Skip to main content
Genetics logoLink to Genetics
. 1989 Nov;123(3):431–440. doi: 10.1093/genetics/123.3.431

Genetic Analysis of Bacteriophage P22 Lysozyme Structure

D Rennell 1, A R Poteete 1
PMCID: PMC1203815  PMID: 2599364

Abstract

The suppression patterns of 11 phage P22 mutants bearing different amber mutations in the gene encoding lysozyme (19) were determined on six different amber suppressor strains. Of the 60 resulting single amino acid substitutions, 18 resulted in defects in lysozyme activity at 30°; an additional seven were defective at 40°. Revertants were isolated on the ``missuppressing'' hosts following UV mutagenesis; they were screened to distinguish primary- from second-site revertants. It was found that second-site revertants were recovered with greater efficiency if the UV-irradiated phage stocks were passaged through an intermediate host in liquid culture rather than plated directly on the nonpermissive host. Eleven second-site revertants (isolated as suppressors of five deleterious substitutions) were sequenced: four were intragenic, five extragenic; three of the extragenic revertants were found to have alterations near and upstream from gene 19, in gene 13. Lysozyme genes from the intragenic revertant phages were introduced into unmutagenized P22, and found to confer the revertant plating phenotype.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berget P. B., Poteete A. R., Sauer R. T. Control of phage P22 tail protein expression by transcription termination. J Mol Biol. 1983 Mar 15;164(4):561–572. doi: 10.1016/0022-2836(83)90050-5. [DOI] [PubMed] [Google Scholar]
  2. Botstein D., Chan R. K., Waddell C. H. Genetics of bacteriophage P22. II. Gene order and gene function. Virology. 1972 Jul;49(1):268–282. doi: 10.1016/s0042-6822(72)80028-x. [DOI] [PubMed] [Google Scholar]
  3. Brent R., Ptashne M. Mechanism of action of the lexA gene product. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4204–4208. doi: 10.1073/pnas.78.7.4204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Casjens S., Eppler K., Parr R., Poteete A. R. Nucleotide sequence of the bacteriophage P22 gene 19 to 3 region: identification of a new gene required for lysis. Virology. 1989 Aug;171(2):588–598. doi: 10.1016/0042-6822(89)90628-4. [DOI] [PubMed] [Google Scholar]
  5. Hansen J. N. Use of solubilizable acrylamide disulfide gels for isolation of DNA fragments suitable for sequence analysis. Anal Biochem. 1981 Sep 1;116(1):146–151. doi: 10.1016/0003-2697(81)90337-7. [DOI] [PubMed] [Google Scholar]
  6. Rao G. R., Burma D. P. Purification and properties of phage P22-induced lysozyme. J Biol Chem. 1971 Nov;246(21):6474–6479. [PubMed] [Google Scholar]
  7. Reidhaar-Olson J. F., Sauer R. T. Combinatorial cassette mutagenesis as a probe of the informational content of protein sequences. Science. 1988 Jul 1;241(4861):53–57. doi: 10.1126/science.3388019. [DOI] [PubMed] [Google Scholar]
  8. Rennell D., Poteete A. R. Phage P22 lysis genes: nucleotide sequences and functional relationships with T4 and lambda genes. Virology. 1985 May;143(1):280–289. doi: 10.1016/0042-6822(85)90115-1. [DOI] [PubMed] [Google Scholar]
  9. SMITH H. O., LEVINE M. TWO SEQUENTIAL REPRESSIONS OF DNA SYNTHESIS IN THE ESTABLISHMENT OF LYSOGENY BY PHAGE P22 AND ITS MUTANTS. Proc Natl Acad Sci U S A. 1964 Aug;52:356–363. doi: 10.1073/pnas.52.2.356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Shortle D., Lin B. Genetic analysis of staphylococcal nuclease: identification of three intragenic "global" suppressors of nuclease-minus mutations. Genetics. 1985 Aug;110(4):539–555. doi: 10.1093/genetics/110.4.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Tinoco I., Jr, Borer P. N., Dengler B., Levin M. D., Uhlenbeck O. C., Crothers D. M., Bralla J. Improved estimation of secondary structure in ribonucleic acids. Nat New Biol. 1973 Nov 14;246(150):40–41. doi: 10.1038/newbio246040a0. [DOI] [PubMed] [Google Scholar]
  12. Weaver L. H., Rennell D., Poteete A. R., Mathews B. W. Structure of phage P22 gene 19 lysozyme inferred from its homology with phage T4 lysozyme. Implications for lysozyme evolution. J Mol Biol. 1985 Aug 20;184(4):739–741. doi: 10.1016/0022-2836(85)90318-3. [DOI] [PubMed] [Google Scholar]
  13. Weinstock G. M., Susskind M. M., Botstein D. Regional specificity of illegitimate recombination by the translocatable ampicillin-resistance element Tn1 in the genome of phage P22. Genetics. 1979 Jul;92(3):685–710. doi: 10.1093/genetics/92.3.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Winston F., Botstein D., Miller J. H. Characterization of amber and ochre suppressors in Salmonella typhimurium. J Bacteriol. 1979 Jan;137(1):433–439. doi: 10.1128/jb.137.1.433-439.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Youderian P., Bouvier S., Susskind M. M. Sequence determinants of promoter activity. Cell. 1982 Oct;30(3):843–853. doi: 10.1016/0092-8674(82)90289-6. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES