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ABSTRACT 
Genes that code for products involved  in the physiology  of a phenotype are logical candidates for 

explaining interindividual variation in that phenotype. We present a methodology for discovering 
associations between genetic variation at such candidate loci  (assayed through restriction endonuclease 
mapping) with phenotypic variation at the population level. We confine our analyses to DNA regions 
in  which recombination is  very rare. In this case, the genetic variation at  the candiate locus  can  be 
organized into  a cladogram that represents the evolutionary relationships between the observed 
haplotypes.  Any mutation causing a significant phenotypic effect should be imbedded within the same 
historical structure defined by the cladogram. We showed, in the first paper of  this  series, how to use 
the cladogram to define a nested analysis  of variance (NANOVA) that was very efficient at detecting 
and localizing  phenotypically important mutations. However, the NANOVA  of haplotype effects 
could only be applied to populations of homozygous genotypes. In this paper, we apply the quantitative 
genetic concept of average excess to evaluate the phenotypic effect of a haplotype or group of 
haplotypes stratified and contrasted according to  the nested design defined by the cladogram. We 
also  show  how a permutational procedure can be used to make  statistical inferences about  the nested 
average excess  values  in populations containing heterozygous as well  as homozygous genotypes. We 
provide two worked examples that investigate associations between genetic variation at or near  the 
Alcohol dehydrogenase (Adh) locus and Adh  activity  in Drosophila melanogaster, and associations between 
genetic variation at or near some apolipoprotein loci and various lipid phenotypes in a human 
population. 

R ECOMBINANT DNA  technology  makes it pos- 
sible to survey populations for restriction site 

variability in  small regions of the chromosome con- 
taining genes with  known  biochemical or physiological 
functions. By simultaneously studying traits that are 
related to the genes’  known  biochemical or physiolog- 
ical functions, it is possible to assign phenotypic effects 
to specific  alleles or haplotypes at  or near the genes 
of  known function. This measured genotype approach 
allows one  to investigate  many  of the problems tradi- 
tionally addressed by quantitative genetic techniques, 
but with the advantage that  the genes that  are being 
considered are well defined, molecularly character- 
ized  units. 

There  are several problems that need to be ad- 
dressed in order to implement this approach (TEM- 
PLETON, BOERWINKLE and SING 1987). They are (1) 
how to define a unit of genetic analysis  when the data 
consist  of  multiple polymorphic sites  with  linkage  dis- 
equilibrium between  sites? (2) how to detect indirect 
phenotypic associations  with the measured genetic 
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unit that are caused by linkage  disequilibrium? (3) 
which haplotype categories are likely to be associated 
with  multiple phenotypic effects? (4) how to detect 
such phenotypic heterogeneity? (5 )  where are  the phe- 
notypically important genetic variants located  in the 
cloned DNA region? (6) can a method be developed 
that deals  with quantitative phenotypes  as well  as 
categorical  phenotypes? and (7) how to estimate and 
test for the presence of phenotypic effects  of  specific 
alleles or haplotypes for a phenotype that is expressed 
only  in  diploid  individuals? 

An obvious  solution to the first problem is to  regard 
the unit  of genetic analysis  as the haplotypes deter- 
mined by the states of  all  available  polymorphic  sites 
considered simultaneously (TEMPLETON, BOERWINKLE 
and SING 1987). We retain this  basic unit of  analysis 
in  this paper. However, the haplotypes present in 
heterozygous diploid  individuals are often not unam- 
biguously defined from the restriction fragment data. 
In this paper, we will present an algorithm for assign- 
ing the most probable haplotypes and for estimating 
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haplotype frequencies in diploid  populations contain- 
ing heterozygotes. 

Given that there is very  little recombination in the 
DNA region of interest, a cladogram  can  be  con- 
structed that represents the evolutionary relationships 
between the present-day haplotypes. The cladogram 
is then used to define a nested  statistical  analysis that 
addresses  problems  two, three  and six (TEMPLETON, 
BOERWINKLE and SING 1987). This cladistic approach 
does not directly address problem five, but it does 
identify  haplotype categories that may warrant further 
molecular characterization in the attempt to under- 
stand the causes  of the observed  phenotypic  associa- 
tions. 

The utility  of  this  cladistic approach was first illus- 
trated by a worked example on associations  between 
restriction site  variation  observed  in the Alcohol dehy- 
drogenase (Adh) genetic region with Adh activity  levels 
in Drosophila  melanogaster (TEMPLETON, BOERWINKLE 
and SING 1987). The Adh data were obtained from 
homozygous strains with a common genetic back- 
ground (AQUADRO et al. 1986). Thus, experimental 
genetic  manipulations to create contrasts between 
homozygotes  were  used to solve  problem  seven.  How- 
ever, when performing surveys on outbred popula- 
tions, a single  haplotype  can  exist in a variety  of 
different genotypes. Hence, there is no longer a  1 to 
1 correspondence between  haplotypes and the geno- 
types  expressing the phenotype. In this paper we 
extend the statistical strategy given  in TEMPLETON, 
BOERWINKLE and SING (1987) to the analysis  of  sam- 
ples from outbred populations. This extension will be 
illustrated by two  worked  examples. First, we will 
reanalyze the Adh  activity data disregarding the fact 
that only  homozygous strains are involved. This will 
allow a direct comparison  of the results of the tech- 
niques  developed  in  this paper to the results obtained 
by the more traditional statistical  analyses that are 
possible  when experimentally derived homozygous 
genotypes are available. Second, we will analyze a 
sample from a human population of unrelated individ- 
uals  who  were scored for restriction site  haplotypes in 
a region coding for  three apolipoproteins and meas- 
ured for various  lipid  variables. The cladistic  analysis 
of these human data will suggest that certain haplo- 
types may be  phenotypically heterogeneous in their 
effects. Hence, this example will be used to illustrate 
a solution to problem four-how  does one statistically 
detect phenotypic heterogeneity within a haplotype 
class? 

“PHENOTYPES” OF HAPLOTYPES  IN  A  DIPLOID 
POPULATION 

One of the oldest and most fundamental problems 
in quantitative genetics  stems from the fact that al- 
though most  phenotypes of interest are expressed  only 

in diploid  individuals,  any genetic component that 
contributes to  that phenotype has to be passed on  to 
the next generation through  a haploid gamete. Con- 
sequently, statistics that assign “phenotypic measures” 
to haploid genetic elements (alleles or haplotypes) are 
at the very core of quantitative genetic theory. 

Two such  measures are commonly  used today, and 
both were invented by R. A. FISHER (1918). The first 
is the average excess. The average excess  of a partic- 
ular haplotype is the average phenotypic measure- 
ments made on bearers of that haplotype  minus the 
overall population mean (TEMPLETON 1987). The sec- 
ond measure is the average effect, which  is the least- 
squares regression  coefficient that defines the linear 
relationship between the phenotype and  the number 
of  copies  of each haplotype (zero, one or two) borne 
by an individual. The average effects  can always be 
calculated from the average excesses and data on 
genotype frequencies, and  the two  measures are iden- 
tical under Hardy-Weinberg genotype frequencies 
(TEMPLETON 198’7).  Because the average excess is 
simpler to calculate and has a more straightforward 
biological  meaning, we will use the average excess  as 
our means  of  assigning phenotypes to haplotypes. 

We  now introduce the notation we will use  in the 
computation of the average excess  measures.  Let yh be 
the phenotypic  value  of  individual k. Let j be the 
average phenotypic  value  in a sample  of n individuals. 
Let ha be the number of  haplotypes of type i borne 
by individual k, which  has the possible  values  of 0, 1 
or 2. With  these definitions, the average excess  of 
haplotype i is 

a, i ykh&/ i ha - j .  (1) 

Using equation (l), we can now estimate the phe- 
notypic  effects  associated  with  any particular haplo- 
type.  However, we still need to address the issue  of 
testing the significance of these  estimates. 

k= 1 k= 1 

A  NESTED  PERMUTATIONAL  TEST OF 
AVERAGE EXCESSES 

Direct  statistical testing of average excesses  is not 
generally  possible  because the phenotypic value of 
each heterozygote contributes to two different aver- 
age excess measurements. Hence, the haplotype ef- 
fects cut across the sample of individual phenotypic 
observations in a confounded fashion, thereby invali- 
dating the use  of  many standard statistical techniques, 
such as an  analysis  of  variance  of the haplotype effects. 
As an alternative, investigators  have often analyzed 
the phenotypic differences of  genotypes to indirectly 
confirm the significance  of the average excess  meas- 
ures. For example, BOERWINKLE et al. (1987) esti- 
mated the average effects  (which are the same  as the 
average excesses  in this case  because the population 
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analyzed  had Hardy-Weinberg genotype frequencies) 
of the  three common  alleles at  the apolipoprotein E 
locus on the levels  of  several traits involved  in  lipid 
metabolism. However, the statistical confirmation of 
significant genetic effects was accomplished by per- 
forming analyses  of  variance (ANOVA) using the 
genotypes, not alleles,  as the  treatment stratifications. 
This is a useful approach as  long  as the number of 
alleles or haplotypes is relatively  small.  However, re- 
striction enzyme  mapping  has the potential for distin- 
guishing a large number of  haplotypes in the region 
of the DNA where a gene is located. In general, N 
haplotypes define N(N + 1)/2 genotypes.  Dividing a 
data set into N(N + 1)/2 treatment effects  can seri- 
ously erode statistical  power  simply by making the 
sample  size  associated  with  each treatment effect 
small. Therefore, for a given  sample  size, one has 
greater statistical  power to detect differences among 
N haplotype  effects than among N ( N  + 1)/2 genotypic 
effects  unless there is much over- or underdominance 
or  other nonadditive interaction effects. 

When  all  genotypes are made  homozygous,  as  with 
the Adh data of AQUADRO et al. (1 986), the problem 
of  assigning haplotype effects is eliminated and aver- 
age excesses  can  be  analyzed  with standard nested 
ANOVA (NANOVA) procedures (TEMPLETON, 
BOERWINKLE and SING 1987). However,  when the 
haplotype  effects are confounded by heterozygosity, 
the ANOVA, or NANOVA, cannot be used. As an 
alternative, we propose a sample reuse procedure. 
Sample reuse procedures are commonly  used for es- 
timation and testing of statistics  whose distributions 
are not known or easily derived (EFRON 1982). In 
particular, random or systematic permutations of the 
original data are appropriate  for ANOVA-like  situa- 
tions (EDGINGTON 1987). We will use random per- 
mutations of the sample to generate the distribution 
of NANOVA-like  statistics under  the null  hypothesis 
that the haplotypes and clades  of  haplotypes are not 
associated  with the phenotypic variability measured 
by their corresponding average excess  values. 

As in TEMPLETON, BOERWINKLE and SING (1 987), 
the first step of the analysis is to construct a cladogram 
of the haplotypes that reflects their evolutionary re- 
lationships. The basic rationale for this step is that 
any mutation causing  phenotypically important alter- 
ations will be embedded somewhere in the same  his- 
torical/evolutionary framework defined by the restric- 
tion  sites. The consequence is a correlation between 
phenotypic effects and evolutionary relatedness. Fig- 
ure  1 shows the cladogram for  the Adh haplotypes 
from AQUADRO et al. (1986)  that was  used  in the 
analysis  of TEMPLETON, BOERWINKLE and SING 
(1 987). 

The second step is to use the cladogram to define a 
nested  statistical  analysis. As discussed  in more detail 
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FIGURE 1.-Cladogram of the haplotypes found in the Alcohol 
dehydrogenase genetic region of D. melanogaster (from TEMPLETON, 
BOERWINKLE and SING 1987). Numbers I through 25 represent 
distinct  haplotypes as detected by restriction  site  mapping 
(AQUADRO et al. 1986). The number "0" refers to inferred  inter- 
mediate  haplotypes  that  were not actually  present in the sample  but 
that  are needed to interconnect  the existing haplotypes. Each dou- 
ble-headed  arrow  represents a single  mutational  change  detectable 
by restriction  mapping. The haplotypes are then nested according 
to the algorithm of TEMPLETON, BOERWINKLE and SING (1987). 
The 0-step clades  (haplotypes)  are  indicated by  Arabic numerals, 1- 
step  clades (enclosed by solid  lines)  are  indicated by  Greek letters, 
2-step  clades (dotted lines)  are  indicated by  Roman numerals,  and 
3-step  clades (the A,B partition of the cladogram)  are  indicated by 
capital  letters. 

in TEMPLETON, BOERWINKLE and SING (1987), we 
start with the average excess  values  assigned to hap- 
lotypes. Next, average excess  values are estimated for 
larger and larger branches (clades)  of the cladogram, 
defined in a nested fashion, until the next level  of 
nesting would  encompass the  entire cladogram 
(hence, the largest  clades are one step below the  entire 
cladogram). We will call the units defined by the 
various nested branches of the cladogram as  c-step 
clades, where c indicates the level  of nesting and 
represents the maximum number of mutational dif- 
ferences that interconnect the haplotypes  within a c- 
step clade. In this terminology, the haplotypes corre- 
spond to 0-step  clades (TEMPLETON, BOERWINKLE and 
SING 1987). Evolutionarily related sets  of 0-step clades 
are then pooled together to form a smaller number 
of  1-step  clades, and evolutionarily related sets  of 1- 
step clades are in turn pooled together to form an 
even  smaller number of  2-step  clades, etc., etc. The 
nesting  of the Adh region haplotypes is indicated in 
Figure 1 (from TEMPLETON, BOERWINKLE and SING 
1987). 

Since average excesses are the phenotypic measures 
we are analyzing, we need to define a nested  set  of 
average excess  measures in order  to implement this 
nested  statistical  analysis.  Let  be the average 
excess  of the c-step clade, i, nested  within c + l  step 
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clade, M .  This is the average excess assigned to the 
ith  grouping  of haplotypes at  the c-step level measured 
as a deviation from  the mean of all haplotypes associ- 
ated with the c + l  step clade, M (the usual average 
excess measures deviations from  the  general popula- 
tion mean): 

a;(M) = i Yhhik / i hu - i Y h M h  / hMk ( 2 )  
k= 1 k= 1 k= 1 k= 1 

where hMk refers  to  the  total  number of clade M 
haplotypes carried by individual k .  

In analogy to  a  NANOVA, sum of squares statistics 
can be  defined  from  these  nested  average excesses. 
Let p;(w be the relative frequency of  c-step clade, i ,  
within the c+l  step  clade, M ,  category;  that is, 

ha L 1  hMk. (3) 

Then,  the weighted sum of squares of the c-step clades 
nested within c + l  step clade M ,  say &(w, is 

k= 1 

Sc(w = 1 pi(wai(w*, (4) 
i 

where  i is summed  over all  c-step clades contained 
within c+l  step clade M .  The relative  frequency of 
clade M of the c+ 1  step in the total  population is given 
by 

n 

The total sum of squares at level c nested within level 
c+l  is 

where the M are summed  over all c + l  step clades. 
The statistical significance of the sums of squares 

defined by Equations 4 and 6 are evaluated by a 
random  permutation  procedure. Because we are using 
a  nested  design, the  permutations are carried  out in a 
hierarchical, nested fashion. Starting at  the highest 
clade level, say cmax, the null hypothesis that  there  are 
no phenotypic associations at this level implies that 
the  data are finitely exchangeable across the c,,,-level 
clades. This exchangeable  distribution can be simu- 
lated by randomly  permuting  the  entire  vector of 
haplotype  counts  for individual k ,  (hi,k) over  the indi- 
vidual phenotypic values. The null hypothesis is re- 
jected if the probability of realizing the observed sums 
of squares statistics among  the  large  set of values 
generated by random  permutation falls  below a preas- 
signed significance level, say 0.05. 

One could test for phenotypic associations at  the 
lower levels  in the hierarchy of clades by permuting 
observations that  are nested within the  next  higher 
clade level. However,  this procedure would result in 
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FIGURE 2.-Diagrammatic summary of the results of the  NA- 

NOVA analysis given in TEMPLETON, BOERWINKLE and SING 
(1987). The Adh genetic region cladogram is given, with  asterisks 
indicating the localization of phenotypically important changes 
within the cladogram. 

a serious erosion of statistical power because the  data 
set becomes increasingly subdivided into smaller and 
smaller nested groups of observations at  the lower 
clade levels. Since the power of a  permutational test 
depends critically upon the  number of observations 
that  are available for  permutation,  there would often 
be very little power at these lower levels of nesting 
even if the total sample size were large. 

We avoid this problem with a  conditional,  hierar- 
chical permutation  procedure. As one proceeds  from 
the highest clade level to  the lower levels, the only 
groupings that  are  retained as nesting  categories  for 
between individual permutations  are those for which 
the hypothesis of exchangeability has been rejected. 
For  example, suppose the c,,,-level analysis lead to 
the rejection of the null hypothesis of exchangeability. 
Then,  to test the null hypothesis that  there  are  no 
phenotypic associations with the (c,,, - 1)-level clades, 
it is important  that  the h values are exchanged at 
random only between individuals bearing haplotypes 
from  the same c,,,-level clades. On the  other  hand, if 
the null hypothesis of exchangeability at  the c,,,-level 
is accepted,  then the null hypothesis of no (cmaX - 1)- 
level associations is tested by permuting  the h values 
over all individuals. 

COMPARISON OF THE  PERMUTATION  TEST 
AND  THE  NANOVA:  AN  APPLICATION TO 

THE Drosophila Adh  DATA 

We have applied this permutation  procedure  to  the 
Drosophila Adh activity data previously analyzed by 
TEMPLETON, BOERWINKLE and SING (1987).  Figure  1 
gives the nested design defined by the cladogram, and 
Figure 2 summarizes the results inferred  from  the 
standard  NANOVA given in TEMPLETON, BOERWIN- 
KLE and SING (1987).  We  performed  a  nested  per- 
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TABLE 1 

Nested  permutational  analysis of alcohol  dehydrogenase 
activities  in D. melanogarter using the  hierarchical,  conditional 

permutation procedure described  in  the  text 

Sums 
of 

Source squares Significance 

3-Step clades 4.299 o.ooo*** 
2-Step clades 0.051  0.562 

Within A 0.080  0.223 
Within B 0.005  0.842 

1-Step clades 0.288  0.083 
(Observations permuted 

within A) 
Within a 0.078  0.281 
Within @ 0.598  0.007** 

(Observations permuted 
within B) 

Within 6 0.672  0.207 
Within c 0.031  0.736 

0-Step clades 0.467  0.188 
(Observations permuted 

within A minus I V )  
Within I 0.059  0.490 
Within I I  0.179  0.133 
Within III  0.005  0.828 
Within V 0.073  0.51 1 
Within VI 0.064  0.310 

(Observations permuted 
within A‘) 

Within N 0.201  0.3 17 
(Observations permuted 

within B)  
Within VII 0.000 0.987 
Within VIII 3.498  0.048* 
Within IX 0.828  0.276 
Within X 1.035 0.104 
Within X I  0.0 16 0.803 

Asterisks highlight results that are significant at the 5% level (*), 
the 1% level (**), and 0.1% level (***). 

mutational analysis  of the same data by generating 
1000 random sets  of nested permutations, which  is 
sufficient for accurate inference at  the 5 %  level  of 
significance (EDGINGTON 1987). Significantly large 
values  of  statistic (6) indicate the clade  level at which 
phenotypically  significant  associations are found,  and 
these phenotypic associations  can be further localized 
to  the particular clade at that level  of the cladogram 
by decomposing  statistic (6) into its component statistic 
(4) values.  If a phenotypic effect has been localized to 
the c-level clades  within a particular c+l  step clade 
(say M )  but there is still  some  ambiguity  as to its 
precise location, further localization is possible  by 
examining the statistics ai(w - a,(w, where i and j are 
a pair of  c-step  clades  within clade M that are adjacent 
in the cladogram. The significances  of these contrasts 
are also evaluated through permutational testing. 

Table  1 gives the significance  levels  of the resulting 
statistics  as determined by 1000 random permutations 
of the original data set. The permutational analysis 

TABLE 2 

Localization of the  significant  phenotypic effect detected  at the 
1-step clade  level  for  the A&  activity  data in the  permutational 

analysis  given  in  Table 1 

Contrast 
(i us. j) Qi(B)-aj(B) Significance 

III us. N -1.654 0.006** 
III  us. v -0.277 0.703 
I V V S .  v 1.378 0.039* 

The significance of the three possible  pairwise contrasts of the 
nested average excesses within 2-step clade are given as determined 
by 1000 random permutations of the observations nested within 3- 
step clade A.  

detects a significant phenotypic effect at the 3-step 
level,  which corresponds to  the asterisk over the arrow 
connecting haplotypes 1 and 15 in Figure 2.  Because 
the permutation analysis rejects the hypothesis  of ex- 
changeability  between the two  3-step  clades,  all  lower 
level permutations must  be nested within the 3-step 
clades A and B (Figure 1).  Going  down to  the 2-step 
level  in Table  1, we see that  the hypothesis  of ex- 
changeability is not rejected for the 2-step  clades 
nested  within  3-step  clades A or B. Given that there 
are  no 2-step  effects, we  now permute  the  data at the 
1-step  level  nested  within the two  3-step  clades, A and 
B. A 1-step  effect is found in 2-step  clade beta that is 
significant at  the  1% level. 

The significant  1-step effect within  clade beta can 
be further localized by contrasting the average excess 
values,  as described earlier. The results are shown  in 
Table 2. The significant phenotypic association is 
clearly  localized to  the mutational step leading to 1- 
step clade N ,  the same  conclusion reached by the 
NANOVA (Figure 2). 

Moving on to the 0-step  effects, our analysis up to 
this point indicates that all the data nested  within 
clade B are exchangeable under  the null  hypothesis  of 
no 0-step  effects.  Within  clade A ,  our analysis indicates 
two exchangeable categories under  the null  hypothesis 
of no 0-step  effects: the observations  nested  within 1- 
step clade ZV, and  the observations found in 1-step 
clades I ,  ZZ,  ZZZ, V and VI (ie., all the observations 
within clade A that are not in clade N ,  which  is 
designated a~ “A minus ZV” in Table 1). The 0-step 
permutational analysis was then carried out nested 
within the  three categories B,  A - N ,  and ZV. As shown 
in Table 1, a significant  0-step  effect is detected and 
localized  within  1-step  clade VZZZ (the asterisk under 
the 17-19 transition in Figure 2). 
As can  be  seen by contrasting Table 1 with Figure 

2, both the permutational analysis and  the NANOVA 
detected and localized  identically three phenotypically 
important mutations. In addition, the NANOVA de- 
tected a significant effect at  the 0-step clade level 
associated  with  haplotype 23 that was not detected by 
the permutational analysis. This reduction in power 
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of the permutational analysis  with respect to  the NA- 
NOVA is not  surprising. The permutation test is a 
non-parametric  procedure, and as expected it is less 
powerful than  the  parametric  NANOVA.  Although 
some power is lost, the permutational  procedure  does 
have some important advantages. First, being  nonpar- 
ametric, it is more  robust to possible deviations from 
the underlying  normality assumed in the NANOVA. 
Even more  importantly, the permutational test can  be 
applied to complex samples for which the NANOVA 
is not applicable. As  we  will  now illustrate, the per- 
mutational analysis can be  applied in a similar manner 
to  a sample from  a  natural,  outbreeding  population. 

AN  ANALYSIS OF VARIATION  IN 
TRIGLYCERIDE AND CHOLESTEROL LEVELS IN 

A  HUMAN  POPULATION 

Our second example will utilize data collected by 
the St. Mary's Hospital Metabolic Unit group de- 
scribed in  KESSLING, HORSTHEMKE and HUMPHRIES 
(1  985). This  group consists  of 89 unrelated,  adult 
individuals of both sexes who were biased in favor of 
being normo- or hyperlipidemic. Southern blots of 
digested DNA from all individuals were hybridized 
with a cloned 2.2-kb genomic PstI fragment  contain- 
ing  the apoAZ gene, in the apo AZ-CZZZ-AZV gene  region 
on  chromosome 1 I (KESSLING, HORSTHEMKE and 
HUMPHRIES 1985). Figure 3 indicates the location of 
three polymorphic restriction sites detected  on hy- 
bridizing the  probe  to DNA digested with the enzymes 
XmnI, PstI, and SstI. All 89 individuals had this DNA 
region  scored with  all three of these  restriction  en- 
zymes. 

Our first task is to assign haplotypes to all the 
individuals. Complications arise because some individ- 
uals have restriction  fragment  length profiles that  are 
compatible with more  than  one  haplotype  configura- 
tion. Table 3 summarizes the haplotype information 
obtained  from the  Southern blots. As can be seen, in 
78 of the 89 individuals, there was only one haplotype 

cations of the polymorphic restriction sites. 
The resulting fragment sizes caused by the 
polymorphic and invariant sites are indicated 
below the chromosomal diagram. The loca- 
tions of the A-I and C-ZZZ genes are indicated 

l l k b ,  on the diagram. The A-ZV gene is located to 
the right of the C-ZIZ gene. 

configuration consistent with the observed  fragment 
lengths. The remaining 1 1  individuals had two alter- 
native possible haplotype configurations, and  their 
haplotype numbers were estimated by maximum like- 
lihood using an E-M algorithm on  the total data  set 
(HILL 1974). 

The next  step of the analysis is the construction of 
the cladogram. As can be seen from  Table 3, nonzero 
frequencies are assigned to 7 of the 8 possible haplo- 
types defined by the  three polymorphic restriction site 
makers. However, haplotypes I I I and 100 are not 
found in the unambiguous subset of the data. We feel 
it is best to confine the cladistic analysis to those 
haplotypes that  are known to exist. Hence,  the analysis 
will be confined to  the first 5 haplotypes shown in 
Table 3. 

Figure 4 shows the maximum parsimony cladogram 
constructed  for  these five haplotypes. As can be seen, 
three of the haplotypes can be derived by single mu- 
tational steps from  haplotype 010, the most common 
haplotype. Haplotype 001 (found only in one unam- 
biguous  heterozygote)  requires  either  a  recombina- 
tional event between haplotypes 01 I and 000 or a 
convergent  mutational step. 

Ignoring  for  the  moment  the possibility  of recom- 
bination, the position of haplotype 001 in the clado- 
gram shown in Figure 4 is still ambiguous,  as shown 
by the dashed lines which represent  alternative evo- 
lutionary pathways. As shown by TEMPLETON ( 1  983), 
convergence caused by a loss  of a  restriction site is 
much more likely than  convergence caused by a gain 
of a site. In particular,  for 6-base cutters like PstI and 
SstI (the two enzymes used to detect  the sites of 
possible convergence associated with haplotype 001 ), 
a  convergent loss  is about 18 times more likely than  a 
gain over  the relatively short  periods of evolutionary 
time  that are relevant  for intraspecific polymorphisms 
(TEMPLETON 1983). However, to use this knowledge 
to discriminate between the two alternatives shown in 
Figure 4, we also need  information  about the  root 
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TABLE 3 

Estimated  haplotype configurations in the St. Mary’s population 

No. of each haplotype (ha) 

No. of individuals Possible genotypes 010  01 I 000 110 00 1 111 IO0 

45 010/010 2 0 0 0 0 0 0 
7 010/011 1 1 0 0 0 0 0 

10 0 1 OlOOO 1 0 1 0 0 0 0 
12 010/110 1 0 0 1 0 0 0 

1 01 l/OOl 0 1 0 0 1 0 0 
2 000l000 0 0 2 0 0 0 0 
1 110/110 0 0 0 2 0 0 0 
3 010/001 or 01  1/000 0.67 0.33 0.33 0 0.67 0 0 

2 111/010or  110/011 0.23 0.77 0 0.77 0 0.23 0 
6 OlOllOO or 000/110 0.56 0 0.44 0.44 0 0 0.56 

Estimated haplotype fre- 0.70 0.06 0.10 0.10  0.02 0.00 0.02 
quencies: 

A “1” indicates the presence of a restriction site, and a “0” its absence. The  order of polymorphic sites is  always XmnI, PstI and SstI, 
corresponding to their physical order on the DNA molecule (Figure 3). 
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FIGURE 4.-Cladogram  of the ApoA-I, C-III, A - N  region haplo- 
types  known to exist in the St. Mary’s population. The cladogram 
portrays the mutational steps (arrows) needed to interrelate the 
haplotypes to  one  another.  The arrows are double-headed because 
the ancestral haplotype is not known. The dashed arrows leading 
from haplotype 01 1 and 000 towards haplotype 001 indicate that 
001 is either a recombinant of 011 and 000 or has been derived by 
an additional mutation from  either 01 I or 000. 

(ancestral haplotype) of the cladogram. Because  this 
information is lacking, no meaningful  discrimination 
can be made  between these alternatives. Moreover, it 
is not clear at this point exactly  how  common recom- 
bination is  in this region. Since we only  have three 
polymorphic  sites,  it is very  difficult to distinguish 
between recombination us. mutational convergence 
from the haplotype states. Since we cannot exclude 
the possibility  of recombination, and because  even if 
we assume there is no recombination, we still cannot 
resolve the position  of  haplotype 001 in the clado- 
gram, it is best to exclude haplotype 001 from the 
cladogram. This results in a very simple  cladogram in 
which haplotype 010 is related to all other haplotypes 
by a single mutational step. 

Using the nesting algorithm of TEMPLETON, BOER- 

WINKLE and SING (1987),  there is no nesting above 
the haplotype level  in  this  simplified cladogram. In 
other words,  when  haplotype 001 is excluded, the 
design  implied by the resulting cladogram  collapses 
into a single  level unnested design. Hence, we are 
using the human data primarily to illustrate that this 
technique can  be applied to natural, outbred popula- 
tions, whereas the Adh example illustrates the 
strengths of a nested, cladistic approach. Although 
simple, the cladogram shown by the solid arrows in 
Figure 4 still defines the relevant contrasts needed to 
localize  any phenotypic associations  in the human 
data; namely, the contrasts between haplotype 010 
(the central haplotype of the cladogram) versus  hap- 
lotypes 01  1,000 and 110. Hence, our statistical  design 
is determined by cladistic criteria even in this unnested 
case. 

We  now turn our attention to  the phenotypic meas- 
urements. The  89 individuals had their triglyceride, 
total cholesterol, and high  density lipoprotein (HDL) 
cholesterol levels determined in serum samples taken 
after  a 12-hr fast  using standard methods (KESSLING, 
HORSTHEMKE and HUMPHRIES 1985). However, there 
are reasons for believing that certain transformations 
of these original phenotypic measurements might 
have greater biological  meaning. These traits are 
measures of concentrations of certain lipid interme- 
diates along an interconnected metabolic  pathway. 
Genetic  variation in the apolipoproteins would  be 
expected to alter the dynamics of some or all  of  this 
pathway. As shown by SAVAGEAU (1 976), the natural 
space to describe the dynamics  of a metabolic  pathway 
is a logarithmic one. Accordingly, we took the natural 
logarithms of the triglyceride, total cholesterol, and 
HDL cholesterol levels (hereafter abbreviated as 
ln(T), ln(C), and ln(H)). 

Because age and sex differences are major deter- 
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TABLE 4 

Average excesses  for  each of the six traits' 

Trait 

Haplotype Trig. Chol. HDL  Ln(T)  Ln(C)  Ln(H) 

010 -0.410 -0.073 0.023 -0.055 -0.007 0.016 
011 1.603 -0.206 -0.067 0.449 -0.014 -0.024 
000 0.300 0.371 -0.014 -0.070 0.039 0.009 
110 0.527 0.093 -0.038 0.081 0.006 -0.045 
001 0.331 -0.419 0.032 0.052 -0.033 -0.003 

* Triglyceride level (Trig.), total cholesterol level (Chol.), HDL 
cholesterol level (HDL), the natural logarithm of triglyceride level 
(Ln(T)), the  natural logarithm of cholesterol level  (Ln(C)), and the 
natural logarithm of HDL cholesterol level  (Ln(H)). All traits have 
been adjusted for  age and sex. 

TABLE 5 

Frequencies  with  which  the  observed  contrasts  between  the 
average excess of haplotype 010 with  the  average excesses  of 

the  other  haplotypes  exceeded in magnitude  the  random 
contrasts  generated  by 1000 permutations of the  phenotype 

labels  with  respect  to  the  haplotype  numbers for all six traits 

Traits 
Contrast of 

0 1 0 ~ s . :  Trig. Chol. HDL  Ln(T) Ln(C) Ln(H) 

011 0.128 0.814 0.465 0.034* 0.935 0.698 
000 0.604 0.374 0.717 0.943 0.471 0.938 
110 0.465 0.751 0.584 0.475 0.835 0.488 
001 0.753 0.725 0.979 0.835 0.856 0.917 

Asterisk indicates contrast that is significant at  the 5% level. 

minants of  lipid  levels  in humans, we adjusted each 
trait for age and age-squared separately for males and 
females and  then removed the mean difference be- 
tween  sexes before performing the genetic analysis 
(BOERWINKLE et al. 1987). Table 4 gives the average 
excesses for the haplotypes and phenotypes  as  esti- 
mated from Equation 1. Next, the significance  of the 
contrasts between the average excess  of haplotype 010 
us. those of the  other haplotypes is determined by 
generating 1000 random permutations of the data. 
Table 5 gives the significance  levels of the contrasts 
as determined by computer simulation. 

As can  be  seen from Table 5, a significant pheno- 
typic contrast is detected for the phenotype of 
ln(trig1yceride) and it is localized to the transition 
between  haplotypes 010 and 011 (which is associated 
with the SstI site). If the phenotypically important 
mutation is the same  as the SstI site mutation, this 
phenotypic  association should be a clean one. How- 
ever, if the two mutations are not identical,  it is 
possible for either the haplotype 010 or the haplotype 
01 1 category to be  phenotypically heterogeneous; that 
is, some  of the chromosomes  in the haplotype 010 (or 
01 1 )  category  could bear the phenotypically impor- 
tant mutation, and others not. Consequently, the next 
stage of the analysis  is to look for heterogeneity with 
respect to ln(T) in the haplotype 010 and 01 1 classes. 

Unfortunately, the St. Mary's data set is inadequate 
to detect heterogeneity within the haplotype 011 cat- 
egory.  Only 11 individuals  unambiguously  have  this 
haplotype, and 10 of them are 010/01 1 heterozygotes. 
Phenotypic heterogeneity within  this  genotypic  class 
could  be due to either heterogeneity in the 010 or 
011 haplotype categories, thereby making  it  impossi- 
ble to conclude that any detected heterogeneity would 
be  caused by heterogeneity within  haplotype 011. 
Fortunately, there are 45 individuals that are 010/ 
010 homozygotes. Hence, we have a reasonable, albeit 
small,  sample  size for detecting heterogeneity within 
the haplotype 010 class. 

Figure 5 gives the histogram  of the  ln(T) pheno- 
types  of the 010/010 homozygotes. The figure also 
gives the maximum  likelihood partitioning of the dis- 
tribution into two heterogeneous phenotypic  classes 
as estimated by the  procedure of ENGLEMAN and 
HARTIGAN (1969). However,  this partitioning is not 
significant at  the 5% level,  using the tables  given in 
ENGLEMAN  and  HARTIGAN (1969). Hence, we fail to 
reject the null  hypothesis that haplotype 010 has the 
same  phenotypic  effects in  all  individuals  homozygous 
for that haplotype. 

DISCUSSION 

TEMPLETON, BOERWINKLE and SING (1987) have 
discussed the merits and limitations of the cladistic 
analysis  of phenotypic  associations  with restriction site 
polymorphisms. Hence, this presentation will be  lim- 
ited to  the features of the analytical method that are 
novel to applications to data collected from outbred 
populations. 

We  have  shown  how the quantitative genetic con- 
cept of average excess  can  be generalized to a nested 
average excess  measure. We then use this nested 
average excess measure and associated  statistics to 
extend the nested  cladistic  analysis  of TEMPLETON, 
BOERWINKLE and SING (1  987) to populations that  are 
not genetically manipulated to consist  solely  of  homo- 
zygotes.  Consequently,  this  type  of  analysis  can  be 
applied to  outbred as  well  as experimental popula- 
tions. The Adh example supports the statistical  valid- 
ity  of the permutational null distribution by yielding 
virtually  identical  statistical inferences in a case for 
which both NANOVA and permutation testing is 
possible. The validity  of our analysis  of the St. Mary's 
data is also supported by other  reports of an associa- 
tion  between the SstI site and  the categorical pheno- 
type of hypertriglyceridaemia (REES et al. 1983, 
1985). 

The fact that we could detect an  association  be- 
tween the SstI site and elevated triglyceride levels  in 
such a small  sample illustrates another  strength of our 
approach-enhanced  statistical  power  when dealing 
with outbred populations. One motivation for devel- 
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FIGURE 5.-Histogram of the loga- 
rithm of triglyceride levels (adjusted for 
age and sex) in the 010/010 homozy- 
gotes of the St. Mary’s group. A line 
indicates the maximum likelihood parti- 
tion of this population into two clusters, 
as determined by the procedure of EN- 
GLEMAN and HARTIGAN ( 1  969). 
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TABLE 6 effects than the traditional analysis  which contrasts 

treatment effects However, it should be noted that the enhanced 
power  of a haplotype  analysis  should  exist  only  when 

Analyses of variances of the lipid traits using genotypes as the genotypic 

Sum of  Degreesof Mean 
Source squares freedom square F-statistic Significance 

the phenotypic values  of the genotypic  classes are close 
to their additive values. Interaction effects  (such  as 

Trig. 
Treatment 341.89 9 37.99  1.38  0.21 
Error 2174.3 79  27.52 
Total 25 16.1 88 

Treatment 24.56  9  2.72  0.62  0.78 
Error 347.15  79  4.39 
Total 371.61  88 

Treatment 1.72  9  0.19  1.09  0.38 
Error 13.28 76 0.17 
Total 15.00  85 

Treatment 9.15 9 1.02  1.49  0.17 
Error 53.86  79  0.68 
Total 63.01  88 

Treatment 0.31  9  0.03  0.45 0.90 
Error 6.02  79  0.07 
Total 6.33  88 

Treatment 1.27 9  0.14  1.17  0.33 
Error 9.20 76 0.12 
Total 10.47  85 

Chol. 

HDL 

W T )  

W C )  

L W )  

Trait abbreviations are as given in Table 4.  All traits have been 
adjusted for age and  sex. 

oping the permutational analysis  was the belief that 
genetic effects on phenotypic variability  can  be more 
efficiently detected by looking directly at haplotype 
effects  as  opposed to genotype effects  whenever there 
are several  haplotypes. This enhanced statistical 
power  can  be illustrated by performing standard anal- 
yses  of variances on the St. Mary’s patient group  for 
the six phenotypic measures. The 10 genotypic  cate- 
gories given  in Table 3 will be the  treatment effects. 
Table 6 gives the results of these ANOVAs. In con- 
trast to the results  given in Table 5 ,  no significant 
effects  of  genotypic  variability are detectable for any 
of the traits. Hence, the haplotype analysis  of  this 
population was more sensitive  in detecting genetic 

recessiveness for  rare haplotypes,  epistasis, etc.) can 
reduce the predictability  of a genotype’s phenotypic 
value from its component haplotypes. Hence, our 
procedure is primarily  limited to  the analysis  of a 
single DNA region with little internal recombination 
in  which the genetic variance  of the phenotypes of 
interest is  mostly additive. 

In summary, we have presented a strategy for per- 
forming a cladistic  analysis  of  associations  between 
haplotypes and phenotypic variation  in  samples from 
both genetically  homozygous and  outbred popula- 
tions. The use  of the average excess measure and 
permutational testing when there is heterozygosity 
greatly broadens the range of  applications  of  this 
methodology. The worked  examples presented in  this 
paper illustrate that permutational testing may  be  less 
powerful than  a standard nested  analysis  of  variance 
when dealing with  genetically  homozygous  popula- 
tions, but it is more powerful than a standard analysis 
of  variance  using  genotypes  as treatments when  deal- 
ing  with an outbred population that is polymorphic 
for several  haplotypes that are primarily additive in 
their phenotypic effects. Therefore, coupling permu- 
tation testing with a cladistic  design  can  be a valuable 
tool in searching for associations  between quantitative 
phenotypic variations and polymorphic restriction site 
markers in  samples from natural populations. 
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