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ABSTRACT

The MAL61 gene of Saccharomyces cerevisiae encodes maltose permease, a protein required for the
transport of maltose across the plasma membrane. Here we report the nucleotide sequence of the
cloned MAL61 gene. A single 1842 bp open reading frame is present within this region encoding the
614 residue putative MAL61 protein. Hydropathy analysis suggests that the secondary structure
consists of two blocks of six transmembrane domains separated by an approximately 71 residue
intracellular region. The N-terminal and C-terminal domains of 100 and 67 residues in length,
respectively, also appear to be intracellular. Significant sequence and structural homology is seen
between the MAL61 protein and the Saccharomyces high-affinity glucose transporter encoded by the
SNF3 gene, the Kluyveromyces lactis lactose permease encoded by the LACI2 gene, the human HepG2
glucose transporter and the Escherichia coli xylose and arabinose transporters encoded by the xy/E and
araE genes, indicating that all are members of a family of sugar transporters and are related either
functionally or evolutionarily. A mechanism for glucose-induced inactivation of maltose transport

activity is discussed.

ALTOSE fermentation in the Saccharomyces
yeasts is initiated by the transport of the disac-
charide across the plasma membrane. This transport
is carried out by maltose permease and the process is
the rate limiting step in fermentation. An understand-
ing of the mechanisms controlling maltose transport
is therefore fundamental to an understanding of the
factors regulating maltose fermentation.

The Saccharomyces maltose uptake system is an
inducible active transport system (HARRIS and
THOMPSON 1961; OkADA and HALVORSON 1964; DE
KrooN and KONINGSBERGER 1970; SERRANO 1977).
SERRANO (1977) reports that this transport is inde-
pendent of intracellular ATP levels but is coupled to
the electrochemical gradient of protons. That is, malt-
ose transport occurs via a proton symport system. As
has been seen in the glucose and galactose transport
systems of Saccharomyces, the maltose transport sys-
tem exists in both a high and a low affinity form
(BissoN and FRAENKEL 1983a,b, 1984; RaAMOS,
SzkuTNICKA and CIRILLO 1989; BUSTURIA and La-
GUNAS 1985). The basis of the difference between the
two forms of these sugar transporters is not under-
stood.

Saccharomyces strains able to ferment maltose carry
any one of five MAL loci: MAL1, MAL2, MAL3, MAL4,
and MAL6 (reviewed by BARNETT 1976). The first
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indication that the gene encoding maltose permease
mapped to any of the MAL loci came from the iden-
tification of a MALI-linked temperature-sensitive
maltose transport mutation (GOLDENTHAL, COHEN
and MARMUR 1983). All of the MAL loci have been
cloned and structurally and functionally compared
(FEDEROFF et al. 1982; NEEDLEMAN and MICHELS
1983; CHARRON, DUBIN and MICHELS 1986; CHAR-
RON and MICHELs 1987; CHARRON et al. 1989). The
MAL loci are all highly sequence-homologous, exhib-
iting only a few restriction site polymorphisms. Each
locus is a complex locus containing three genes re-
quired for maltose fermentation: GENEs 1, 2, and 3
(NEEDLEMAN ¢t al. 1984). We have established a two
digit numbering system in order to distinguish the
GENE 1, 2 or 3 functions mapping to the different
MAL loci. The first digit indicates the locus position
and the second the GENE function (NEEDLEMAN et al.
1984; CHARRON and MIcHELS 1987, 1988). Thus, the
MALG61 gene is the GENE 1 function mapping to the
MALG6 locus.

Transcription of GENEs 1 and 2 is induced by
maltose and repressed by glucose (NEEDLEMAN et al.
1984). That GENE 2 encodes maltase is inferred from
the identification of an allele of the MAL 12 gene (that
is, GENE 2 of the MALI locus) that encodes a tem-
perature-sensitive maltase (DUBIN et al. 1985). GENE
1 encodes maltose permease. This conclusion is based
on several lines of evidence reported by Y. S. CHANG,
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R. A. DuBIN, E. PERKINS, C. A. MICHELS and R. B.
NEEDLEMAN (unpublished results). Point mutations in
the MAL61 gene as well as a deletion/disruption of
the MAL61 gene completely abolish maltose transport
activity. Transformation of these mutant strains with
high copy plasmids carrying the MAL61 gene leads to
up to a tenfold increase in maltose permease activity
as compared to the single-copy parental strain. Most
significantly, the integration of a fragment carrying
the yeast URA3 gene into the coding region of MAL61
near the N-terminal end results in a low level consti-
tutive transcription of MAL61 and in a low level
constitutive synthesis of maltose permease. GENE 3
encodes the MAL activator and the product of this
gene is a cysteine-zinc finger protein (CHANG et al.
1988; KiMm and MicHELS 1988; SOLLITI and MARMUR
1988).

This report presents the sequence of the MAL61
gene. Analysis of the deduced amino acid sequence of
the proposed MALG61 protein indicates that it is an
integral membrane protein. Additionally, MALG61
protein shows significant homology to several other
sugar transport proteins from yeast and other species.
This homology is seen both on the level of the primary
sequence and on the level of secondary structure.

MATERIALS AND METHODS

Sequencing: Figure 1 shows a restriction endonuclease
map of the MAL6! gene. Sequencing was done according
to the method of SANGER, NICKLEN and CouULSON (1977).
The region was divided into three fragments: the PstI-EcoR1
fragment containing the MAL61 upstream sequences and
the 5’-end of the gene; the 1.7-kb EcoRI-Sall fragment
containing sequences internal to the MAL61I gene; and the
Sall-HindII1 fragment containing the 3’-end of the gene.
Each of these was then sequenced by a combination of
methods. Nested deletions within the MAL6I-insert frag-
ments were constructed with the fragment cloned into the
M13 sequencing vector mpl8 using exonuclease III and
these were sequenced using the universal primer (MESSING
1983; HENIKOFF 1984). Gaps were filled by using oligonu-
cleotide primers identical to known sequences. Nested dele-
tions were also constructed using Bal31 to degrade the
MAL6!I-insert fragment cloned in the plasmid vector
pBR325. For sequencing, these deletions were subcloned
into the M13 sequencing vectors. Sequencing of the second
strand was carried out using the 3.6-kb Bg/II-HindIII frag-
ment containing the entire MAL61 gene cloned into the
M13 vector mpl9. This was sequenced with a series of
oligonucleotide primers complementary to known MAL61
sequence.

Computer analysis: Sequence data were analyzed using
the programs of IntelliGenetics, Inc. of Palo Alto, Califor-
nia. Alignment of the MAL61 protein sequence with several
other transport protein sequences was carried out using the
GENALIGN program. GENALIGN is a copyrighted soft-
ware product of IntelliGenetics, Inc.; the program was de-
veloped by HuGO MARTINEZ of the University of California
at San Francisco. The hydropathy plots shown in Figure 4
comparing MAL61 and SNF3 proteins are the gift of JoHN
CELENZA, LINDA MARSHALL-CARLSON and MARIAN CARL-
SoN of the Department of Genetics and Development, Co-

lumbia University College of Physicians and Surgeons, New
York; the profiles were made using the algorithm developed
by KYTE and DOOLITTLE (1982) and utilized the values of
EISENBERG (1984) with a 21-residue window.

RESULTS

Sequence of the MAL61 gene and the proposed
secondary structure of the deduced protein: Figure
2 presents the sequence of the DNA fragment con-
taining the MAL61 gene starting at the Scal site shown
in Figure 1 and extending to the right for 2000
basepairs. A single large open reading frame is ob-
served with the AUG codon of the N-terminal methi-
onine located 105 base pairs from the Scal site. No
other large open reading frames are observed in any
of the five other reading frames. The orientation of
this single 1842 basepair open reading frame is con-
sistent with the size of the maltose inducible transcript
of the MAL61 gene (2.0 kbp) and with the direction
of transcription of the MAL61 gene as reported in
NEEDLEMAN et al. (1984). Construction of a MAL61-
lacz fusion at the EcoRlI site near the N-terminal end
of the coding region supports the conclusion that the
AUG codon indicated as the translation initiation can
function as such in Saccharomyces (J. LEVINE, L.
TANOUYE and C. A. MICHELS, unpublished results). A
consensus “TATA” sequence is located at position
—89 to —94. The sequence of the open reading frame
predicts a 67,174 dalton protein of 614 amino acid
residues.

Figure 2 also depicts the positions of twelve postu-
lated hydrophobic transmembrane domains. Each of
the twelve postulated 21-residue transmembrane do-
mains has an average hydrophobicity value of greater
than 0.42. As in the SNF3 protein, no signal sequence
is seen at the N-terminal end of the MAL61 protein
and the first predicted transmembrane domain begins
at residue 100, suggesting that the N-terminal 100
amino acid residues lie on the cytoplasmic face of the
plasma membrane. The overall secondary structure
of the MALG61 protein thus appears to consist of two
blocks of six transmembrane domains separated by an
approximately 71 residue intracellular region. Both
the 100 N-terminal residues and the 67 C-terminal
residues are predicted to lie on the cytoplasmic face
of the plasma membrane. Although two potential N-
linked glycosylation sites are found at Asn-15 and
Asn-27, these may not be modified since they lie
within the proposed cytoplasmic N-terminal region.
This remains to be determined since it has been shown
that tunicamycin inhibits the synthesis of the maltose
transport system in Saccharomyces (LAGUNAS, DEJUAN
and BENITO 1986). Work is now in progress in our
laboratory to test the predicted membrane topology
of the maltose permease.

Homology of MALG61 protein to other sugar trans-
porters: Comparison of the deduced sequence of the



Sequence of Maltose Permease

[ MAL61 ]
Pv
H2 Ps
Bg Sc R N H2 NA S pv R H3
| | | Ll 11 A4 | 1
T T T 1 L] T T

| 1

kb

479

FIGURE 1.—Restriction endonuclease map of the MAL61 gene of S. cerevisiae. The restriction endonuclease map of the 3.6-kb DNA
fragment containing the MAL61 gene and its flanking sequence is shown. The abbreviations used are: A, Aval; Bg, Bglll; H2, Hindll; H3,
HindIII; N, Ncol; Ps, Pstl; Pv, Pvull; R, EcoRI; Sc, Scal.
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the hydropathy parameters of EISENBERG (1984).

MALSG1 protein to that of the SNF3 protein reveals
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an approximate 24% sequence homology (Figure 3).

The SNF3 gene encodes the high affinity glucose
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FIGURE 2.—Nucleotide sequence of the MAL61 gene and predicted amino acid sequence of the gene product. The nucleotide sequence
of the MAL61 gene is given starting at the upstream Scal site. Nucleotide numbers are on the left with the first base of the initiation codon
as nucleotide +1. The amino acid residue numbers are shown to the right. Asterisks indicate the termination codons. Putative 21 residue
membrane-spanning regions are boxed and shaded. The location of these is based on the algorithm of KyTE and DooLITTLE (1982) using
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transporter of Saccharomyces or a component of this
transport system (CELENZA, MARSHALL-CARLSON and
CARLSON 1988). More impressive than the sequence
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quences are seen in both hydrophobic membrane

spanning domains as well as in hydrophilic regions.

The proposed secondary structure of these sugar
transporters is also remarkably similar and this is
illustrated in Figure 3. Comparison of the MAL61
protein to the E. coli lactose permease and to the yeast
plasma membrane ATPase (encoded by the PMAI
gene) reveals little
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Equivalent sequence and structural homology is
seen to other sugar transport proteins from other

FIGURE 3.—Sequence and structural homology among MAL61 protein and other sugar transporters. Amino acid sequences of the MAL61
species. Figure 3 aligns the amino acid sequence of

protein, the high affinity glucose transporter of Saccharomyces encoded by SNF3 gene (CELENZA, MARSHALL-CARLSON and CARLSON 1988),
the lactose permease of K. lactis encoded by the LAC12 gene (CHANG and DicksoN 1988), human HepG2 glucose transporter (MUECKLER et
al. 1985) and the Escherichia coli xylose and arabinose transporter (MAIDEN et al. 1987) are shown using standard single-letter amino acid

ficantly smaller in the MAL61 protein.

symbols. The proteins are aligned so as to maximize identity to the MAL61 protein sequence. Gaps (indicated by dashes) are introduced to
ni

optimize the alignment. Identities with the MAL61 protein are boxed. Shaded regions indicate the putative transmembrane regions in the
MALG61, SNF3 (CELENZA, MARSHALL-CARLSON and CARLSON 1988), human HepG2 (MUECKLER et al. 1985), and AraE (MAIDEN et al. 1987)

protein sequences. Amino acids are numbered on the left.
into two blocks of six each. The spatial distribution of

homology is the structural homology between these
these domains is so simi

two proteins. Figure 4 depicts the hydropathy plots of

both MAL61 and SNF3 proteins. One clearly sees the
the MALG61 protein with those of the SNF3 protein,

the human HepG2 glucose transporter
myces lactis lactose permease encoded by the LACI2

gene, and the Escherichia coli xylose and arabinose

the MALG61 protein, like the SNF3 protein, contains
transporters (MUECKLER et al. 1985; MAIDEN et al.

hydrophilic N-terminal domain of similar size. While
an hydrophilic C-termina

twelve proposed transmembrane domains organized
perfectly superimposable. Both proteins contain an
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FIGURE 4.—Hydrophobicity profile of the predicted MAL61 protein and SNF3 proteins. The profiles were determined as described in

MATERIALS AND METHODS and in Figure 2.

1984). Genetic evidence indicates that MAL61 is re-
quired for maltose transport in MAL6 strains (Y. S.
CHANG, R. A. DuBIN, E. PERkINS, C. A. MICHELS and
R. B. NEEDLEMAN, unpublished results). Our results
clearly demonstrate that the MAL61 protein is ho-
mologous both in sequence and in secondary structure
to other sugar transporters, particularly the Saccha-
romyces high affinity glucose transporter encoded by
the SNF3 gene. While the results presented here do
not demonstrate that the MAL61 protein is a plasma
membrane protein, they support this conclusion. The
primary sequence of the MALG61 protein exhibits
twelve highly hydrophobic regions approximately 21-

residues in length and such structure is consistent with
that of an integral membrane protein (KYTE and
DooLITTLE 1982; EISENBERG 1984). In another study
(to be reported elsewhere), analysis of a series of
MALG6 1-phoA fusions selected in E. coli by transposition
of a Tn5-derivative carrying a truncated copy of the
E. coli phoA gene into a plasmid carrying the MAL61
gene also supports the localization of the MALG61
protein to the plasma membrane (MANOIL, BoYD and
BECKwWITH 1988; C. A. MICHELS and L. SEECCOOMER,
unpublished results). E. coli strains carrying these fu-
sion plasmids express alkaline phosphatase activity in
whole cells and preliminary mapping localizes the
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fusion junction sites to the region of the second group
of six transmembrane domains.

The homology demonstrated here among the Sac-
charomyces maltose permease, the Saccharomyces
high affinity glucose transporter, the human HepG2
glucose transporter, the K. lactis lactose permease and
the E. coli xylose and arabinose transporters is re-
markable. These proteins appear to be members of a
family of related sugar transporters, even though their
mechanisms of transport differ. Some are active trans-
porters utilizing proton symport and others function
by facilitated diffusion. The Saccharomyces galactose
transporter, which transports by facilitated diffusion,
also is reported to be a member of this family of sugar
transporters (SZKUTNICKA ¢t al. 1989). An evolution-
ary relationship is strongly implied among all of these
proteins. However, homology resulting from a com-
mon ancestry is difficult to distinguish from conver-
gent evolution. Sequence convergence could result
from the fact that all are sugar transporters with
similar functional constraints placed upon their struc-
tures.

Transmembrane domains 1, 2, 4, 5, 7, 8 and 11 of
MALG61 protein contain several polar and negatively
charged residues (serine, threonine, asparagine, glu-
tamine, aspartate and glutamate). Particularly note-
worthy is domain 1, which contains seven polar resi-
dues (4 threonine, 2 serine, 1 glutamine) and two
charged residues (1 aspartate, 1 glutamate) and has
an average hydrophobicity value that just exceeds the
0.42 minimum proposed by EISENBERG (1984).
Graphic analysis of the membrane-spanning domains
indicates that the polar and charged residues con-
tained in these domains would largely be localized to
the same face of the proposed alpha-helical structure
in the case of domains 2, 4, 5, 8 and 11. MUECKLER et
al. (1985) suggest that the hydroxyl and amide side
chains in an amphipathic a-helix could line a trans-
membrane channel and function in the transport of
the sugar. A similar structural organization may exist
in the maltose permease. Additionally, since the trans-
port of maltose in Saccharomyces is a proton symport
system, it is possible that the charged residues located
in the transmembrane domains of the MAL61 protein
function in proton transport in a fashion similar to
that seen in the lactose permease of E. coli (HERZLIN-
GER, CARRASCO and KABACK 1985; CARRASCO et al.
1986; SERRANO 1977).

The addition of glucose to maltose-induced fer-
menting cultures not only leads to the cessation of
synthesis of maltose permease but also leads to the
loss of any existing maltose permease activity by an as
yet undefined process referred to as glucose-induced
inactivation (GOrTs 1969; BUSTURIA and LAGUNAS
1985). Glucose-induced inactivation also affects the
activity of several other enzymes in Saccharomyces

(reviewed in HOLZER 1984; JONES 1984; ACHSTETTER
and WoLF 1985). These include enzymes of the glu-
coneogenic pathway (fructose-1,6-bisphosphatase, cy-
toplasmic malate dehydrogenase and phosphoenolpy-
ruvate carboxykinase), aminopeptidase I, uridine nu-
cleosidase, the high affinity glucose transporter (SNF3
protein) and galactose permease (WITT, KRONAU and
HoLYER 1966; FERGUSON, BoLL and HOLYER 1967;
GANCEDO 1971; HAARASILTA and Oura 1975; Ma-
TERN and HOLZER 1977; MAGNI et al. 1977; FREY and
RouM 1979; BissoN and FRAENKEL 1984; RaMoOS,
SzxkUTNICKA and CIRILLO 1988). Maltose uptake is
almost completely inactivated within 90 minutes fol-
lowing the addition of glucose to the culture medium
(GorTs 1969; BusTURIA and LAGuNas 1985). The
most recent results indicate that this deadaptation
inactivates both the high and low affinity uptake sys-
tems but earlier studies report that only the high
affinity transport is affected. Glucose specifically ini-
tiates the inactivation since the transfer of a maltose
fermenting culture to a noninducing medium contain-
ing ethanol does not lead to the rapid loss of maltose
transport activity. Recovery from glucose inhibition
requires that the cells be returned to inducing medium
and recovery does not occur if de novo protein synthe-
sis is inhibited. These results imply that glucose-in-
duced inactivation irreversibly destroys the maltose
transport protein.

The mechanism of this irreversible inactivation is
unknown. Studies on aminopeptidase I and the glu-
coneogenic enzymes fructose-1,6-bisphosphatase, cy-
toplasmic malate dehydrogenase and phosphoenolpy-
ruvate carboxykinase from Saccharomyces indicate
that the glucose-induced inactivation of these enzyme
activities is paralleled by a decrease in the amount of
cross-reacting material suggesting that inactivation re-
sults from their selective proteolysis (NEEFF et al.
1978; FREY and RoHM 1979; FUuNA-vAMA, GAN-
CEDO and GANCEDO 1980; MULLER, MULLER and
HoLzer 1981; TORTORA et al. 1981). While maltose
permease is an integral membrane protein and these
enzymes are cytosolic proteins, it is nevertheless
tempting to propose that the irreversible inactivation
of maltose permease is the result of proteolytic deg-
radation. In a survey of several proteins from different
eukaryotic organisms, RECHSTEINER and coworkers
have found a correlation between short half-life and
the presence of sequences rich in proline, glutamate,
serine and threonine (so-called PEST-regions) which
they propose target proteins for proteolysis (ROGERS,
WELL and RECHSTEINER 1986; RECHSTEINER 1987;
RECHSTEINER, ROGERS and ROTE 1987). A search of
the MAL61 and SNF3 proteins reveals potential
PEST sequences located in the N-terminal cytoplasmic
regions. These are found at residues 49-78 of MAL61
protein (score of 0.64) and at residues 1-13 (score of
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7.85) and 63-91 (score of 1.66) of SNF3 protein.
ROGERS, WELL and RECHSTEINER (1986) also suggest
that a protein containing a region with a low positive
PEST score could be subject to degradation only
under certain physiological conditions, such as when
that region was phosphorylated, thereby increasing
the negative charge of the region. In such cases, the
degradation of a protein could be regulated, as is seen
in glucose-induced inactivation of the gluconeogenic
enzymes. It is worth noting that the N-terminal pep-
tide of Saccharomyces fructose-1,6-bisphosphatase
contains a PEST-region (score of 1.7). Whether or
not PEST regions are relevant in the Saccharomyces
system remains to be determined, but the possibility
that a common mechanism exists for the glucose-
induced inactivation of all of these proteins even
though they are located in different cellular compart-
ments and lack any obvious sequence similarities is an
interesting one to pursue.
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