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ABSTRACT 
Various measures have been  proposed for characterizing the statistical association that arises 

between alleles at different loci.  Hedrick  has  compared these measures with the standardized measure 
D’ proposed by Lewontin  on the grounds that this  latter measure is independent of allele frequency. 
Although D’ has the same range for all allelic frequencies, in fact, D’ is not “independent” of allele 
frequency,  and no measure with that general  property is possible for the multilocus association 
problem. The insolubility of this problem  arises  from the ill-defined nature of general “association.” 

I T is now generally  understood  that, as a conse- 
quence of selection, random genetic drift, co-an- 

cestry, or gene flow, alleles at  different loci  may not 
be  randomly associated with each other in a  popula- 
tion. While this effect is generally regarded as a  con- 
sequence  of  linkage,  even  genes  on  different  chro- 
mosomes may be  held  temporarily or permanently  out 
of  random association by forces of selection, drift  and 
nonrandom mating. 

For simplicity, let us consider only two loci with two 
alleles each, say, A,a and B,b. We denote,  for  the 
population  frequencies  of the  four gametic types 

gll = frequency of AB gametes 
glo = frequency of Ab gametes 
go1 = frequency  of aB gametes 
goo = frequency  of ab gametes 

and 

PI = frequency of allele A at locus A 
q1 = frequency of allele a at  the A locus 
p 2  = frequency  of allele B at  the B locus 
q2 = frequency of allele b at  the B locus. 

Then, if the loci are associated at  random (gametic 
equilibrium or linkage equilibrium) we expect that 
g11 = P I P , ,  glo = p1q2, etc. 

If we write dynamical equations for changes in 
gametic  frequencies as a  consequence of recombina- 
tion,  selection, drift,  gene flow or any  combination of 
these,  there  appears in these  equations  the quantity 

g11goo - g01g10. 
[See, for  example, LEWONTIN and KOJIMA (1960) or 
any  subsequent  paper  on  this subject.] This  quantity 
has come  to  be symbolized by D ,  the linkage disequi- 
librium  orgametic  disequilibrium parameter. Obviously, 
if the alleles at  the loci are randomly  associated, then 

D = gllgoo - glogol = (plp2)(4142) - (plq2)(p2ql) = 0 
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so it seems tempting  to use D as a  measure of the 
degree of nonrandom association. The temptation 
becomes all the  greater when one notices that dynam- 
ical models aside, in a 2 X 2 table  representing  ob- 
served  proportions of gametes in a  population sample 
of size N gametes (Table l),  the x 2  test for association 
between the loci  can be written simply  as: 

D ~ N  
x 2  = ___ 

PlP2qlq2’ 
From the beginning of work on  gametic disequi- 
librium,  however, it was noticed that  the possible 
values of D are constrained by the marginal allelic 
frequencies, p l  and p 2 .  By reference  to  the 2 X 2 table 
just given, it is easy to verify that  the largest positive 
value D can take is either plq2 or p2q1, whichever is 
smaller, while the most negative value D can take is 
either P I P 2  or qlq2, whichever is smaller. This allele 
frequency limitation of D disqualifies it as a  general 
measure of association, since one would like to com- 
pare  the gametic disequilibria for  the same loci  in 
different  populations, or different  pairs of loci  in the 
same  population, that have different allelic frequen- 
cies. As a  consequence, many measures related  to D 
have been  proposed that  are supposed to  normalize D 
for allelic frequencies.  In  a  recent  paper, HEDRICK 
(1987) has examined  these various measures and 
shown them all to  be severely tainted by the marginal 
allelic frequencies.  In his examination, HEDRICK used, 
as a  standard  of  comparison,  a  measure D‘ introduced 
by LEWONTIN (1 964). 

D D ’  = - 
Dmax 

where 

where 
Dmax = min(plp2, q1q2) when D < 0. 
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TABLE 1 

Two by two array relating gametic frequencies to allele 
frequencies at two loci 

A a 

HEDRICK gives as the reason for using D ’ as  a  standard 
that “it is independent of allelic frequencies” (p. 333). 
Unfortunately, this is not  true,  and  the situation is 
even messier than  he suspected. So one must be even 
more cautious than suggested by  HEDRICK’S title, “Ga- 
metic disequilibrium measures: proceed with caution.” 

Obviously, the range of D’ is independent of the pi  
since it is precisely defined  as  a  proportion of the 
maximum possible value of D. So it must vary between 
- 1 and + 1 ,  independent of the pi.  It is not, however, 
“independent” of the p i  in any other general sense. 
T o  see the problem, we must first consider what we 
might mean by a  measure of association that is inde- 
pendent of other  properties of a  distribution. Some- 
how, there is involved the concept of “association” as 
an  independent  pure  property of a  pair of variables 
so that  the “same” association can be exhibited by 
variable pairs taken  from all sorts of populations with 
different single variable distributions. But there is no 
standpoint  from which we can define such a com- 
pletely general  concept,  although we may do so in 
certain specific  cases. 

GENERAL  RELATIONSHIPS 

Consider  the  concept of correlation. If two variables 
x and y have a bivariate normal  distribution,  then 
distribution  functionf(x, y) is given by the familiar 

f ( x ,  y) dxdy = 
1 

2 7 r U l U 2 A 7  

where p l ,  p2, ul, and u2 are  the means and  standard 
deviations of the two variables and p, the correlation 
coefficient, is defined by the relationship 

and 6 1 2  is the covariance of x and y. 
Let us consider another population in  which the 

values of the variates, x ‘  and y‘, are related to x and 
y by linear relationships. 

x ’ = a x + b  
y’  = cx + d .  

Noting  that the new variable x ’ has mean up1 + b and 
standard deviation au, and similarly for y’  and  that 
u12’ = acu12 we can find the density function of x ‘ ,  y ’ 
by substituting the transformation (3) into (2).  We 
then  get 

f ( x ’ ,  y’) d x ’ d y ’  = 
1 

2 7 r U l U 2 4 F - 7  

. exp 

- 2 p  r’ i;”) (Y’ ir2’)]) d x ’ d y ’ .  

From (4) and ( 2 )  we then see that  the bivariate 
distribution  for the old and new variates have exactly 
the same form, with the  parameters p’ ,  u’ ,  etc., re- 
placing the old parameters p,  u, etc., but  with an  
unchanged parameter, p. The invariance of p follows 
simply from its definition 

and its appearance in the exact same form in the 
transformed  distribution is a consequence of the par- 
ticular distribution, the bivariate normal, which trans- 
forms  into itself under a  linear  transformation of the 
variables. If the underlying variables are  not bivariate 
normally distributed, or if the transformation  relating 
x, y to x ’ ,  y’  is not  linear, this invariance does  not 
apply, and p loses its value as an invariant  measure of 
association. For  example, if the transformation 

x ’  = ( x  - a)‘ 

is applied to normal variates, the new variates, x ’ and 
y’, are not normally distributed (each has a x2 distri- 
bution) and p(x ’ ,  y’) # p(x, y). Thus, correlation is not, 
in general,  a  measure of “pure” association. Its value 
in the case  of normal  distributions arises from itsforced 
invariance under linear  transformations of the vari- 
ables. 

In  fact, several measures compared by Hedrick are 
closely related to a  “correlation”  measure  that has 
been used in linkage disequilibrium studies: 

D cov(A, B )  

4z-z (5 )  

which looks like a  correlation  measure because r ,  
assigning the  random variables 0 and 1 to  the two 
allelic states at locus, is the  ratio of the covariance 
between the loci to  the square root of the  product of 
their variances. In  fact, it has none of the invariant 
properties of p in the bivariate normal  distribution. 
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TABLE 2 

Contingency  table  relating  the  gamete  disequilibrium  parameter 
D, to  the allelic frequencies  at two loci 

1 n 

~ ~~ 

For example, it does not vary  between -1 and + 1 ,  
unless P I  = p2 = 0.5. 

We  now turn from correlation measures in normal 
populations to the simple bivariate 2 X 2 contingency 
table. Identifying the A locus  with i and  the B locus 
with j ,  then  the pair i j  can take only four values, 1,l;  
1,O; 0 , l  and O,O, with general probabilities  given in 
the 2 x 2 contingency table (Table 2). In algebraic 
terms, the bivariate distribution of i,j is given  in terms 
of the allele frequencies and D as: 

P(i,j) = [ipl + ( 1  - i ) q ]  u p 2  
(6) + ( 1  - j ) q 2 ]  + ( -1FJD 

which we represent as 

P = [ I ]  [ J ]  + ( -1FJD 

If we  now change the marginals to 

P I ’  = P I  + t and p,‘ = p 2  + u 
and denoting the new  value  of D as D*, we obtain 

P’(iJ) = [1’] [J’] + (-l)i.jD* (7) 

where I’ and J’ are the same  as I and J with the new 
values  of PI’  and p,’ substituted. 

We note that D* is not forced to be equal to D 
because there is one  degree of freedom in  filling the 
2 X 2 table. Thus we are at liberty to substitute any 
value  of D*, subject  only to the constraint that 

P’(i ,  j )  2 0 for all ij. 
It is this constraint that causes the limits of D* to be 
determined by the pi ,  but only the limits.  But if D* is 
indeterminate for  a given change ofpi ,  then any  closed 
function of D* and  the pi’ is also indeterminate (ex- 

TABLE 3 

Fitnesses  for  a  hypothetical  case  of  selection at two loci 

AA Aa  an 

BB 1 .oo 0.90 0.80 
Bb 0.95 0.80 0.75 
bb 0.50 0.45 0.30 

cept for trivial functions in  which D* cancels out 
entirely). Thus,  there is no measure that includes D,  
or any parametric representation of P I ,  p 2  and D,  that 
is invariant with arbitrary changes in the p l .  There- 
fore, if we are to seek for some measure t9 compare 
the  “pure” associations  in  two populations, we must 
appeal to some a priori notion of  association  in  each 
case. 

SPECIFIC EXAMPLES 

In an evolutionary context, we might demand that 
a measure of pure association  between  loci, independ- 
ent of  allele frequency, ought to have the property 
that two populations starting with the same  association 
and subject to identical  forces  of  evolutionary change 
ought  to have  equal  association  values after  the 
change. As  we  now show, D’ fails  this  test in two 
different cases,  in  two different ways. 

Assume  two  loci  each  with  two  alleles,  subject to 
selection according to the fitness  values  given  in Table 
3. The fitnesses  have  been  chosen to favor AABB and 
some  epistasis  has  been introduced. Assume the two 
loci  have 5% recombination. We contrast the results 
of a single generation of selection in three different 
populations, each beginning at a different set  of  allele 
frequencies in the initial generation, but with D = 0 
in  all three cases. The initial  compositions and result 
of 1 generation of  selection are shown  in Table 4. As 
the table  shows, neither D nor D’ are the same  in the 
three populations after selection, although the only 
difference is in the starting allele frequencies, and all 
started from D = 0. In the sense  of equal results of 
equal forces, D ’ is clearly not “independent” of the p i .  

As a second  case,  assume  two populations which 
exchange, without  selection, a proportion m of their 

TABLE 4 

Outcome of a single generation  of  selection  according  to  the  fitnesses in Table 1, for three  populations of different  initial  composition 

Population 

POP. 1 
Gen. 0 
Gen. 1 

pop. 2 
Gen. 0 
Gen. 1 

Gen. 0 
Gen. 1 

POP. 3 

0.2500 0.2500 0.2500 0.2500 0.5000 0.5000 0 0 
0.3067 0.2269 0.2731 0.1933 0.5336 0.5798 -0.00268 -0.01379 

0.0900 0.2100 0.2 100 0.4900 0.3000 0.3000 0 0 
0.1316 0.2041 0.2767 0.3876 0.3357 0.4083 -0.00550 -0.0401 3 

0.0400 0.1600 0.1600 0.6400 0.2000 0.2000 0 0 
0.0666 0.1678 0.2426 0.5229 0.1344 0.2292 -0.00587 -0.08216 
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individuals and  then  form  gamete pools.  Assume the 
two populations have different gametic frequencies 
before migration designated by Gq for  population 1 
and g, for population 2. We designate by D and d the 
gametic disequilibrium in populations 1 and 2 respec- 
tively, and m ,  the migrant  proportion  exchanged. 

Then in population 1 ,  the gametic frequencies  after 
migration are: 

G,,‘ = mg,, + ( 1 - m)G,] 

so that the value  of D after  one  generation 

D* = m2d + (1 - m)’D + m(1 - m) 
(8) 

[gllGoo + gooGI1 - golGlo - ~ I O G O I ] .  

But, if d = D ,  then (8) is completely symmetrical in m 
and (1 - m) ,  so (8) also gives the new disequilibrium 
in population 2. That is, if D = d ,  then D* = d * ,  so 
after  one  generation of reciprocal exchange, two pop- 
ulations that begin  with equal D end up with equal D, 
even if their initial allele frequencies were different. 
In  that case, the D‘ values will not be equal. Nor, even 
if D ’ = d ’, would D *‘ = d *’. So, D ’ is not  an  invariant 
of the evolutionary process for  equal reciprocal mi- 
gration,  although D is! 

Finally, if, instead of exchanging  equal  proportions 
of migrants,  the two populations receive equal  pro- 
portions of migrants from  a  third  population,  then 
neither D nor D ’ remain equal even though they start 
as equal. 

Our conclusion is that  there  are  no generally gene 
frequency  independent measures of association be- 
tween loci, and  that,  indeed,  the concept itself is an 
ill-defined one.  In any particular case, we may be able 
to find a  measure of association that is preserved 
under  particular  conditions,  but the search  for  a 
“pure” measure of gametic disequilibrium is doomed 
to failure. 

Research was carried out under grant GM 2 1  179-14 from the 
National Institutes of Health and grant DMB 8801057 of the 
National Science Foundation. 
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