Table 3.
Effects of artificial intelligence for the application of food allergy.
| Year | Author | Specific Artificial Intelligence |
Reference | Diagnose/prediction/treatment/management | efficiency |
|---|---|---|---|---|---|
| 2013 | Dimitrov, et al | KNN | 57 | Prediction | SE: 94%; SP: 94%; F1-Score: 94% |
| 2019 | Metwally, et al | Long Short-Term Memory (LSTM) networks | 56 | Prediction | AUROC: 0.69; MCC: 0.40 |
| 2023 | Xin-Xin Yu, et al | Quantitative structure-activity Relationship (QSAR) models |
105 | Prediction | RMSE: 0.2375 |
| 2024 | Landau, et al | Random Forest Regression | 58 | Prediction | AUROC: 0.8 |
| 2019 | Alag, et al | A Java-based machine learning toolkit | 106 | Diagnose | cg06410630 and cg06669701 are higher for food-allergic patients. |
| 2021 | Kuniyoshi, et al | LR; SVM; XGBoost | 60 | Diagnose; prediction | LR: AUROC (82%); SE (70%); SP (73%); AC (72%) SVM: AUROC (83%); SE (68%); SP (74%); AC (72%) XGB: AUROC (63%); SE (51%); SP (66%); AC (59%) |
| 2023 | Lucy, et al | NLP | 62 | Diagnose | AUROC: LR (0.84); Passive-aggressive (83.0%) |
| 2022 | Pradana-López, et al | CNN | 65 | Treatment; management |
AC: 99.1% |
| 2024 | Liu, et al | Artificial Intelligence | 66 | Treatment | Screen out three potential therapeutic targets: IL-5, PTAFR and RNF19B. |