to 0.0 and  one 
1.0, and so the variance is Y12 ,  much  larger  than 
before. The larger  the variance the  greater  the prob- 
ability that  a  particular sum will exceed the zir thresh- 
old. Thus  the variance of the allele frequencies is the 
best measure of the invadability of a polymorphism. 
Increasing the  number of alleles in a polymorphism 
often,  but  not always, increases the evenness of the 
allelic distribution and if it does so will also increase 
the polymorphism's stability to invasion. Various 
measures of evenness for  three actual 7-alleles  poly- 
morphisms are shown in Table 2. These all  show that 
the  more even the allelic distribution, the  more resist- 
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TABLE 3 

Model  1-No. of transitions from i-allele polymorphisms to j -  
allele polymorphisms, given a successful invasion 

I j 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6  

1 2 7  
26 10 

2  7  12 
1 14 10 

3 1 12  14 
1 26 15 

4 1 1 5 2 1  
2  4 34 13 1 

5 2 5 8 2 6  
1 1 3 23 11 1 

6 1 1 5  5 2 9  
1 2  1 2 8  2  2 

7 1 2  5  5 3 1 9  

8 1 1 2  2 3 1 4  

9 1 4   1 1 7  

1 1 12 

1 1 4  

10 1 1 5 
1 1  2 2 
12 1 
13 1 
14 1 
15 1 
16 1 

The first (or only) line of numbers is the number of transitions 
between polymorphisms counting all  alleles; the second counts only 
common ones. Blanks indicate zeros. 

ant  to invasions the polymorphism was, allowing for 
the differences in 6. 

The numbers of transitions between levels  of  poly- 
morphism in runs 1.1-1.7 are shown in Table 3. The 
elements on  the  diagonal  represent  replacement in- 
vasions, those below it decreasing invasions and those 
above increasing invasions. Inspection of Table 3 and 
Figure 1 reveals that decreasing invasions often led to 
extinction of more  than  one allele. This was in part a 
consequence of a quasi-equilibrium being  reached in 
which the frequencies of rare transient alleles change 
very  slowly before  extinction (which looks like a true 
equilibrium to  the  program)  and hence  some of the 
levels  of polymorphism are inflated. The same pattern 
was observed,  however, with the common alleles. Ta- 
ble 3 shows that  for common alleles the transition 
from n to n - 1 alleles occurred eleven times and  that 
from n to n - 2 or less, ten.  This is not  surprising 
given the  nature of the equilibria: if the maintenance 
of an allele is thought of as being  partitioned  among 
the alleles, then because alleles mutually maintain each 
other,  the extinction of one allele may  easily remove 
the main support of another, driving the  latter  to 
extinction. 

Run 1.5 (Figure 1 e) showed the most extreme quasi- 
equilibria. Only at  the two major  extinctions, when 
the  number of alleles fell from 9 to 5 and 16 to 4, 
respectively, were there  more  than 30 iterations of 
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Equation 1 and so the  true levels of  polymorphism 
were  probably in the vicinity of 4 or 5 alleles for most 
of this history. Note  that  at  the  latter extinction the 
number of  common alleles increased.  An  increase in 
the  number of  common alleles at  the same  time as a 
decrease in the total  number of alleles as  the system 
moved to a true equilibrium was not  uncommon. 

Run 1.5 also illustrates one reason that mono- 
morphism may be  hard  to  reach.  The early  polymor- 
phism with three  common alleles at 2991 to 4489 
mutations  had  a  mean fitness of 0.93859, while after 
the successful invasion that  brought  the system to 
monomorphism (with respect to common alleles) 13 
was 0.99388. For an invasion leading to  monomorph- 
ism to  occur  the new mutation  must  have most wi,, + 1 

(i # n + 1)  less than wn + I,, + 1. Since w, + I , ~  + I is 
irrelevant  to  the calculation of w, + 1,. and  hence  the 
success of the invasion itself, mutations with low w, + 1. 

+1 values are  not selected out,  at least not until  they 
are common. The method  of  generating the wi,, + 1's 
in the simulation may appear  to  exacerbate this  fea- 
ture: because the maximum  value of any wi,,, + 1 is 1 ,  
the wLn + (i # n + 1)  of successful invaders will 
become closer and closer to 1 as the simulation  pro- 
ceeds and yet the w,  + l .n + 1 will continue to  range 
from 0 to 1 .  However,  drawing  the wi, , + 1 from  an 
unbounded  distribution (say a  normal) may not  make 
much  difference  because  the w, + I,, + 1 are irrelevant 
to  the success of the invasion and will often  be less 
than most if not all the wi,, + I (i # n + 1).  Studies  of 
this  modification to  the model are underway. 

The distributions  of the alleles during  the  runs 
showed  a wide range of forms.  Some  polymorphisms 
had J-shaped distributions: one allele would be by far 
the commonest with the  remainder less than lo%, 
e.g., in run 1.2, the %allele polymorphism lasting from 
mutations 35524 to 93083 had  one allele at a fre- 
quency  of 0.7736, the  others being at 0.0623,  0.0581, 
0.0292,0.0262,  0.0261,  0.0125 and 0.0120. Later in 
the same run,  the 6-allele polymorphism lasting from 
mutations 638,938 to 1,098,893 had  a  more  even 
distribution,  the  frequencies  being 0.4828,  0.1462, 
0.1418,  0.1028,  0.0782 and 0.0483. The final  equi- 
librium in run 1 . 1  showed no  predominant allele- 
the frequencies  here were 0.3539,  0.3403,  0.1614, 
0.1443 and 0.0001. 

The form of some  of the wit, matrices was also 
investigated. Of  the six matrices  examined one 
showed  total  heterosis, four were pairwise heterotic, 
and  one  had a  heterozygote less fit than  one of its 
(two) corresponding homozygotes. In this last case the 
distribution was noticeably J-shaped, one allele ac- 
counting  for 0.7749 of  the  frequency  distribution.  Its 
homozygote fitness was greater  than 13 of the 21 
heterozygote fitnesses (there were 7 alleles present at 
equilibrium),  but  not  one of the 13 involved that 

allele. The heterozygotic  fitness (0.6318) that was 
lower than its corresponding homozygotic fitness 
(0.6693), involved one  extremely  rare allele (with 
homozygotic fitness 0.4001), so that  the frequency of 
the  heterozygote involved would have  been 2pqwP,J 
zz, = 5.7 x lo-*. 

MODEL  2-MUTATION  WITH  SIMULTANEOUS 
EQUILIBRATION 

Model 1 assumes that equilibrium will always be 
reached  before  a new mutant can  invade the popula- 
tion. To see what  effect this had  on  the results  above 
and  to get  around  the quasi-equilibrium  problem, the 
model was altered so that new mutants  arose while 
Equation 1 was still being  iterated. The number of 
mutations  occurs  according  to  a Poisson distribution 
with mean m mutants per generation ( i e . ,  per itera- 
tion). Simulations were run  for 1 o6 generations. 

MODEL  2"RESULTS 

The levels of  polymorphism in four replicate runs 
(runs 2.1-2.4) with m = 1.0 are shown in Figure 2, a- 
d, and  four with m = 0.1 (runs 2.5-2.8) in  Figure 2, 
e-h. Table 4 shows the  number of successful inva- 
sions, as well as the means and variances of the ho- 
mozygote and  heterozygote fitnesses at  the  ends of 
the runs. As with model 1 ,  the results of model 2 show 
that polymorphisms with four to six common alleles 
are  the  norm,  that  monomorphism is extremely diffi- 
cult to attain  (perhaps  even  more  than  in  model l),  
that multiallele polymorphisms are often  extremely 
resistant to invasion, that decreasing invasions often 
lead to  the extinction  of several alleles and  that ex- 
tinctions and invasions often  occur  together in bursts. 

The stability of the model 2 system implies that 
model 1 is often  a fairly good  approximation  to  the 
more realistic model 2. Usually equilibrium  had  been 
reached  before  a successful invasion occurred,  the two 
important  exceptions  being near  the  start of the sim- 
ulations and when the  number of alleles had  recently 
been  reduced by more  than  one. Even in run 2.6 
where  one  rare allele took 197,833 generations  to 
become  extinct no new mutation  invaded  until  after 
that allele's demise. The exceptions to this arise for 
similar reasons.  At the beginning of the process, it 
was relatively easy for a mutant  to invade successfully 
and because the system took several generations  to 
reach  equilibrium,  further  mutants also invaded what 
was essentially a  monomorphism. This led to ex- 
tremely large numbers  of alleles in the population in 
the first 200 or so generations  for  runs with m = 1.0. 
For  example, in run 2.3 the maximum number of 
alleles was 21, occurring at generations 39,  40 and 
41, but only 3 of these  were ever common. By gen- 
eration 173 zi~ had  increased to 0.8749 and  the system 
had  settled  down to 4 common alleles only.  When m 
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TABLE 4 

Model 2-levels of polymorphism  and  statistics of fitnesses 

No. of Alleles W.,. Wi, 

No. Successful No. W,,,< 
Run m Invasions Total Common i Mean  Variance  Mean  Variance Max 

2.1 1.0 56 5  5 0.9787 0.8850 0.0057 0.9815 4.5336 X loF4 1 
2.2 1.0 39 6  6 0.9573 0.7409 0.0304 0.9701 9.9482 X 2 
2.3“ 1.0 45 6  5 0.9707 0.7485 0.0580 0.9550 8.2991 X IO-’ 1 
2.4 1.0  66 7  7 0.9596 0.7335 0.0218 0.9719 9.3715 X 1 
2.5 0.1  36 5  5 0.9568 0.7090 0.0505 0.9743 2.0490 X 0 
2.6” 0.1 43 7  6 0.9488 0.5638 0.0670 0.9219 1.4294 X lo-‘  5 
2.7 0.1 21 5  5 0.9802 0.7587 0.0348 0.9780 1.0943 X lo-’  3 
2.8 0.1  26 4 4 0.9810 0.9202 0.0018 0.9921 2.4799 X 0 

Ii with common alleles only 
2.3  0.8453  0.0135  0.9796  8.4844 X 1 
2.6  0.6108  0.0628  0.9236  1.7541 X lo-’ 0 

was 0.1 this was not nearly so apparent:  the  longer 
intervals  between invasions allowed more  equilibra- 
tion and extinction. Also, when the  number  of alleles 
had  recently  been  reduced  a  rapid series of invasions 
could  occur. This is because the system is effectively 
unchanged after a successful invasion and invasion 
can occur easily because the  number of alleles is small. 

The difference in initial behavior  between runs with 
different m values suggests that m is an  important 
parameter in a system  with  few alleles. Suppose that 
m was large  enough so that several mutants  invaded 
before  equilibrium was reached. If these same muta- 
tions arose but  at a  different  rate ( i e . ,  m was different), 
then  the subsequent polymorphism could well be dif- 
ferent.  This is because the success  of a  mutant may 
well depend  on  the w , , ~  + 1 of the  ith allele (say) which 
would have been  extinct or rare  and hence  irrelevant 
to  the mutation’s success if the mutation  had  arisen 
later. Thus not only is the  order of events  important 
in evolution (see, e.g., LEWONTIN 1967), but so is the 
rate  at which they occur. 

The main difference  between  the  results of models 
1 and 2 is in the  number of rare alleles present. As 
was noted  above, the quasi-equilibrium problem of 
model 1 means that  the levels of polymorphism for 
the total number of alleles is probably  inflated. In 
model 2 this problem is removed and  although  the 
number of common alleles does  not  appear to be 
different,  the  number of rare alleles is not usually 
greater  than  one. When more  than  one  rare allele is 
present, it is most frequently immediately after  an 
invasion and  the system is probably not  at equilibrium. 

The forms of the distributions of alleles were similar 
to those in model 1 ,  with some J-shaped (e.g. ,  the  end 
of run 2.7) and  others very even (e.g., the  end of run 
2.4) and most  in between. The final 8 wtd matrices 
showed two cases of total  heterosis  (runs 2.5 and 2.8) 
and 6 of pairwise heterosis. Note that  the two runs 
that resulted in total  heterosis  had the two lowest 

levels of polymorphism (5 and 4 alleles, respectively) 
and  neither  had any rare alleles. In  contrast,  the 
furthest  departure  from total  heterosis, run 2.6, had 
2 homozygotes fitter  than 5 heterozygotes and an- 
other homozygote fitter  than 3 (of the same) hetero- 
zygotes and maintained 7 alleles, 6 of which were 
common. A more detailed investigation of a much 
larger sample of such matrices may be found in MARKS 
and SPENCER ( 1  989). 

The differences and similarities between  runs with 
m = 1 .O and those with m = 0.1 are interesting. There 
was no significant difference in ZZ, at  either lo5 or lo6 
generations  (indeed at  the  latter  the mean of the 13’s 
was greater  for m = O.l!). The number of successful 
invaders,  however, was different ( t  = 3.598, P < 0.02 
and t = 2.593, P < 0.05 at lo5 and lo6 generations 
respectively), those  runs with m = 1.0 having about 
2.05  (lo5 generations) and 1.65 ( lo6 generations), 
times the  number of successful invasions as  those with 
m = 0.1. 

DISCUSSION 

The above models show that viability selection is 
capable of maintaining  as many as  eight alleles in a 
population. This is  in spite of the fact that  random 
fitness matrices leading to stable feasible equilibria 
with five of more alleles are extremely rare (LEWON- 
TIN, GINZBURC and TULJAPURKAR 1978). Even when 
the matrices are given some nonrandom  structure, 
the probability of stability is still  low (KARLIN 1981 ; 
KARLIN and FELDMAN 1981). The historical process 
of the models in this paper leads to  greater levels of 
polymorphism for at least three reasons. First, the 
historical sampling of previous  workers  counts  a sys- 
tem as stable only if all the alleles remain in the 
polymorphism. If,  for example, one allele becomes 
extinct,  then that system is not  counted, whereas in 
our models such a system is still valid. Second, our 
models have no problems with feasibility-they  simply 
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lose one  or  more alleles. Third,  and most important, 
natural  populations are more realistically thought  of 
as being the results of a  nonrandom selective process 
that weeds out unstable fitness matrices  (and in partic- 
ular the  more pathological alleles) and leaves popula- 
tions at stable polymorphisms. Furthermore, these 
stable polymorphisms are most unlikely to be the 
result of a series of monotonically increasing polymor- 
phisms of lesser degree, as in AOKI’S (1980) model. 
Rather,  the periodic collapses of a polymorphism 
when a new mutant invades the population  strengthen 
the resistance of the system to  further invasions. It 
should  be noted, however, that  the models were una- 
ble to maintain an extremely  large number of alleles, 
such as occurs at  the esterase-5 locus in Drosophila 
pseudoobscura with at least 41 alleles (KEITH 1983). 

The ability of viability selection to maintain poly- 
morphisms and  the speed with which new mutants 
invade  after  a collapse raise the question of  how 
monomorphisms and diallelic polymorphisms arise. 
One possible answer is that  the population sizes are 
smaller than in the models. In model 2, m = 2Ncp, 
where Ne is the effective population size and p the 
mutation  rate.  Hence  reducing Ne is tantamount  to 
decreasing m and this does  result in a  decrease in ne, 
the effective number of alleles in the population: at 
the  end of runs 2.1-2.4 (m = 1 .O) ne = 3.452, whereas 
at  the  end of runs 2.5-2.8 (m = 0.1) ne = 2.5061. A 
parallel argument holds for  a  reduction in the muta- 
tion rate p. Incorporation of a  finite  population size 
also introduces  the effect of drift which would elimi- 
nate some of the  rare alleles. This is unlikely, however, 
to alter  either  the  number of common alleles or ne, 
unless the population size is quite small  (less than 
1000). We are  currently investigating the effects of 
drift  on  these models. 

The distributions of model 2 can be  compared with 
those of the  neutral  infinite allele model [see EWENS 
(1979)  for  a  complete  description]. T o  see how  close 
the distributions are we can ask what number of genes 
would need  to  be sampled from  one of the final model 
2  distributions in order  to reject  neutrality in favor of 
heterosis. We used a 5 %  significance level and as- 
sumed that  the sample homozygosities are  the same 
as those of  the distributions  from which they are 
sampled.  From the table in Appendix C of EWENS 
(1 979) we see that  for all the distributions,  except  that 
of run 2.4, many more  than  500  genes would need  to 
be sampled. For  run 2.7 it is unlikely that any sample 
size could distinguish the  neutral  and actual  distribu- 
tions. In  run  2.4 a sample of at least 200 would be 
required. Because the fitnesses were  drawn  from  a 
range with a upper  bound of 1 and zi, is nondecreasing, 
over  time more  and  more of the alleles present in the 
population have w,,, values very close to 1. This means 
that, not only does the invadability of the polymor- 
phism decrease,  but also the differences in heterozy- 

gote fitnesses become smaller. The model is  slow to 
converge  to  a  neutral one, however, since the homo- 
zygote fitnesses increase at a  much slower rate (MARKS 
and SPENCER 1989). 

One shortcoming of the above models is that they 
assume constant fitnesses for  an  inordinately  long 
time. These simulations, however, could have been 
started at any point in their history and  the same 
results obtained.  Indeed, this rationale  enables us to 
ignore  the first 1000  or so generations of model 2 
runs if we consider the low initial zi, unrealistic. Never- 
theless, random  fluctuations or small but persistent 
decreases in the fitnesses might  be  expected to lead 
to different levels  of polymorphism. We are  currently 
investigating models of this type. Note,  however, that 
the rapid increase in the  number of alleles at  the  start 
of every run suggests that such models will not show 
long  periods of reduced variability. 

One interesting  extension of the models would be 
to change the way the w ; , ~  + 1 are  generated.  It seems 
more  probable that  there would be some correlation 
between the values (including wn + l ,n  + and this 
might make invasion easier. It is not clear what effect 
this would have on  the level  of polymorphism, but 
AOKI’S (1  980) results suggest that it might  reduce it 
slightly. 

We have greatly benefited from discussions with K. AOKI,  A. 
CLARK, M. FELDMAN, R. LEWONTIN, G. MAYER, S. TULJAPURKAR 
and M. TURELLI on this an related subjects and we thank them for 
their help. L. GINZBURG and two anonymous reviewers also pro- 
vided numerous useful suggestions. P. DANAHER and G. MARSACLIA 
kindly supplied us  with the random number generator. This work 
was supported by National Institutes of Health grants GM-28016 
to M. W. FELDMAN and GM-21179 to R. C. LEWONTIN. 
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