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ABSTRACT 
The statistical properties of the process  describing the genealogical  history of a random  sample  of 

genes at a selectively neutral locus which  is  linked to a locus at which natural  selection  operates are 
investigated. It is found  that the equations  describing  this  process are simple  modifications of the 
equations  describing the process  assuming  that the two loci are completely  linked. Thus, the statistical 
properties of the genealogical  process for a random  sample at a neutral locus linked to a locus  with 
selection follow  from the  results  obtained  for the selected  locus.  Sequence  data  from the alcohol 
dehydrogenase (Adh) region of Drosophila melanogaster are examined  and  compared  to  predictions 
based  on the  theory. It is found  that the spatial  distribution of nucleotide  differences  between Fast 
and Slow alleles of Adh  is  very  similar  to the  spatial  distribution  predicted if balancing  selection 
operates to maintain  the allozyme variation at the Adh locus. The spatial  distribution of nucleotide 
differences  between  different Slow alleles of Adh do not match the predictions of this  simple  model 
very  well. 

I N a  companion  study, KAPLAN, DARDEN and HUD- 
SON (1988)  described the process of the genea- 

logical history  of  a random sample of genes at a locus 
which is not selectively neutral.  They showed that this 
process has a relatively simple representation  and they 
developed  methods for calculating the moments of 
such  quantities as T ,  the sum  of the lengths  of the 
branches of the ancestral tree. 

The purpose  of  this  paper is to study the distribu- 
tion of the coalescent process for a random sample of 
genes at a selectively neutral locus which is linked to 
a locus which is not selectively neutral. If the two loci 
are completely linked, then  the genealogical history 
of the  neutral locus is the same as that of the selected 
locus and so the results of the companion  study  apply. 
On  the  other  hand, if the two loci are completely 
unlinked,  then  the distribution  of the coalescent pro- 
cess for  the  neutral locus is unaffected by the selected 
locus. In  the THEORY section the  distribution of the 
coalescent process for  the  neutral locus is determined 
for  arbitrary  rates of  recombination. 

The coalescent process for a sample of genes at two 
selectively neutral loci which are linked to a  selected 
locus is also investigated. This distribution is needed 
to calculate such  quantities  as the variance of the 
number of segregating sites at m (m 2 1) selectively 
neutral loci which are linked to a  selected locus. 

As an application, we consider the  sequence  data of 
KREITMAN (1 983) which encompasses the Adh locus 
of Drosophila  melanogaster. Several  studies of variation 
at this locus suggest the presence  of  a  balanced poly- 
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morphism at  the Adh locus (e.g., OAKSHOTT et ul. 
1982; KREITMAN and A G U A D ~  1986; HUDSON, KREIT- 
MAN and A G U A D ~  1987).  This possibility  is examined 
in light of the results in this paper. 

THEORY 

The coalescent process for a selectively neutral m- 
loci model with recombination has been  studied by 
HUDSON (1 983)  and KAPLAN and HUDSON (1 985). The 
genealogy for m  linked loci is a collection of  m  cor- 
related  ancestral  trees.  For  finite  rates  of  recombina- 
tion the topologies and  the lengths  of the branches  of 
different  ancestral  trees are correlated because of 
linkage. In  the  neutral case, HUDSON (1 983) described 
the  structure of this  more  complicated coalescent 
process and showed how to simulate  it. KAPLAN and 
HUDSON (1  985)  extended HUDSON'S work and estab- 
lished recursive  equations for calculating the moments 
of the  number of segregating sites at  the m linked 
loci. 

In this section we study the coalescent processes for 
one  and two selectively neutral loci which are linked 
to  a locus which is not selectively neutral.  These two 
cases are necessary to calculate such  quantities as the 
mean and variance of  the  number of selectively neu- 
tral  segregating sites. 

We begin the analysis by considering one  neutral 
locus. It is assumed that  at  the selected locus, A, there 
are two alleles, A1 and Az. The neutral locus is denoted 
by B.  For  generation t ,   X , , ( t ) ,   X , z ( t )  and XZz(t) repre- 
sent  the frequencies  of AIA1,  A1A2 and AzAZ diploids, 
respectively, in a  population of size N .  The frequency 
of the A ,  allele in generation t is denoted by X( t ) .  It is 
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assumed that  the  population has achieved stationarity 
and so the  current generation from which the sample 
is taken is denoted as the  0th  generation. The time 
parameter t thus takes on both positive and negative 
values, where negative generation times denote  an- 
cestral generations and positive generation times fu- 
ture generations. 

Each generation the  daughter population is ob- 
tained by random sampling with replacement  after 
mutation,  recombination and selection have occurred. 
The life  cycle  of the process is shown in Figure 1. The 
fitnesses of the  three genotypes AIAI, AlA2 and A2A2 

are w l l ,  wl2  and w22, respectively, and  the mean fitness 
is denoted by G(t ) .  The rates of mutation at  the 
selected locus, A,  are u (AI to A2) and v (A2 to AI) and 
the  rate of recombination between the A and B locus 
is r .  It is assumed that 

p=-+o($ ) ,  2N P I  v = - + o ( $  2N P 2  

and 

where PI > 0, P 2  > 0 and R > 0. 
We  now consider the  structure of the coalescent 

process for  a sample of genes at  the  neutral B locus. 
Since the ancestral genes of the sample are linked to 
either  an A I  or A2 allele, the coalescent process is two 
dimensional. If n genes are chosen at  random  from 
the  0th  generation,  then we let Q(0) = (i, j) if i of the 
sampled genes are linked to  an A1 allele and j to  an 
A2 allele, 0 5 i,j 5 n, i + j  = n. For t < 0, Q(t) denotes 
the numbers of ancestral genes linked to A I  and A2 

alleles in generation t. 
By its very definition the Q process is a jump process. 

We define TI,  T2, . . . to be the  number of generations 
between successive jumps  and Zl,Z2, ~ . . the successive 
random  states to which the process moves. The Q 
process can therefore be  represented as 

Past 

4 

Sites llnked to A ,  Sites llnked to A 

FIGURE 2.-A realization  of the coalescent  process for a sample 
of size four. At generation  zero  (the  present)  the Q process is at 
state (2, 2), ie., two of the B genes  are linked to A I  alleles and two 
are linked to An alleles. The  first change of state, as one follows the 
process back in time, is at  time -TI (ie., T I  generations  before 
present),  at which time  the Q process moves to  state (1, 3). This 
change of state is the  result of the  mutation of an ancestral A2 allele 
to  an A I  allele and is indicated by a v in the  figure. At time - (TI  + 
T 2 )  and time - (TI  + T2 + T3)  common  ancestors of genes linked to 
A z  alleles occur,  and so the Q process moves to (1, 2) and  then t o  
(1,  1). At time -(TI + T2 + T ,  + T4) the Q process moves to (2, 0 )  
as a result of a recombination  event in which an ancestral A I B  parent 
produces  an AzB offspring.  And finally, at time -(TI + TZ + T ,  + 
T4 + Ts) ,  the most recent  common  ancestor of the sample at locus 
B occurs, i . e . ,  the Q process moves to ( 1 ,  0). 

Since the  number of ancestral genes  does  not in- 
crease as one goes back  in time,  the Q process even- 
tually reaches either of the two states (1, 0) or (0, l) ,  
ie., there is a single ancestor of the sample at  the B 
locus and it is linked to  an A I  allele or an A2 allele. 
The ancestral generation in  which this first occurs is 
that  generation which has the most recent common 
ancestor of the sample at  the B locus. An example of 
a realization of the coalescent process is shown in 
Figure 2. 

The  joint distribution of the (Ti) and (Zi) can be 
computed using the  arguments of the  preceding pa- 
per. The only difference i s  in the calculation of the 
quantity fA,(A,,t) which  in this paper  denotes  the 
probability that  a randomly chosen gene  at locus B 
from  generation t is linked to an Ai allele and its 
parental  gene  from  generation t - 1 is linked to an A, 
allele, 1 5 i, j 5 2. For  the life  cycle  in Figure 1,  
standard population genetic arguments can be used 
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to show that 

+ X(t - 1) (1  - X(t - l,,m,,) + o($ 

= X(t - 1)  + o($, 

- - X(t- 1)(P1+ R(l -X(t- 1))) 
2N 

+ X(t - 1) (1  - X ( t  - l))wl*) + o($) 

= 1 - X ( t -  1 ) O  - iJ 
and 

Thus, all the formulas of KAPLAN, DARDEN and HUD- 
SON ( 1  988) apply providing  that PI and P 2  are replaced 
by 

P l ( x )  = 01 + R(l - x) and P ~ ( x )  = P2 + Rx. ( 1 )  

The coalescent process for  a  random sample at  the 
neutral B locus thus behaves much like the coalescent 
process for  a  random sample at the selected locus and 
so the conclusions of the  preceding  paper apply. For 
example, if the  frequency of A I  is maintained by 
selection at XO, i . e . ,  the allelic frequencies are tightly 
regulated,  then  the mean and  the variance of T for 

the selectively neutral B locus are  different  from  their 
neutral values only if both Pl(xo) and &(xO) are small. 
(See Table 1 of KAPLAN, DARDEN  and HUDSON 1988.) 
Since Pl(x0) is greater  than R(l - xo) and &(xo) is 
greater than Rxo, the mean and  the variance of T will 
therefore look neutral if R is greater  than, say,  two. 
The distribution of T can also be calculated when the 
allelic frequencies are  not tightly regulated by replac- 
ing PI and P 2  by Pl(x) and @*(x) in Equation 20 of 
KAPLAN, DARDEN  and HUDSON (1988). 

We  now consider the coalescent process for two 
neutral loci, B and C, which are linked to  a selected 
locus, A .  This process is more complicated than  the 
previous case, since one now needs to keep track of 
whether or not  the genes at  the B and C loci are 
ancestral to  the genes at  the two loci  in the sample. 
There  are six different types of ancestral chromo- 
somes: AIBC,   AIB- ,   AI -C ,  A2BC, A2B- and A2-C. The 
dash indicates that  the  gene  at  that locus is not ances- 
tral to the sample. The effect of recombination  de- 
pends on whether the selected locus, A ,  lies to  the 
right of, to  the left of, or between the two neutral 
loci. For the sake of definiteness, we will assume that 
the relative positions of the  three loci are ABC, and 
the modifications for the  other case will be indicated. 
The rates of recombination between loci A and B and 
A and C are  denoted by TAB and rAC, respectively. As 
before it is assumed that 

where RAC 2 RAB 2 0. 
Despite the increased complexity of the ancestral 

history, the  same kinds of arguments as before can be 
used to show that when time is scaled  in units of 2N 
generations  and the frequencies of the alleles at  the A 
locus are tightly regulated,  the coalescent process 
behaves like a Markov jump process (KARLIN and 
TAYLOR 1981). T o  specify the  parameters of this 
process we need  to  introduce some notation. Let Q(t) 
= ( i , j )  where i = ( i l ,  is, i s ) ,  j = ( j l ,  j z ,  j 3 )  and i l ,  i p ,  is, 
j1, j 2  and j 3  are  the  numbers of AIBC,  AIB-,  AI-C, 
AzBC, A2B- and A2-C ancestral genes in generation t .  
When the Q process changes  state, each of the com- 
ponents of i and j will either increase by 1 ,  decrease 
by 1 or remain the same. T o  simplify the  notation 
only those  components which change will be indi- 
cated. 

There  are  three different ways that  the coalescent 
process can change state: coalescence, mutation  and 
recombination. A common ancestor can occur only 
between ancestral genes which are linked to the same 
allele at  the A locus, and so there  are 8 transitions 
resulting  from coalescent events. There  are 6 transi- 
tions which result from  mutation events and 10 trans- 
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TABLE 1 

Possible  transitions  from (i, j ) ,  involving  genes  linked  to  the At 
allele, and  their  probabilities  (up  to  order 1/N) 

Transition Probability 

1. Transitions resulting from coalescence for loci configura- 
tions ABC.  BCA and BAC 

( i l  + 1, i 2  - 1, i 3  - 1) 

(I;) 

~ 

itions which result  from  recombination. The condi- 
tional probabilities (up  to  order 1/N) of the 12 trans- 
itions involving genes linked to  the A1 allele are given 
in Table 1 .  The conditional probabilities of the  other 
12 transitions involving genes linked to  the A2 allele 
can be  obtained  from  Table 1 by replacing i by j ,  Dl 
by 0 2  and XO, the frequency of the A I  allele, by 1 - x0. 

It has already  been  pointed out  that  the effect of 
recombination is influenced by the relative positions 
of the  three loci. In Table 2 are given the conditional 
probabilities (up  to  order 1/N) of the 5 transitions 
involving genes linked to  the A1 allele which result 
from  recombination, assuming the selected locus, A, 
lies between the two neutral loci. 

For ease of notation  let the 24 transitions  be labeled 
from 1 to 24 in some specified order. Also, the con- 
ditional probability of the kth transition is denoted by 
pk/2N, 1 5 K 5 24. For any i, j let 

24 

hq = 2 pr and qq(k)  = -, 1 5 k 5 24. P k  

k= 1 hq 

TABLE 2 

Possible  transitions from (id), involving  genes  linked  to  the AI 
allele, and  their  probabilities  (up  to  order l/N): transitions 
resulting  from  recombination  for  loci  configuration BAC 

Transition Probability 

2N 

Finally, we are in a position to give the  parameters 
of  the Markov jump process. Indeed,  the  holding  time 
in state (i, j )  has a negative exponential  distribution 
with parameter hq and when a jump does  occur,  the 
probability that it is the kth transition equals q,j(k), 1 
5 k 5 24. 

Let TB and TC denote  the sum of the lengths (meas- 
ured in units of 2N generations) of the  branches of 
the ancestral trees  for locus B and C ,  respectively. The 
mean and variance of TA and T B  can be calculated 
using the recursive equations of KAPLAN, DARDEN and 
HUDSON (1988). T o  compute the expectation of such 
quantities as TBTc and e-(eBTE+ecTc)/2, BB > 0,  Bc > 0, we 
need to use the coalescent process for two loci. The 
expectation of TBTc is needed to compute  the variance 
of the  number of segregating sites at  the two loci.  If 
OB = 4 N p ~  and Bc = 4Npc, where p~ and pc are  the 
neutral  mutation  rates at  the B and C locus, respec- 
tively, then  the  expectation of e--(8ETs+eCTC)/2 is the  prob- 
ability that  there  are  no segregating sites at  either of 
the two loci. This expectation is required  for some of 
the calculations of  the next section. 

For any i, j let 

M B ( ~ ,  j )  = E(TBI Q(0) = (i, j ) ) ,  

and 

It follows from  the Markov structure of the coalescent 
process that 
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and 
2hijE(H~c(&) I Q(0) = ( i ,  j ) )  

HBc(i’ j )  = $jB + icec + 3, f (4) 

where the distribution of Z1 is given by the {qG(k) ,  1 5 
k 5 24). 

AN APPLICATION 

Recent studies of polymorphism at  the alcohol de- 
hydrogenase (Adh) locus of Drosophila  melanogaster 
have suggested that  natural selection maintains varia- 
tion at this locus (e.g., OAKESHOTT et al. 1982; KREIT- 
MAN and A G U A D ~  1986). HUDSON, KREITMAN and 
A G U A D ~  (1987) have shown that  the levels  of  poly- 
morphism within D. melanogaster and  the  amount of 
divergence between D.  melanogaster and Drosophila 
sechelia at  the Adh locus and a  flanking  region are not 
compatible with an equilibrium  neutral model of  mo- 
lecular evolution. They suggested that balancing se- 
lection acting on  the Fast/Slow electrophoretic poly- 
morphism (at  codon 192) of the Adh gene  might 
account  for the high  observed level  of polymorphism 
of silent sites in the coding  region. With the theory 
presented in the previous section we can begin to 
examine this hypothesis. Using the Adh sequence  data 
of KREITMAN (1983) we can compare the observed 
level of variation at different  points  along  the se- 
quence  to  the level predicted by a model with balanc- 
ing selection operating  on  the Fast/Slow polymor- 
phism of the Adh gene. 

The data of KREITMAN (1983) consists of the se- 
quences of l l  cloned D.  melanogaster  Adh genes. In 
this sample of eleven sequences, 43 polymorphic nu- 
cleotide sites were  observed, only one of  which results 
in an amino-acid polymorphism. That amino acid 
polymorphism is responsible for  the  electrophoretic 
variants, Fast and Slow, commonly found in D. mel- 
anogaster populations. Six of the 1 1  sequences code 
for  the Slow variant and will be referred  to as Slow 
sequences. The  other five sequences will be referred 
to as Fast sequences. 

The goal of this section is to  address  the following 
questions: (1 )  If the Fast/Slow polymorphism of Adh 
is a balanced polymorphism such as that  considered 
in the THEORY section,  then what spatial distribution 
of neutral variation is expected in this region of the 
genome? and (2) How does the actual spatial distri- 
bution of variation in the Adh region  compare with 
the theoretical  prediction? T o  examine  the spatial 
distribution of the polymorphic sites, a “sliding win- 
dow”  method is used. That is, at each  nucleotide site, 
the  amount of variation expected and observed is 
calculated for a small  window centered  on  the nucleo- 
tide site. 

Three different  quantities were calculated to char- 
acterize the variability in a window at each nucleotide 
site. These were r F s ( k ) ,  the  average  number of pair- 

wise differences between Fast and Slow sequences in 
the window centered  on  nucleotide k, rss(k), the av- 
erage  number of pairwise differences between Slow 
sequences in the window centered  on  nucleotide k, 
and rFF(k), the average number of pairwise differ- 
ences between Fast sequences in the window centered 
on  nucleotide k. Numbering  the sequences from 1 to 
1 1  and letting dV(k)  denote  the  number of nucleotide 
differences between sequence i and sequence j in the 
window centered  on  nucleotide k, the  three measures 
of variability can be  written as follows: 

1 
rFs(k) = i e F j c S  

c dij(k), 

1 
r s s ( k )  = c d i J m  

ns(ns - 1) i#jes 

and 
1 

rFF(k) = c dij(k), (5) 

where nF and ns are  the  number of  Fast sequences 
and Slow sequences, respectively, and F and S denote 
the  set of Fast sequences and Slow sequences, respec- 
tively. 

Since the region  sequenced  contains  protein  coding 
sequences as well as introns  and  other  noncoding 
sequences, the level  of constraint presumably varies 
considerably. To take at least partial  account of the 
different levels of constraints in these  regions, the size 
of the window was varied so as to keep the  number of 
possible silent changes in the window constant. At 
noncoding sites and  intron sites all changes are consid- 
ered silent, and in the coding  region  a silent change 
is a change which does  not affect the  amino acid 
sequence.  [This is equivalent to  adjusting the window 
size so that  the window contains a  constant “effective” 
number of silent sites, as defined by KREITMAN 
(1983).] 

In Figures 3, 4 and 5 the observed values of rFs (k ) ,  
a,(k) and xFF(k)  are plotted  as  a  function of k for  the 
Adh sequence  data using a window  size of 150 possible 
silent nucleotide changes. This window  size corre- 
sponds to 50 base pairs in noncoding regions. Three 
interesting  features of the  data  are  the  rather low 
values of T F F ( ~ )  in the coding  region of the  gene,  and 
the  the very high levels of rFs(k)  in a small region 
encompassing the Fast/Slow polymorphism, and a 
somewhat smaller peak in values of rss(k) in the same 
region. 

If each nucleotide site is treated as an individual 
locus and if it is assumed that  the allelic frequencies 
at position 2 of codon 192 are maintained by strong 
balancing selection, then  the  theory of the previous 
section can be used to calculate the expectation and 
variance of TFF(~), r~s(k) and rss (k) .  These calcula- 
tions require  that values be assigned to  the parame- 
ters, P I ,  Pz,  XO. For each nucleotide site, we also require 

nF(nF - 1)  i#j€F 



836 R. R. Hudson and N. L. Kaplan 

FIGURE 3.-The expected  and 
observed number of differences be- 
tween Fast and Slow sequences in a 
“sliding window,” ( r F S ( k ) ) ,  plotted as 
a function of the  nucleotide  position, 
k .  The coding  exons  are shown by 
the bold lines below the position  axis 
of the plot. The Fast/Slow polymor- 
phism is at position 1552.  For  these 
calculations, it was assumed that 00 = 
0.006, and = p2 = 0.001. To ob- 
tain the  top  expected  curve, it was 
assumed that RO = 0.002,  and  for  the 
bottom  expected  curve, it was  as- 
sumed  that RO = 0.012. The  width of 
the window was adjusted so that 
there were always 150 possible silent 
changes in the window. Thus,  for 
example, in noncoding  regions  the 
window was 50 base pairs wide. 

FIGURE 4.-The expected  and 
observed  number of differences be- 
tween Slow sequences in a  “sliding 
window,” (r~~(k)), plotted as  a func- 
tion  of the  nucleotide position, k. For 
these calculations, it was assumed 
that RO = 0.0 12. All other  parameters 
were as in Figure 3.  
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the value  of 8 = 4Np, where p is the  neutral  mutation 
rate  at  the site, and for each pair of sites, we require 
the value  of RV = 2NrV, where rV is the recombination 
rate between site i and site j .  

I t  is assumed that  the  neutral  mutation  rate is the 
same at all noncoding sites and all fourfold  degenerate 
sites. (Fourfold  degenerate sites are coding sites at 
which  all four nucleotides result in the same amino 
acid. At such sites all mutations are silent, that is, not 
amino acid changing.)  Denote 4N times this neutral 
mutation rate by 80. At sites where only one of the 
three possible mutations is a silent mutation, it is 
assumed that 8 is 8013. Similarly, at sites where two of 
three possible changes are silent, 8 is assumed to be 
280/3. Estimates of 0 have been obtained  from restric- 
tion mapping studies of Adh and  other loci  in D. 
melanogaster. The heterozygosity per  nucleotide 
(which is equivalent to 8 when 8 is small) has been 
estimated to be 0.006  for  a  region 13 kb long that 
includes the Adh locus (LANGLEY, MONTGOMERY and 

Slow/Slow comparisons 

Expected (R = 0.012) 

“” - 
I I 
“ 

1000 - 2000 3000 

Position 

QUATTLEBAUM 1982; AQUADRO et al. 1986). KREIT- 
MAN and A G U A D ~  (1986) estimated the heterozygosity 
per nucleotide to be 0.004 for  a 4-kb region located 
just 5’ to  the Adh coding  region  and  0.006 in the 
coding  region.  These estimates must be considered as 
average values over regions containing  coding se- 
quence,  introns and  other noncoding sequences. To 
calculate the expectations under  the selective model 
we have assumed 80 equals 0.006. 

We have assumed that only  lysine and  threonine 
are permissible at  the selected site (codon 192) so only 
one of the  three possible mutations at this site leads 
to  the  other selected allele. The mutations  that  change 
lysine to  threonine  and  threonine back to lysine are 
the second position transversions A + C and C + A, 
respectively. If  noncoding sites and fourfold  degen- 
erate sites are on average only  slightly constrained, 
then do equals approximately 4N times the  sponta- 
neous mutation  rate. If mutations are equally likely to 
each of the  other  three nucleotides, then  a plausible 

3000 
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value for p1 and p2 is p1 = 0 2  = B0/6 = 0.001. (Recall 
that p1 and ,82 equal 2N times the  mutation  rate to  the 
other allele.) If considerable selective constraint op- 
erates  on  noncoding  and silent sites then (31 and 0 2  

would be somewhat larger  than B0/6. If the sponta- 
neous  mutations are strongly biased against transver- 
sions, then  and p2 should  be somewhat smaller than 
B0/6.  For our calculations we have assumed /31 = P 2  = 

Since xo, the frequency of the Slow variant, varies 
with geographic location (OAKESHOTT et al. 1982), it 
is not clear what value to assign to XO. A  more realistic 
model must take  into  account this geographic  struc- 
ture, but here we merely assume that x0 is equal to 
0.7, a value obtained  for  a sample of D. melanogaster 
from Raleigh, North Carolina (KREITMAN and 
A G U A D ~  1986). 

Finally, we assume that R, = I i - j I Ro, that is, that 
recombination is uniform in the  region.  It  remains 
only to assign a value to Ro. The value of this param- 
eter is perhaps  the most uncertain of all. Recombina- 
tion per base pair has been estimated  for several 
regions of the D. melanogaster genome  to  be  approxi- 
mately IO-’ per generation in females (CHOVNICK, 
GELBART and MCCARRON  1977). The neutral  muta- 
tion rate has been estimated to be  approximately  5 X 
lo-’ per year in  many organisms. If we assume that 
D. melanogaster has 4  generations per year then  the 
ratio of recombination  per  generation  to the neutral 
mutation  rate per  generation is approximately  (1 O-*/ 
2)/(5 X 10-’/4) = 4, where  the  factor of !/2 in the 
numerator comes from  the fact that  recombination 
does  not  occur in males. This implies that Ro is ap- 
proximately 4 times B0/2 or 0.012. 

To calculate the  expectation and variance of 7rFs(k), 
7rss(k) and 7 r m ( k )  we assumed that the variation at each 
nucleotide site could be approximated by an  infinite- 
allele model rather  than a finite-allele model which 
would have been more realistic. This assumption is 

B0/6 = 0.00 1. 

3000 

FIGURE 5.-The  expected  and 
observed number of differences be- 
tween Fast sequences in a “sliding 
window,” (?TFF(k)), plotted as a func- 
tion of the nucleotide  position, k. For 
these calculations, it was assumed 
that RO = 0.012. All other parameters 
were as in Figure 3. 

appropriate if B is sufficiently small, so that with high 
probability at most one mutation can occur at a site 
in the history of the sample. The calculation of the 
expectation and variance of 7rFs(k), 7rss(k) and 7 r F ~ ( k )  

is described in the APPENDIX. The expectations are 
plotted in Figures 3,  4  and 5 ,  together with the 
observed values. Two different values of Ro were used, 
both  the a priori guess, 0.012,  and  a smaller value, 
0.002 chosen to  produce  a  better fit to  the observa- 
tions. For Ro equal to  0.012,  the mean (and variance) 
of nFs(k), 7rss(k) and 7 r F F ( k )  at  the selected site are  1.3 
(22.0),  0.33 (0.58),  and  0.23  (0.83), respectively. For 
RO equal  to 0.002, the mean (and variance) of T F S ( ~ ) ,  

7rss(k) and 7 r F ~ ( k )  at  the selected site are 4.9 (101), 
0.32  (0.47),  and  0.21  (0.84), respectively. 

Note  that  a  remarkably good fit is obtainable,  but 
that  the  recombination  parameter  required  for this fit 
is about one-sixth of our a priori guess. The large 
uncertainty of the  true value of RO and  the high 
variance of 7 r F S ( k )  near  the selected site make the 
significance of this discrepancy difficult to  interpret. 
The mean and variance of T F S ( ~ )  at  the selected site 
for  a completely neutral model with the same muta- 
tion parameter  (and  ignoring  the Fast/Slow polymor- 
phism) are  0.30  and 0.1 3 for Ro equal to  0.012,  and 
0.30 and  0.14  for RO equal to  0.002. 

The peak  in the plot of observed values of 7rss(k) 
near  the selected site was not  expected under  the 
balancing selection model (Figure 4). Adjusting the 
parameter RO has a relatively small effect on  the 
expectation of T S S ( ~ )  and  no value of this parameter 
results in a peak such as that observed. This high 
variability among Slow alleles of Adh was noted  before 
(KREITMAN and A C U A D ~  1986;  HUDSON, KREITMAN 
and A G U A D ~  1987). I t  is possible that the presence of 
a  second, and in this case silent, selected polymor- 
phism would account  for this high variability among 
Slow alleles. The possibility that this peak is not  a 
statistically significant departure from the expectation 
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under  the balancing selection model also needs con- 
sideration. 

DISCUSSION 

In the companion study (KAPLAN, DARDEN and 
HUDSON 1988), the coalescent process was studied  for 
a locus completely linked to a locus at which selection 
operates.  In this paper,  the  more  general situation is 
considered in  which a  neutral locus is not completely 
linked to  the locus at which selection operates. In this 
case, it is found  that  the coalescent process is similar 
in form to  the process without recombination. The 
equations  describing the process for  the model with 
recombination can be obtained  from those of the no- 
recombination model by replacing the mutation pa- 
rameters (PI and &) with simple functions (pl(x) and 
P2(x) defined by Equation  1) that  depend  on  the 
mutation  rates, the recombination  rates, the popula- 
tion size and  the frequency of the A 1  allele at  the 
selected locus. 

STROBECK (1983) has studied the linkage disequi- 
librium and homozygosity at a  neutral locus linked to 
a chromosomal arrangement  that is maintained in the 
population by strong selection. The quantities H42, 
0), H,(O, 2), and Hm(l, l), defined in the APPENDIX, 
are equivalent to STROBECK’S identity coefficients a1 1, 

G2.22, a12. If P1 and 0 2  equal  zero,  then H 4 2 ,  0) ,  Hm(O, 
2), and Hm( 1, 1) are identical to STROBECK’S all, a22, 

a12 as given by his Equation 7. 
Under  the no-recombination model with tight  reg- 

ulation of the  frequencies of the alleles at  the selected 
locus, it was shown by KAPLAN, DARDEN and HUDSON 
(1988) that the moments of T,  the sum of the lengths 
of the branches of the ancestral tree, do not  differ 
from  their values under  the  neutral model, unless p1 
and p2 are small. It follows that,  for  a site not com- 
pletely linked to  the selected site, the moments of T 
are approximately the same as they are  under  the 
neutral  model, unless the mutation  parameters  and 
the quantities, Rxo and R(l - XO), are small, say  less 
than  one. (Recall that R is 2N times the  recombination 
rate between the  neutral site and  the site where selec- 
tion operates.) Only sites very tightly linked to  the site 
at which selection operates  are expected to have sig- 
nificantly larger  ancestral  trees  than are expected 
under  the  neutral model. 

The physical  size  of the  region in  which neutral 
variation is significantly elevated  depends on  the pop- 
ulation size and  the  rate of recombination per base 
pair. For what appear  to be reasonable estimates of 
these  parameters in Drosophila, the size of this region 
is quite small, on  the  order of a few hundred base 
pairs. This means that  one  needs high resolution 
techniques, such as sequencing or four-cutter restric- 
tion mapping to detect such narrow regions of high 
variability. Six-cutter surveys may not give sufficient 
resolution to detect such regions. In species  with lower 

population size the expected  length of the region with 
increased heterozygosity is larger,  but with smaller 
population size the  amount of nucleotide variation is 
also expected  to  be smaller so high resolution tech- 
niques may  still be  required. 

HUDSON, KREITMAN and  ACUAD~ (1 987) previously 
found  that  the variation in the Adh region of D. 
melanogaster in conjunction with between species di- 
vergence data were incompatible with the  neutral 
model. As shown in Figures 3, 4 and 5 ,  a model in 
which balancing selection maintains the Fast/Slow 
amino acid polymorphism of Adh, predicts many  as- 
pects of the within species variation in the Adh region 
of D. melanogaster. For  example,  the balancing selec- 
tion model predicts that comparisons between Slow 
and Fast sequences will show a  narrow  region of high 
variability. The predicted location and width of this 
region of high variability are similar to  the location 
and width of the observed region of high variability 
in D. melanogaster. 

Other aspects of the  data do not match the predic- 
tions so well. With an a priori estimate of the recom- 
bination  parameter,  the  predicted  magnitude of the 
increase in variability is lower than  observed. How- 
ever,  the  predicted variance of this magnitude is large, 
so that  the observed peak in variation is not incom- 
patible with the a priori estimate of the recombination 
parameter. There is also great  uncertainty in the a 
priori estimate of the recombination  parameter. With 
lower values  of the recombination  parameter, the 
match between predicted and observed is good. Com- 
parisons of different sequences bearing the Slow al- 
lele, show unexpected  high levels  of variability in the 
region of the Fast/Slow polymorphism. This may not 
be  a significantly high level  of variability, since under 
the selection model,  the variance of the level of vari- 
ability is high near  the site of the balanced polymor- 
phism. An alternative  explanation is that selection is 
maintaining variation at  both  the Fast/Slow site and 
an  additional site located near  to  the Fast/Slow site. 

There  are several areas for  further theoretical  re- 
search. We have made simplifying assumptions con- 
cerning  the  neutral  mutation  rates  at  noncoding sites, 
intron sites, and  at coding sites  of different  degener- 
acy. It may be  important  to make more realistic as- 
sumptions about these neutral  mutation  rates,  perhaps 
by incorporating between species divergence  infor- 
mation into  the analysis.  We have assumed that selec- 
tion coefficients remain  constant,  but certainly it is 
likely that selection coefficients vary  in time and space. 
Properties of such models merit  consideration. The 
effects of partial isolation of subpopulations on the 
coalescent process also need investigation. The analy- 
sis  of models with more  than  one locus with selection 
may  also be useful, particularly for the  interpretation 
of the Adh data. Finally, statistical hypothesis tests are 
needed to distinguish between the  neutral model and 
alternative selective models. It is our expectation  that 
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the coalescent process for selective models will be 
useful in  developing  such tests. 

LITERATURE CITED 

AQUADRO, C. F., S. F. DEESE, M. M. BLAND, C. H. LANGLEY and 
C.  C. LAURIE-AHLBERG, 1986 Molecular population genetics 
of the alcohol dehydrogenase  gene region of Drosophila  mela- 
nogaster. Genetics 114: 1 165-1 190. 

CHOVNICK, A., W. GELBART and M. MCCARRON, 1977 
Organization of the Rosy locus in Drosophila  melanogaster. Cell 
11: 1-10. 

HUDSON, R. R., 1983 Properties of a  neutral allele model with 
intragenic recombination. Theor. Popul. Biol. 23: 183-201. 

HUDSON, R. R., M. KREITMAN and M. AGUAD~, 1987  A test of 
neutral molecular evolution based on nucleotide data. Genetics 

KAPLAN, N.  L., T. DARDEN and R. R. HUDSON, 1988  The coa- 
lescent process in models with selection. Genetics 120 831- 
840. 

KAPLAN, N. L., and R. R. HUDSON, 1985 The use of sample 
genealogies for studying a selectively neutral M-loci model  with 
recombination. Theor. Popul. Biol. 28: 382-396. 

KARLIN, S.,  and  H. M. TAYLOR, 1981 A Second Course  in Stochastic 
Processes. Academic Press, New York. 

KREITMAN, M., 1983 Nucleotide polymorphism at the alcohol 
dehydrogenase locus of Drosophila  melanogaster. Nature 304: 

KREITMAN, M., and M. AGUAD~, 1986 Excess polymorphism at 
the Adh locus in Drosophila  melanogaster. Genetics 114: 93- 
110. 

LANGLEY, C. H., E.  A. MONTGOMERY and W. F. QUATTLEBAUM, 
1982 Restriction map variation in the Adh region of Dro- 
sophila. Proc. Natl. Acad.  Sci. USA 79: 5631-5635. 

G. ANDERSON and G. K. CHAMBERS, 1982 Alcohol dehydro- 
genase and glycerol-3-phosphate dehydrogenase clines  in Dro- 
sophila  melanogaster on three continents. Evolution 36: 86-96. 

STROBECK,  C., 1983 Expected linkage disequilibrium for a  neutral 
locus linked to a chromosomal arrangement. Genetics 103: 
545-555. 

116 153-159. 

412-417. 

OAKESHOTT, J. G. ,  J. B.  GIBSON,  P.  R. ANDERSON, W. R. KNIBB, D. 

Communicating editor: B. S. WEIR 

APPENDIX 

In this  appendix,  a  method is outlined  for calculat- 
ing  the  mean  and variance  of rFs(k), rss(k) and rFF(k), 
which are defined by Equation 5.  It is clear from the 
definitions, that 

E ( m ( K ) )  = E(d,j.(K)) 

= E ( m€Wk C. (1  - a. (m)) )  

where  sequence i is a Slow sequence and sequence j is 
a Fast sequence, 6v(m)  is one if site m is the same in 
sequence i and sequence j ,  and zero otherwise, and 
Wh is the set of sites in the window centered  at k. The 
expection  of s,(m) is the probability  of  identity  of  site 
m in sequence i (a  Slow sequence) and sequence j (a 
Fast sequence), which we will denote by Hm(l, 1). 
Thus, it follows that 

E ( ~ F s ( ~ ) )  = C. ( 1  - Hm(1, 1)). 
m€Wk 

Similarly, 

and 

where H,(O, 2) is the probability of identity at site  m 
in two Fast sequences and Hm(2, 0) is the probability 
of  identity at site m in two Slow sequences. 

If the variation at each site m,  is described by a 
neutral infinite-allele model, then 

where Tm is twice the time in units of 2N generations 
to  the common  ancestor of a Fast and a Slow sequence 
at site m,  and  the expectation is over  the  distribution 
of T,,,. Similar expressions exists for H,(O, 2) and 
Hm(2, 0). In  the case of a tightly regulated  equilibrium, 
such as that considered in KAPLAN, DARDEN and 
HUDSON (1988) these  identity coefficients, Hm(l,  l),  
Hm(0,  2) and H42, 0) ,  satisfy the following system of 
three linear  equations  analogous to (4): 

where 

1 282(x)(1 - x) 
h*o(X)  = - + f 

X X 

and Pl(x) and &(x) are given by Equation 1 .  
The variances of rps(k), r ~ s ( k )  and r F F ( k )  are  more 

complicated to calculate. To see this, we consider the 
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calculation of E(rFs(k)*).  From the definition of 7 r f S ( k ) ,  

+ c#i',l x d,(k)diy(k)] 

in  which i and i' refer to Fast sequences and i and if 
By expanding  the  squared term on the right  hand  refer  to Slow sequences. The expectations on  the  right 
side, we get  hand side can be expressed in terms of identity coef- 

ficients for samples of  size two, three,  and  four for 

E [(,E.Es d ~ k ) ) l ]  = E [E d $ ( k )  one  or two sites. These identity coefficients satisfy 
i.3 systems of linear equations such as (4) and can be 

+ 1 d g ( K ) d i , j * ( k )  + dq(k)dq,(k) evaluated numerically, although in some cases the 
i#i',j#j'  i,j#j' number of variables is as large as 20. 


