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ABSTRACT 
A method for estimating  the  average  level of  gene flow among populations is introduced. The 

method provides an estimate of Nm, where N is the  size of each local  population  in  an  island model 
and m is the  migration rate. This method depends on knowing the phylogeny of the nonrecombining 
segments of  DNA that  are  sampled.  Given  the phylogeny, the geographic location from  which each 
sample  is  drawn  is  treated  as  multistate  character  with one state for each  geographic location. A 
parsimony  criterion  applied to the evolution of this  character on the phylogeny  provides the minimum 
number of migration events consistent  with  the phylogeny. Extensive  simulations  show  that  the 
distribution of this  minimum  number  is a simple function of Nm. Assuming the phylogeny is accurately 
estimated, this method provides an estimate of Nm that  is  as  nearly  as  accurate  as  estimates obtained 
using. FST and other statistics  when Nm is moderate. Two examples of the use of this method with 
mitoihondrial DNA data  are presented. 

T HE extent of gene flow determines the  extent to 
which different populations of a species are 

independent evolutionary units. There  are a variety 
of indirect methods for estimating the average amount 
of gene flow from allozyme data (SLATKIN 1985). 
Methods  based on Wright’s FST and on private alleles 
provide robust estimates  of Nm in a demic model, 
where N is the average deme size and m is the average 
migration rate, or Wright’s neighborhood size  in a 
continuum model (SLATKIN and BARTON 1989). How- 
ever, these methods are not well suited for the analysis 
of DNA sequence data because  they do not make  full 
use  of information in the data and because  they re- 
quire frequencies at several independent loci  in order 
to provide reasonably accurate estimates.  We will 
describe a new method that does use  some  of the 
additional information provided by DNA sequences. 
This method does not require complete sequences but 
does assume there is sufficient  variation  in restriction 
sites that an accurate phylogeny can be inferred for 
the segments of DNA sampled. We agree with AVISE 
et al. (1 987) that  the phylogenetic  analysis  of genetic 
diversity  has the potential to  offer considerable insight 
into processes governing population differentiation. 

BACKGROUND 

Data: Throughout, we will be concerned with the 
ancestry of a sample  of nonrecombining segments of 
DNA from different individuals. Our method is de- 
signed to analyze data from studies of  within-species 
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variation  in mitochondrial and chloroplast DNA such 
as those reviewed by AVISE et al. (1987). We do not 
yet  know whether our method will be  applicable to 
samples  of recombining portions of nuclear DNA. For 
convenience, we  will refer to a segment of nonrecom- 
bining DNA, such  as the mitochondrial genome, as a 
gene, and assume that only one gene is sampled from 
each individual.  If different segments  of DNA were 
sampled from each  individual, then our method would 
be applied separately to each. 

We will assume that genes  sampled  have  been ex- 
amined for differences in DNA sequence either by 
direct sequencing or by using a battery of restriction 
enzymes.  Given the differences in sequence, it is pos- 
sible to reconstruct the phylogeny  of the genes  sam- 
pled by using one of the methods available. FELSEN- 
STEIN (1 988) discusses  several alternative methods. It 
is likely that each gene would be found to be unique 
if enough of each sequence could be examined. In 
practice, however, genes  sampled from different in- 
dividuals  sometimes appear  to have the same  haplo- 
type. As we will discuss later,  that does not pose a 
problem for our method but for now it will be more 
convenient to assume that each gene is unique and 
that  a phylogeny  can  be reconstructed from the dif- 
ferences in sequence. 

Coalescent  processes: For selectively equivalent 
genes, KINCMAN (1982a, b) and  others have  shown 
that it is sufficient to consider only the direct ancestors 
of genes in a sample. This is known  as the “coalescent” 
or “genealogical” approach in population genetics 
(TAVAR~ 1984). In following the ancestry of a sample 
of genes, either each gene in the sample is descended 
from a different gene in the previous generation, or 
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two or more  genes are descended  from one  gene in 
the previous generation. In  the second case, we  will 
follow the convention and say that  a “coalescent event” 
or “coalescence” has occurred.  In  the  ancestry of a 
sample of genes, there will be a  sequence of coalescent 
events until only one  gene remains. Genes that  are 
not  direct  ancestors of those in the sample do  not 
need  to  be  considered. Only the total  population size 
and  breeding system will affect the probabilities of 
coalescent events in each  generation. The sequence 
of coalescent events will result in a  treelike structure 
describing the ancestry of the genes sampled, making 
it natural  to use phylogenetic methods. 

Parsimony: The starting  point  for our analysis is a 
sample of genes drawn  from two or more  geographic 
locations. We will assume that a phylogeny of the 
genes has been  inferred using differences in DNA 
sequence and  not using any geographic  information. 
We will assume that  the samples are  drawn  from 
distinct geographic  areas, with more  than  one individ- 
ual sampled from  each area,  and will denote  the 
sampling location by 1, 2, . . . , r. We will illustrate 
our method  for r = 2. As shown in Figure 1,  the 
sampling location can be  regarded as an r state  char- 
acter  that is associated with each gene sampled. We 
treat this character as a multistate unordered charac- 
ter  on a tree  and use a parsimony criterion  to  deter- 
mine the minimum number of transitions, i e . ,  migra- 
tion  events, consistent with the  tree. 

The algorithm  for the case  with r = 2 is illustrated 
in Figure 1. We  assign to each terminal  node the set 
{ 1 ) if the corresponding  gene is from location 1,  and 
{ 2)  if from location 2. The procedure is then to move 
down the  tree toward the  root recursively, assigning 
sets of states to  internal nodes. The possible state sets 
of internal  nodes are { 11, { 2) and { 1, 2).  At each  step 
in the  recursion, the  rule  for  joining two sets is a 
straightforward majority-rules voting procedure. If 
possible, the ancestor’s state set is made of states that 
occur in both  state sets joined. For  example,  a { 1) 
joining  a { 1, 2) implies a  state  set of { 1 ) for  that node. 
If a { 1) joins  a (21, the state  set of the  node is { 1, 2). 
The state sets so assigned to  the nodes do  not neces- 
sarily indicate the parsimony reconstruction of ances- 
tral  state. Additional calculations are  needed  to  read- 
just these state sets to achieve a final parsimony recon- 
struction  (FARRIS  1970). Nonetheless, this algorithm 
does allow us to  determine  the minimum number of 
state changes, as noted by  FITCH (1  97 1). Among the 
six  possible joinings that can occur with r = 2, only 
one of them,  a { 1 )joining a { 2 ) requires  that we assume 
that  a  state  change, ie., a  migration  event, has oc- 
curred. By summing  these  joinings we will obtain the 
minimum number of migration  events, which we will 
denote by s, consistent with the  data. 

This algorithm  can  be easily generalized to  more 

FIGURE 1 .- An illustration of how the algorithm of FITCH ( 1  97 1 )  
is used to compute s from a phylogeny of nine genes. Four genes 
are assumed to be sampled from location 1 and five genes from 
location 2. The numbers in braces indicate the inferred state of the 
nodes as the calculation is being performed. Two numbers in braces 
indicate that the state of the  node is  initially ambiguous. That 
ambiguity may be resolved by the states of earlier nodes. In  this 
example both ambiguous nodes would be assigned to state 2 under 
the parsimony assumption. For our purposes, however,  the resolu- 
tion of ambiguous states is unneeded because the value of s is not 
affected. 

than two sampling locations. With three locations, 1, 
2 and 3, there  are seven kinds of  state sets that can  be 
assigned (11, (21, {3) ,  (1, 21, (1, 31, (2, 3),and (1, 2, 3) .  
With r states, there  are 2‘ - 1 possible state sets for 
each node, namely all the nonempty subsets of { 1, 2, 
. . . , r ) .  The rules for assigning state sets to nodes are 
the  natural generalizations of the rules used for r = 
2. The ancestor’s state set is made  up of any states 
that occur in both  state sets joined; if no states are 
present in both  then  a  migration  event must have 
occurred  and  the ancestor’s  state set is made  up of all 
the states in both  state sets. This algorithm  can be 
rephrased in terms of set operations: when two genes 
join,  the state  set of the ancestor is assigned to be the 
intersection of the state sets of the two genes unless 
that intersection is empty, in  which case there is as- 
sumed to  be a  migration  event (ie., s is increased by 
1) and  the state  set of the ancestor is assigned to be 
the union of the two state sets. 

This algorithm assumes in effect that every deme is 
equally accessible from every other  deme, which is 
equivalent to assuming an island model of migration. 
It is possible to consider other models of migration 
that assume that some migration  events are more 
difficult than  others.  For  example,  a  linear  array of 
three populations would require  the assumption that 
migration directly between the  end populations would 
count as two migration  events instead of one. There 
is a  generalization of the algorithm in Figure 1 for a 
general  matrix of transitions, but we will not  consider 
that problem  here. 

Our method is then very simple. The phylogeny of 
genes  combined with the geographic locations indi- 
cates the minimum number of migration  events, s, in 
the history of those  genes necessary for  their  current 
geographic  distribution to be consistent with their 
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phylogeny. The problem is to use s to estimate Nm or 
some other combination of parameters  describing the 
amount of gene flow affecting the species from which 
the samples were taken. Our overall approach is sim- 
ilar to  one proposed by HUDSON and KAPLAN (1  985) 
for using the minimum number of recombination 
events to estimate the  product of population size and 
recombination  rate. 

Simulation  program: To determine  the distribu- 
tion of s, the minimum number of migration  events, 
under  different assumptions about  gene flow and pop- 
ulation structure, we developed  a  Monte  Carlo simu- 
lation program. We assumed that  the genes sampled 
were selectively neutral, which allowed us to use the 
coalescent approach  described  above. TAKAHATA 
(1 988),  SLATKIN  (1  989), and TAKAHATA and SLATKIN 
(1 989) have already used this approach  for  examining 
the consequences of gene flow on samples of genes. 

Our simulation program assumed a collection of d 
populations each of size N .  We assumed that nj genes 
were sampled from  deme i (i = 1. . r ,  r I d).  In each 
generation,  there were two steps, migration and  the 
production of gametes. We assume that  the immigra- 
tion rate, m,  is the same in each population, so the 
probability that  a  gene is an immigrant is m and  the 
probability that it is not is 1 - m. If there  are ni genes 
in deme i whose ancestry we are concerned with and 
migration is assumed to  occur at  the gamete  stage, the 
probability that j of them are immigrants is given by 
a binomial distribution with parameters m and n,: 

P r ( j  immigrants) = ( y )mj (1  - mp-j  (1) 

If m is sufficiently small, Pr(j  =0) % 1 - nim, Pr(j  = 
1) = njm and  Pr(j > 1 )  = 0((nim)‘), where O(.) indicates 
the  order of magnitude of the terms.  When  a migra- 
tion  event  occurred we assumed that  the  immigrant 
had  a probability of l/(d - 1) of coming  from each 
other  deme. 

At the  reproduction  stage, we modeled  a haploid 
population of N adults and assumed that  gametes were 
sampled with replacement to  form  the  next  genera- 
tion. We assumed that N >> n, the  number of genes, 
at all times, in  which  case the probability that n genes 
are descended  from n different  parents (ix., there was 
no coalescent event) is approximately  1 - n(n - 1)/ 
(2N) ,  and  the probability that they are descended 
from n - 1 parents (i.e., there was a coalescent event) 
is approximately n(n  - 1)/(2N) (KINGMAN 1982a). 
When N >> n ,  the probability of two or more coal- 
escent events is of order (n/N)’. TAKAHATA (1988) 
calls this approximation for the coalescent process the 
“diffusion limit.” 

In each  replicate simulations, we specified the pa- 
rameters  of  the population: N ,  the population size of 
each  deme; m, the  immigration rate  for each deme; 

and d,  the  number of demes. We assumed that ni 
genes were sampled from  deme i (i = 1 . .r) and 
labeled each  gene with the  deme  from which it was 
sampled. Then we simulated the history of the sample 
of genes as affected by migration and coalecent events 
for t generations in the past. After t generations, we 
assumed that  the d demes were descended  from  a 
single panmictic deme. The size of the ancestral deme 
does  not  matter because we are not  concerned with 
the times of occurrence of coalescent events, only with 
which genes coalesced. We continued to simulate the 
sequence of coalescent events in the panmictic popu- 
lation until only one  gene was left. 

During each replicate, we counted  the  number of 
coalescent events between genes whose identities in- 
dicated  that they were sampled from  different  popu- 
lations. That is, we used the  algorithm described in 
the previous section to compute s, the minimum  num- 
ber of migration  events necessary to make the ancestry 
of the genes sampled consistent with their  current 
geographic  distribution. Each replicate simulation 
yielded a single value of s, and a set of replicates 
provided  an  estimate of p(s) ,  the distribution of s for 
a given parameter values and sample sizes. We will be 
particularly  concerned with the mean and variance of 
s. Throughout, we will denote  the average of s in a 
set of replicate simulations by S, and  the average 
squared deviation from S by a:. The quantities S and 
2: are estimators of the mean and variance of p(s ) .  

We used two slightly different  simulation  programs. 
In the first, we allowed for  the possibility of  more 
than  one migration  event per  generation, which let us 
assume relatively large values of m. In  the second 
program, we assumed that m was sufficiently small 
that  no  more  than  one  gene  per  generation could be 
an  immigrant. The first program was quite slow but 
we used it to  demonstrate  that  the simulation results 
for high migration  rates were indistinguishable from 
exact analytic results for samples of the same size from 
a single panmictic population. The results from  the 
two programs were in complete  agreement when the 
same parameter values were used. The results  de- 
scribed below were all obtained using the second 
program. 

Two demes in a population  at  equilibrium (d  = 2, 
r = 2): We found  that  the  distribution of s, p ( s )  
depends only on  the  product Nm as  long as N is much 
larger  than  the  number of genes sampled. Figure 2 
shows some results  for  a  population with only two 
demes which have been separated  for  long  enough 
that  the results do not  depend  on t ,  the time of 
separation. For Nm > 1 ,  p ( s )  is approximately  normal 
and  the variance is approximately  constant,  as shown 
in Figure 3, so S and ii? are useful descriptors of p(s) .  
Figure 4 shows a  graph  of S us. Nm. 

We can use these  results to estimate Nm from s 
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FIGURE 2.-Comparison of p ( s )  for  different values  of Nm. In all 
cases, 16 alleles were sampled from each of  two demes ( r  = 2) and 
only  two demes of size N = 10,000 were assumed to be in the 
population (d  = 2). The curves are based on 1000 replicate simu- 
lations each and  the population were assumed to have separated t/ 
N = 50 generations in the past. 
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FIGURE 3.-The variance of s, i? as a function of  Nm. The 

parameter values for the simulations were the same as  in Figure 2 
(Le . ,  r = 2, d = 2 and N = 10,000). 

computed  for  a  particular sample of genes. The curve 
in Figure 4 appropriate  for  the sample sizes provides 
an estimate of Nm and indicates the  degree of confi- 
dence in the  resulting  estimate.  For this method to be 
useful we will have to  determine how the resulting 
estimate of Nm depends on the  number of demes in 
the population and  the sample sizes. 

More than two demes in  population (d > 2, r = 
2): If the  numbers of genes sampled are fixed, it is 
relatively easy to guess the results when there  are 
more  than two demes in the  population. With only 
two demes,  an  emigrant  from  one  deme has to go to 
the  other  deme,  after which it is as liable to coalesce 
in that  deme as any of the genes that  were  not immi- 
grants. If there  are  more  than two demes,  an  emigrant 
from one  deme has a probability l / (d  - 1) of arriving 
in the  other  deme  from which samples are taken and 
a probability of ( d  - 2)/(d - 1) of arriving in one of 

l2 1 
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0 10 20 30 40 

Nm 
FIGURE 4.-The average of s, S, as a function of  Nm. The 

parameter values for  the simulations were the same as in Figure 2 
( i e . ,  r = 2, d = 2 and N = 10,000). 
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FIGURE 5 . ” s  plotted against Nm for d = 2 and S plotted against 

Nm/2 for d = 10. Otherwise, the parameter values are the same  as 
in Figures 2-4 ( r  = 2 and N = 10,000). 

the demes  from which were no samples. In  the  latter 
case, the  emigrant will either have to migrate again 
to  one of the two demes sampled before it coalesces 
or coalesce in one of the d - 2 other demes. In  the 
island model, the  gene we are focusing on is equally 
likely to  return  to  the  deme it started  from or  to  the 
other  deme sampled. Similarly, if the coalescence oc- 
curs in another  deme,  the  other  emigrant is equally 
likely to have come  from  either of the demes sampled. 
Hence,  emigration to  the  other  deme sampled will be 
equivalent to emigration in the two deme case but 
emigration to  another  deme will be only half as effec- 
tive as emigration in the two deme case. Therefore, 
with d demes,  a  migration rate of m would be equiv- 
alent to a  migration rate of m/(d - 1 )  + m(d - 2)/[2(d 
- l)]  or md/[2(d - l)] between the two sampled 
demes. Figure 5 confirms this intuitive argument by 
showing that s plotted against Nm for d = 2 is nearly 
identical to s plotted against Nm/2 for d = 10. Hence 
if the island model is an  appropriate description of 
the population structure  and if d is assumed to be 
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FIGURE 6.- a, S plotted  against n1, the  number of alleles  sampled from  one of two  demes,  given  that n2 = 16. In all cases, N = 10,000 and 
1,000 replicates  were  run. b, G: plotted  against n1 from  the  same  simulations  as  in  part  a. c, Gs/i plotted  against nl. 

reasonably large (d  3 5r) ,  then  the  estimate of Nm 
obtained with our method will not  depend signifi- 
cantly on d. 

In applications, there  are probably many more 
demes in a  population  than are sampled, so the  de- 
pendence  on d is unimportant. We will assume that d 
is enough  larger  than r that its value can be  ignored. 
In general, results for simulations with d > 5r are 
indistinguishable from  those  for d = 5r.  

Dependence on sample  sizes (r = 2): If sample sizes 
in both  demes are increased by the same multiple, 
both S and G? increase as linear  functions of sample 
size. Hence  the coefficient of variation of p ( s )  de- 
creases with the  square  root of sample size, as intuition 
would suggest. 

If different  numbers of genes are sampled from two 
different  populations, then  the results depend most 
strongly on  the smaller of the two sample sizes. Some 
typical results are shown in Figure  6a. Even though 
the  number of genes sampled from  one of the loca- 
tions increases by a  factor of 5 ,  S increases by only 
about 20%. Figure 6b shows that  the variance exhibits 
the same weak dependence  on sample size and Figure 
6c shows that S/Gs is apparently  independent of the 
larger sample size. Therefore, when samples are taken 
from only two locations, the accuracy of the estimate 
of Nm depends primarily on  the smaller of the two 
sample sizes. 

More than two populations  sampled (d  I r > 2): 
When more  than two populations are sampled, the 
analysis and  the  interpretation are  more complicated 
but  the  results are relatively simple. Although  finding 
the minimum number of migration  events  can  be done 
by hand  for an  arbitrary  number of locations sampled, 
it is probably easier to use a  computer  program when 
more  than two states are  present. The program 
MacClade (written and  distributed by W. P. MADDI- 
SON and D. R. MADDISON) has a  subroutine  that  carries 
out this calculation. 

If there  are equal sample sizes from each location, 
then S increases approximately linearly with r ,  the 

number of locations sampled, as shown in Figure 7. 
We can understand why this is so by first  considering 
the case  with three demes  sampled. If we focus on  the 
samples from location 1 and  group  the samples from 
location 2 and 3  into  a single sample, 2', then we can 
predict the resulting value of S using the two-popula- 
tion results given above.  For  example, if 16 genes are 
sampled from each of three locations, we would use 
the  data  on which Figure 6a is based to predict S for 
the  (1, 2') grouping  to  be 4.022 if Nm = 1.0. Let this 
value of S be  denoted as S*. The fact that  the 2' genes 
are a  mixture of the genes  from locations 2 and 3 
makes no difference if  we are concerned with the 
number of coalescent events  between genes from lo- 
cation  1 and genes  from the  other locations. We can 
then  consider the coalescent events between genes 
from locations 2 and 3 and  ignore  the fact that  other 
coalescent events are occurring with genes  from lo- 
cation 1. This would give us a second value of S, which 
we will denote by S**.  If 16 genes are sampled from 
each of two demes,  then S** = 3.581. The value of S 
is not exactly S* + S** because there  are some trees 
for which this partitioning of the tips leads to  an 
incorrect final value of s. 

By extrapolation, we can see why S is approximately 
a  linear  function of r. T o  predict S(r) as a  function of 
r ,  first consider one location separately and write S(r) 
= S* 4- S** ,  as in the case  with r = 3, where S* is the 
value for r = 2, with n genes sampled from  one  and 
( r  - 1)n genes from  the  other.  Then we note  that S** 

J(r - 1) and recall that in the previous section S is 
almost independent of the  larger of the two sample 
sizes when samples are taken  from only two locations 
(4 Figure 6). Hence S* is nearly independent of r 
which implies S(r) is nearly linear in r ,  as we have 
found. 

When  different  numbers of genes are drawn  from 
more  than two locations, we can use the same line of 
argument  to predict 5.  The results are more compli- 
cated  but similar in character  to  the  previous results. 
I f  the sample sizes are almost equal, the results are 
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FIGURE 7.”s  plotted against r,  the number of demes sampled, 

with n,, the number of alleles sampled from  each  deme held fixed. 
In all cases, ni = 16 ( i  = 1, . . . , r ) ,  N = 10,000, d = 20, Nm = 5.0 
and t /N = 50.0. 

expected  to  be nearly the same as in the case with 
equal sample sizes.  If the sample sizes are  quite differ- 
ent, then  the  greatest  contribution  to  the overall value 
of S will come from  the  largest sample sizes, although 
the smaller sample sizes will affect the variance. 

Populations  not  at an equilibrium: So far we have 
assumed that  the samples have been  drawn  from  a 
collection of populations that have been  separated  for 
long  enough  that  an  equilibrium has been achieved 
between gene flow and genetic  drift. In  that case, 
common ancestry of genes in different  populations is 
due  to past migration. If populations have been de- 
rived from  an ancestral  population in the  recent past, 
then common ancestry may not reflect  ongoing  gene 
flow but instead the historical association of the pop- 
ulations sampled. 

To consider the effects of historical association, we 
considered the  extreme case  in  which a single pan- 
mictic population gives rise to several independent 
populations at a  time t in the past. The size of the 
original population  does  not  matter because, before t ,  
genes coalesce independently of the locations from 
which they were sampled. The size of that population 
would not affect the topology of the resulting phylo- 
geny, only the  branch  lengths, which we are  not 
considering  here.  For simplicity, we will assume that 
the sizes  of the derived  populations are all the same, 
N.  We found  that p ( s )  and hence S depends  on only 
the  ratio t /N.  Figure 8 shows some of our results. 

There is  in effect an equivalence between the diver- 
gence time, t /N in this model, and Nm in the equilib- 
rium model with gene flow. Figure 9 illustrates this 
equivalence. These results indicate  that in principle, 
there is no way for our method  to distinguish between 
phylogenies that result from  gene flow and  from 
historical association. Whether  other methods such as 
those that use branch  lengths in additional to topology 
can do so is not yet known. 

t / N  
FIGURE 8 ,”s  us. t/N for the radiation model as described in the 

test. In all cases, N = 10,000, 16 alleles were sampled from each of 
two  demes ( r  = 2) and  the alleles were in a single panmictic deme 
until t /N in the past, after which there was no migration among the 
demes. In the radiation model, the number of  demes  after the 
cessation of migration is unimportant. 

.o 1 . 1  1 10 
t / N  

FIGURE  9.-The value of Nm in a population at equilibrium that 
yields the same value of s as  in the simulations of the radiation 
model.  The values plotted were obtained by using the values of j 
from the simulations shown in Figure 8 and using those values to 
estimate Nm for the same sample sizes. 

ESTIMATING Nm FROM s 

The above  results suggest that  an estimate of Nm 
can be  obtained if s, the minimum  number of migra- 
tion  events,  can  be  computed  from  a phylogeny of 
genes sampled. Such an estimate of Nm depends on a 
number of assumptions, the most important of  which 
are  that  the genes sampled are selectively equivalent 
and  that  the underlying  population structure is well 
approximated by an island model. Obtaining  a  good 
estimate of Nm using our method is not easy because 
we have not  been  able  to  obtain  an analytic expression 
for S as a  function of N m  and  the sample sizes. Instead, 
an estimate has to be based on  our simulation results. 

We have  written  a  program to estimate Nm for 
arbitrary sample sizes and we will describe it below, 
but useful approximate estimates can easily be ob- 
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TABLE 1 

Values of S and i. obtained  from simulations described in text 

n 

8 16 32 

Nm S 0; 5 2, 5 2, 

0.1 1.17 0.39 1.24 0.48 1.32 0.53 
0.5 2.00 0.79 2.45 0.99 3.00 1.14 
1.0 2.74 0.96 3.56 1.18 4.53 1.44 
2.0 3.47 1.06 5.02 1.35 6.72 1.66 
3.0 3.82 1.05 5.86 1.43 8.45 1.86 
5.0 4.39 1.07 7.03 1.47 10.63 1.91 
7.0 4.58 1.06 7.82 1.58 12.18 2.11 

10.0 4.95 1.05 8.40 1.53 13.71 1.95 
20.0 5.18 1.10 9.42 1.51 16.61 2.18 
40.0 5.43 1.03 10.12 1.47 18.56 2.18 

In each case, n alleles were drawn from each of two demes in an 
island  model containing a total of ten demes. In each case, N = 
10,000, t = 50N, and 1000 replicates were run. 

tained.  For samples from only two locations, a rough 
estimate of Nm can be  obtained by interpolation  from 
our simulation results. Table 1  presents  some  relevant 
values. Because S is so weakly dependent  on  the  larger 
of the two sample sizes, little information is lost by 
equalizing the sample sizes and ignoring some of the 
genes in the  larger of the two samples. T o  illustrate 
the use of Table  1, assume that  28 genes  were sampled 
from  one location and  35  from  the  other. The first 
step would be to reconstruct  the phylogeny of  all 63 
genes and  then remove 7 genes  randomly  from the 
larger sample. (Note  that it is possible to  get  a some- 
what different result if 7 genes are removed  first and 
then  the phylogeny is reconstructed. We feel it is 
preferable  to  reconstruct  the phylogeny using all avail- 
able  information, and  then  to remove  genes,  although 
little or  no difference would be  expected  from  the 
two procedures.) Then  the value of s is computed  for 
the phylogeny. If the  method of phylogeny recon- 
struction yields several equivalent phylogenies, s 
should  be  computed  for  each. Then  the estimate of 
Nm can be  obtained  from  Table  1 by interpolation. 
For  example, if s = 7, then  the estimate of Nm is 
approximately 3.9. 

For samples from  more  than two locations, the first 
step would be to equalize the sizes of the largest 
samples, possibly by discarding some small samples. 
For  example with sample sizes of 23, 34,  25, 6, 29, 
the phylogeny of all the genes would first be  inferred. 
Then  the  data could  be  reduced to  four samples of 
size 23 with the sample of  size 6  ignored. An equiva- 
lent value of s for two sampling locations is obtained 
by multiplying this value of s by 2/r, in this case 1/2. 
The resulting value is then used with the values in 
Table 1 to  obtain an estimate of Nm. For  example, if 
the value of s from  the samples from  four locations is 
19,  then  a  rough  estimate of Nm is 8.7. 

The procedure based on  the values in Table 1 is 

only approximate  and usually requires  that small sam- 
ple sizes be  discarded. More accurate estimates of N m  
using all samples can be  obtained by carrying out a 
series of simulations tailored to  the particular sample 
sizes. We have  written  a  program that will carry  out 
the necessary simulations and  produce  an estimate of 
Nm given s and  the sample sizes. The program assumes 
that d,  the  number of demes in the island model, is 
5r, the  number of locations sampled. This  program 
runs  on a Unix system and we will distribute it upon 
request.  It is very time  consuming to  run for each 
value of s, so we do not  recommend its use unless free 
computational facilities are available. This  program is 
written in  Pascal and should  be  adaptable to  other 
computer systems with some minor  changes. 

Confidence  limits  on  estimates of Nm: Because our 
simulation results estimate p ( s )  we can use this distri- 
bution  infer  confidence limits on  the estimate of Nm. 
For Nm > 1 and roughly  equal sample sizes, the 
distribution is nearly normal so Gs usually adequate. 
Given the sample sizes and s, Nm is first estimated 
using Table 1. Table 1 also provides values of gs for 
samples of equal size from two populations. Then Nm 
can be  estimated  for the observed value of s plus or 
minus 2Gs (if 95% confidence limits are desired). In 
our simulation program,  95% confidence limits are 
determined using the simulated  distributions of s, 
rather  than assuming normality. 

For  example, assume that  16  genes  are sampled 
from each of two locations and  that s = 7. The 
resulting  estimate of Nm is approximately 5 and  the 
value of gS is 1.47  for this value of N m  and these 
sample sizes. The estimates of Nm for s = 4.06 (= 7 - 
2Gs)  is 1.3 and  for s = 9.94 (= 7 + 22J the estimate is 
34.9. Therefore  the confidence  interval for  the esti- 
mate of Nm is (1.3,  34.9).  It is not symmetric about 
the estimate of Nm because Nm is a  nonlinear  function 
of s. 

One question is,  if the total  number of genes sam- 
pled that  can  be  examined  fixed, how many geo- 
graphic locations should be sampled? To consider  a 
specific example, assume that  the total number of 
genes that can  be  examined is 32. If 16 genes are 
sampled from each of two locations then  the confi- 
dence  interval  obtained using the complete  distribu- 
tion is (0.3, 8.0) when the estimate of N m  is 2.0 (s = 
5).  If 8 individuals are sampled  from  each of 4 loca- 
tions and s = l l ,  the estimate of Nm is 2. l and  the 
confidence  interval is (0.7,  6.8), and if 4 individuals 
are sampled from each of 8 locations and s = 18,  then 
the estimate of N m  is 2.2 and  the confidence  interval 
is (0.8, 13.0). These results suggest that  there is a 
slight preference  to sampling more individuals from 
fewer locations but  the effect is not  strong  enough  to 
warrant  distorting  a sampling scheme that is devised 
primarily for  other purposes. 
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We can compare  confidence intervals obtained 
using this method with confidence intervals for indi- 
rect  methods  applied to allozyme data. Slatkin and 
Barton  (1989) used F s T  and  other indirect  methods 
on simulated data.  They  considered samples from  10 
polymorphic loci  in 25 individuals from  10  demes, 
which represents typical published data sets. If G S T  = 
0.136,  the  resulting  estimate of Nm is 1.59  and  the 
95% confidence  interval is (0.48, 2.70) (assuming a 
normal  distribution of the estimates) (Slatkin and Bar- 
ton,  Table 1). If instead GST = 0.022,  the  estimate of 
Nm is 1  1 .O and  the  95% confidence  interval is (1  1 .O, 
12.9). T o  compare  these  confidence limits with those 
in the present  method, assume 32 genes are  drawn 
from each of 2 demes. Using our simulation program 
for s = 5,  the estimate of Nm is 1.2  and  the 95% 
confidence interval is (0.3,  2.8) and if s = 14,  the 
estimate of Nm is 10.7  and  the  confidence  interval is 
(4.2, 48.3). 

For lower levels  of gene flow the confidence inter- 
vals are nearly the same using the two methods even 
though with our method, we assumed that only two 
locations were sampled,  but for higher levels of gene 
flow the confidence  interval  for the  present  method 
is substantially larger.  Larger  numbers of locations 
sampled would reduce  the  confidence  interval some- 
what. If 16 genes are sampled from each of 10 demes 
and s = 45,  then our similation program indicates that 
the estimate of Nm is 1.6 and  the  95% confidence 
interval is (1.1, 2.0). 

For  higher levels of gene flow, the confidence in- 
terval using this method is still larger  than  that ob- 
tained using FST,  even with 10 demes sampled. For 
example, if 16 genes are sampled from each of 10 
demes and s = 93,  then our simulation program 
indicates that  the  estimate of Nm is 12.1  and  the  95% 
confidence interval is (7.8,  21.1). Surprisingly, the 
confidence interval is not  much smaller than  that  for 
a  comparable case with only two locations sampled. 
The reason that  the size  of the confidence  interval 
increases with Nm is that  the  graph of S us. Nm flattens 
out  for  larger values of Nm so slight changes in S leads 
to large  changes in the estimate of Nm. 

EXAMPLES 

We illustrate our method by applying it to  data on 
two species  of freshwater fish, Lepomis punctatus and 
Lepomis gulosus, studied by BERMINGHAM and AVISE 
(1986). These two species are  found in streams  along 
the Atlantic and Gulf of Mexico coasts of the south- 
eastern  United States. BERMINGHAM and AVISE used 
14  to  17 endonucleases to assay the mtDNAs  from 
each of the individual collected from several different 
rivers in their  range. They constructed phylogenies 
of the mtDNAs for each of the species using both 

9 10 11 12 13 14 15 16 17 

FIGURE 10.-Part of the cladogram of mtDNAs from the western 
samples of L. punctatus studied by BERMINCHAM and AVISE (1 986, 
Figure 5). The numbers at the tips are the  clone numbers and  the 
letters indicate the river drainages in which each clone was found. 
Our notation follows that of BERMINGHAM and AVISE (1986). The 
solid circles indicate where migration events were counted. 

parsimony and phenetic  methods. In  both species and 
in two others they studied,  they  found  that  the phy- 
logenies of the genes (clones) were partly concordant 
with the locations of the samples. In particular  they 
found  that samples taken  from  South  Carolina,  Geor- 
gia and most of Florida  form one clade and samples 
from  the western panhandle of Florida west to Loui- 
siana to form  a second clade. They concluded that 
there was no gene flow between  those two regions 
and, because approximately the same  boundary was 
found in all four species they  studied,  that  this  bound- 
ary  represents  a former biogeographic  barrier to these 
species. SLATKIN (1989) used these  data to place an 
upper  bound on  the  extent of gene flow between the 
two regions. For  one of the  other species examined, 
Amia  calva,  Nm < 0.2 with 95% confidence. Similar 
values were found  for  the  other  three species includ- 
ing the two discussed here. 

We can use BERMINGHAM and AVISE’S (1986)  data 
to estimate the  amount of gene flow among  different 
river drainages within each  region. We considered the 
western samples only and combined samples from 
different locations in the same  drainage. The sample 
sizes for L.  punctatus were  9 ( j ) ,  9 (k), 7 ( 1 )  and 5 ( n ) ,  
where the letters in parentheses  indicate  Bermingham 
and Avise’s code for each river drainage. Both the 
phenogram  constructed using a  distance  method and 
a  cladogram  constructed using Wagner parsimony 
indicated that s = 5 (BERMINGHAM and AVISE, 1986, 
Figure 5). 

Figure 10 shows  how we calculated s from  their 
cladogram. One  feature of the calculation is worth 
noting because it commonly occurs in such data. Given 
the resolving power of their  method, BERMINGHAM 
and AVISE (1985) distinguished 17 distinct mtDNA 
“clones.” Whether those clones could be further sub- 
divided using more  restriction enzymes or complete 
DNA sequences is currently  unknown. As shown in 
Figure 10, two of these clones, 9 and  13, were  present 
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in  two  of the drainages. We count one migration event 
for each  of  these  clones at the tips of the  tree, as 
indicated. We are treating  the same  clone found in 
two different locations  as  being different but forming 
a monophyletic group. According to our method of 
computing s, one migration event must  have occurred 
after  the two  clones diverged. With  this assumption, 
it does not matter how different in sequence members 
of the same  clone  actually are as long as  they are still 
each other’s closest  relative. 

With  these  sample  sizes and s = 5, our simulation 
program estimated Nm to be 0.2. Using our simulation 
program we found that  the upper confidence limit is 
0.7 and the lower  limit is 0. The lower  limit cannot 
be taken literally  because if Nm were  actually 0, then 
p ( s )  would  be a spike at s = 1. We  used 1000 replicates 
and  the program took approximately 2 hr on a Sun 
3/75 workstation. Larger values  of s would  imply 
higher values  of Nm and would run much more slowly. 
If  this low value  of Nm represents the historical  asso- 
ciation of the populations in the different drainages 
rather than ongoing gene flow, then Figure 9 indicates 
that t /N  = 1. 

In L. gulosus, the results are similar. The sample 
sizes for the western  samples are 6 ( j ) ,  6 (k), 12 ( I ) ,  4 
( m )  and  2 (n). Both the phenogram and  the cladogram 
(BERMINGHAM and AVISE, 1986, their Figure 11) in- 
dicate that s = 6. This also  leads to an estimate of Nm 
of 0.2 and an upper confidence limit  of 0.8 and  a 
lower  limit  of 0. The similarity  of these estimates  with 
those for L. punctutus could indicate a similar  history 
of the two  species but  that conclusion  would  assume 
that  the effective population sizes  in each of the drain- 
ages  were approximately the same. 

DISCUSSION 

Accuracy of the phylogeny: We  have  assumed that 
the phylogeny is accurately estimated from the DNA 
sequences or restriction site  polymorphisms  available. 
The accuracy  of different methods for phylogeny 
reconstruction depends on whether particular as- 
sumptions about evolutionary processes are met (FEL- 
SENSTEIN 1988). Errors in the reconstruction of the 
phylogeny  of the genes  sampled  would  lead to inac- 
curate values  of s. We think that most  types  of errors 
would tend to overestimate s and hence lead to over- 
estimates of Nm, because  most  types  of errors would 
tend to randomize the inferred phylogeny. We rec- 
ommend that two or more different methods for 
phylogeny reconstruction be  used.  If  estimates  of Nm 
using different phylogenies are similar, then  there is 
reason to have confidence in the average estimate. If 
estimates  of Nm are quite different, then additional 
effort will be required to resolve the phylogeny before 
our method can  be  used  with confidence. Similarly, if 

a particular method for inferring the phylogeny  yields 
several  phylogenies that fit the data equally  well, then 
our method should be applied to each. 

FELSENSTEIN (1985) has  suggested a method for 
providing confidence limits on phylogenies. The re- 
sult from applying  his method is a phylogeny  with 
multifurcations which represent possible bifurcations 
that cannot be distinguished. If our method is applied 
a  tree with multifurcations, the resulting value  of 
might be too small  because the parsimony criterion 
we are using will assume the minimum number of 
migration events at each multifurcation (MADDISON 
1989). If the actual phylogeny required larger values 
of s, then  the resulting estimate of Nm would be too 
small. 

A similar problem arises if genes  sampled from 
different individuals appear not to be unique. For 
example, it is common  in studies of  variation  in 
mtDNA to be unable to distinguish  some  individuals. 
More than one individual is often recorded as  having 
the same haplotype, as  in the BERMINCHAM and AVISE 
(1 986) data. For our method to be applied, it must be 
assumed that individuals  with the same haplotype 
form a single  clade.  If more than two  individuals  have 
the same haplotype, then there is  in effect a mulitfur- 
cation in the phylogeny. As in the case  of other 
multifurcations, we recommend the resolution leading 
to  the smallest  value  of s, in keeping  with the parsi- 
mony criterion. If  many  individuals  with the same 
haplotype are  found, however, and particularly if they 
are found in  several different locations, then our 
method will probably not provide an accurate estimate 
of Nm. 

Neutrality: Our method assumes the selective 
equivalence  of the genes  being  sampled. This assump- 
tion is needed because we assume that  the probability 
of  every pair of  genes  in a deme coalescing  in  any 
generation is the same. It is not entirely clear  what 
effect  selection  would  have on  our method. One pos- 
sible effect would  be on reconstructing the phylogeny. 
Some methods for reconstructing phylogenies may 
yield erroneous phylogenies if rates of evolution in 
some  lineages are much higher than on  others (FEL- 
SENSTEIN 1988). 

If the reconstructed phylogeny is accurate, the prin- 
cipal effect of  selection  would  probably be on  the 
effective population size.  If an advantageous mutation 
occurs and sweeps through  a population, it tends to 
reduce effective population size. Theoretical analysis 
shows that  the effect  of “hitchhiking” can  be substan- 
tial if there is no recombination (MAYNARD SMITH 
and HAIGH 1974). On  the  other  hand, if some genes 
are deleterious but are maintained by recurrent mu- 
tation, effective population size  would  also  be  smaller 
because deleterious genes  would tend to have  coa- 
lesced more recently in the past than the neutral 
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theory would  suggest. Hence, two  obvious  kinds  of 
selection to consider tend to reduce effective  popula- 
tion  size and reduce estimates of Nm. Until more is 
known about selection on mitochondrial DNA,  it 
seems  impossible to say  how important this source of 
bias  might  be. 

Other population  structures: The island  model 
that we have considered represents the  extreme in 
long  distance gene flow.  Migration is most  effective 
in  this  population structure  and would be less so in 
other population structures. Therefore, if the actual 
pattern of  migration  were more restricted it would 
require higher levels  of gene flow to result in the same 
degree of  mixing. Hence, the estimate of Nm obtained 
with our method is a minimum estimate, although by 
how  much  we do not know. 

Low levels of gene flow: If there are low  levels  of 
gene flow, our method is not well suited to making 
accurate estimates of Nm. The reason, which  is clear 
from Figure 2, is that S and  the  entire distribution of 
s is strongly dependent on Nm when Nm is small (Nm 
< 1 .O) .  In a study  of mitochondrial DNA,  only a single 
value  of s can  be obtained and if Nm is small that value 
is likely to be  small  as  well.  Because s is  necessarily an 
integer value, there are few estimates  of Nm that are 
possible and the confidence limits on each estimate 
are relatively large. In particular, if s = 1, then the 
estimate of Nm is 0.0. SLATKIN (1989) and TAKAHATA 
and SLATKIN (1 989) consider this  case  in more detail 
and SLATKIN (1 989) provides a way to place an upper 
bound on the estimate of Nm that is consistent  with 
such data. 

Recombination: We  have  assumed that  there has 
been no recombination among genes  sampled. That 
assumption appears to be  valid for animal  mitochon- 
drial DNA, both mitochondrial and chloroplast  DNA 
from plants and from some portions of  sex chromo- 
somes.  Only  in the absence of recombination does the 
phylogeny  of the genes  sampled  have  meaning.  Re- 
combination  would mix parts of  genes  with different 
ancestry so it would  be inappropriate to assume there 
is a single ancestor for a pair of  genes.  HUDSON  (1 983) 
and HUDSON and KAPLAN (1 985) discusses  this prob- 
lem  in greater detail. Nevertheless, it is  possible to 
construct a phenogram representing the degrees of 
similarity  of  genes and apply our method to the phen- 
ogram as if it were a phylogeny. At the present time, 
we do not know whether this  would result in an 
accurate estimate of Nm. 

Nuclear us. mitochondrial  and  chloroplast  ge- 
nomes: Currently, the analysis  of nuclear genes is 
done largely  using electrophoretic surveys  of numer- 
ous loci,  while mitochondrial and chloroplast  genomes 
are examined  using restriction enzymes or sequenc- 
ing. Although population surveys  of  DNA sequence 
variation are now being carried out for a few nuclear 

loci  in a few  species  of  Drosophila it will probably  be 
some  time before large samples  of  loci from different 
populations of the same  species will be sequenced. 
The new methods for rapidly sequencing small por- 
tions  of  DNA are, for technical  reasons,  being applied 
primarily to portions of mitochondrial and chloroplast 
genomes,  making their use equivalent to a high  reso- 
lution restriction enzyme  analysis. 

It is reasonable to suppose that  the much greater 
detail available about mitochondrial and chloroplast 
genomes  would always provide more information 
about population structure, but the results presented 
here suggest that is not necessarily so. In fact, we 
found that confidence intervals obtained by applying 
our method to  the phylogeny  of a single gene are not 
smaller than those obtained using FST with electropho- 
retic data. The reason is that  a single gene is subject 
to a variety  of  accidents  in  its  history  because  of the 
intrinsically  stochastic nature of population genetic 
processes.  Even  knowledge  of the complete DNA 
sequence of each gene cannot overcome that fact. 
Although electrophoresis offers much  less resolution, 
it does allow the analysis  of large numbers of more or 
less independent nuclear loci,  making it possible to 
average over accidents in their history. We are not 
suggesting that electrophoresis is preferable for ana- 
lyzing population structure but at  the present time it 
is not worse either. Ideally both methods would  be 
used  because  of the possibility that nuclear and ex- 
tranuclear genes might be subject to somewhat differ- 
ent evolutionary forces.  Eventually, rapid sequencing 
will be  used on a variety of nuclear genes  making the 
present choice  unnecessary. 

CONCLUSION 

We have  shown that  our method for estimating Nm 
from the phylogenies of genes  provides  estimates that 
are nearly  as accurate as other indirect methods that 
have been applied to allozyme data. As is the case  with 
other indirect methods, we cannot distinguish the 
effects  of ongoing gene flow from the effects of  his- 
torical  association  of populations. An estimate of  Nm 
obtained using our method must be interpreted as 
meaning there is ongoing gene flow  in a collection of 
populations at equilibium, or historical  association  of 
those populations, or some mixture. If Nm is found to 
be  substantially greater than one,  either  there is 
enough gene flow at present to prevent substantial 
divergence of neutral genetic loci or the recent his- 
torical  association  of the populations sampled. 

One  feature of our method is that it can  be applied 
to any inherited component for which there is no 
recombination. If  samples  of DNA from both mito- 
chondria and  the nonrecombining portion of the Y 
chromosome were  available from the same  species of 
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mammals, then  separate estimates of male and female 
dispersal could be obtained. 

The use of our method  and any  method  that  de- 
pends  on phylogenies of genes  requires  a shift in 
perspective on within-species variation. Allozyme data 
followed in the  tradition of classical population  ge- 
netics in providing estimates of gene  frequencies.  Such 
data could then  be  examined using classical methods 
such as FST. There is some tendency to  regard  data 
based on restriction site polymorphisms and even 
DNA sequences in the same way. It is true  that  fre- 
quencies of haplotypes can be found  and  then ana- 
lyzed using methods  suitable for analyzing gene  fre- 
quencies. Although this approach is not  incorrect, it 
does  not make full use of information in the  data. 
Furthermore, when direct  sequencing becomes easier 
and it is found  that most or all segments of DNA 
sampled are unique,  the  gene  frequency  approach 
breaks  down. In contrast,  a phylogenetic approach to 
the analysis  of genetic variation becomes more pow- 
erful with greater resolution of the  data. 
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