Skip to main content
. 2025 Apr 9;22(9):2088–2102. doi: 10.7150/ijms.105422

Table 3.

Effects of artificial intelligence for the application of food allergy.

Year Author Specific Artificial
Intelligence
Reference Diagnose/prediction/treatment/management efficiency
2013 Dimitrov, et al KNN 57 Prediction SE: 94%; SP: 94%; F1-Score: 94%
2019 Metwally, et al Long Short-Term Memory (LSTM) networks 56 Prediction AUROC: 0.69; MCC: 0.40
2023 Xin-Xin Yu, et al Quantitative structure-activity
Relationship (QSAR) models
105 Prediction RMSE: 0.2375
2024 Landau, et al Random Forest Regression 58 Prediction AUROC: 0.8
2019 Alag, et al A Java-based machine learning toolkit 106 Diagnose cg06410630 and cg06669701 are higher for food-allergic patients.
2021 Kuniyoshi, et al LR; SVM; XGBoost 60 Diagnose; prediction LR: AUROC (82%); SE (70%); SP (73%); AC (72%)
SVM: AUROC (83%); SE (68%); SP (74%); AC (72%)
XGB: AUROC (63%); SE (51%); SP (66%); AC (59%)
2023 Lucy, et al NLP 62 Diagnose AUROC: LR (0.84); Passive-aggressive (83.0%)
2022 Pradana-López, et al CNN 65 Treatment;
management
AC: 99.1%
2024 Liu, et al Artificial Intelligence 66 Treatment Screen out three potential therapeutic targets: IL-5, PTAFR and RNF19B.