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ABSTRACT 
Suppose  that amino acid or nucleotide  data are available for a homologous  gene in several species 

which diverged  from a common ancestor at  about the same time and that substitution  rates  between 
all pairs of species are calculated,  correcting as necessary for multiple  substitutions  and for back and 
parallel  substitutions. The variances  and  covariances of these  corrected  substitution  rates are evalu- 
ated, and are used to construct a new test for uniformity (constancy of the molecular  clock)  and  to 
find the best  estimates of substitution  rates in individual  lineages with their standard errors. A 
substantial bias  may arise if the  effect of correcting the pairwise  substitution rates is ignored. 

T HE variability of the molecular clock, that is to 
say of the  rate of substitution at  the amino acid 

or nucleotide level, is of  interest  both  from the view- 
point of molecular  evolution and in the reconstruction 
of  phylogenetic  trees from molecular data. KIMURA 
(1 983)  suggested that this  question is most easily in- 
vestigated from  data  on several species which all di- 
verged  from  a  common  ancestor  at  nearly  the  same 
time,  forming  a so-called ‘star phylogeny’; the radia- 
tion  of the mammalian orders is generally  supposed 
to  be such  a  phylogeny, at least to a  good  approxi- 
mation. 

Suppose that  sequence  data are available for a  ho- 
mologous  gene in s species which diverged  from  a 
common  ancestor T years ago.  Write Xi for  the substi- 
tution  rate  per year in the  ith lineage, and ai = XiT 
for  the Expected number of  substitutions per site. 
Direct  estimates  of the ai’s cannot  be  made,  but  the 
number of substitutions  between  each  pair  of species 
can be  estimated,  after  correction if necessary for 
multiple  substitutions and  for back and parallel 
mutations. Thus  the empirical  data will be  the N = 
? h ( s  - 1) estimates dq of the  number of  substitutions 
per site  between species i and j (i < j ) ,  so that 

The sampling errors, e+ will have variances and 
covariances which must be known  before  the  data can 
be analyzed. The variances, Var(dq), are known from 
standard  theory. For  a star phylogeny the covariances 
with no lineage in common  (such as Co~(d,*,d3~))  are 
zero. The main technical problem is to evaluate the 
covariances with one lineage in common (such as 
Cov(dIp,  dI3)).  This will be  done  for  amino acid and 
nucleotide  substitutions in turn in the  next section. 
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[The covariances  have previously been  evaluated by 
NEI, STEPHENS and SAITOIJ (1 985)  and by NEI and JIN 
(1989) by a less formal argument.] 

In  the following section these calculations will then 
be used to  obtain  an improved  method  of analysing 
data  on substitution  rates. The variance/mean ratio 
( R )  has become viewed as a critical test  of the neutral 
theory of molecular  evolution, values of R greater 
than unity indicating departures  from this  theory 
(GILLESPIE 1986).  However,  the usual formula  for 
calculating R is substantially inflated because the  pro- 
cess of  correcting  for  multiple  hits increases variabil- 
ity; the  magnitude of this bias will be  determined  and 
a  method of eliminating it presented.  It will also be 
shown how to estimate within lineage  substitution 
rates as accurately  as possible, and how to calculate 
the  standard  errors of these estimates. Finally, a sta- 
tistical test will be  presented  of  the  underlying as- 
sumption of a  star phylogeny when data  on  four  or 
more species are available. 

COVARIANCES OF SUBSTITUTION RATES 

Amino acid substitutions: Suppose that  amino acid 
substitution follows a Poisson process with rate Xi in 
the  ith lineage, and  that back mutation in the same 
lineage and parallel  mutation  in  different lineages can 
be  ignored. The probability that species i and j have 
the same  amino acid at a  particular  site is then  the 
probability that  no  mutation has occurred in either 
species since they split, which is equal to  exp - 
(ai + a!). If pq is the observed proportion of  amino 
acid substitutions  between species i and j at n sites, 
then d, = -ln(l - p,) is an estimator  of (ai + a!). 

T o  find the variances and covariances  of the dq’s, 
define yi, as  a  dummy variable which is 0 or 1  according 
as species i and j are identical (0) or differ (1) at a 
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particular site. Then 

Prob(yv = 0) = exp - (a, + a,), i # j  (2) 
Prob( )'q =)',k = 0)  = eXp - (ai + a, + a h ) ,  i # j  # k 
whence 

Var(yq) = exp - (a; + a,)( 1 - exp - (a, + aj)) 
cov(yij, yik) = E(yijy:k) - E(yij)E(yik) (3) 

= exp - (a; + aj + a&)( 1 - exp - a;). 
Also, p ,  = 2 yg/n, the summation  being  over the n 
independent sites, so that 

Var(p,) = Var(y,)/n 
(4) 

cov( ptj.9 pi&) = cov( yij, y:k)/n. 

The approximate variances and covariances of the 
d,'s can be  found by the  standard Delta technique 
based on a  Taylor series expansion for  finding vari- 
ances and covariances of functions of random vari- 
ables (KENDALL and STUART 1963,  Chapter  10).  They 
are 

Var(dg) = (exp(a, + a,) - l)/n ( 5 )  
Cov(d,, d&) = (exp a, - l)/n. 

Nucleotide  substitutions: In estimating the nucleo- 
tide  substitution rate it is necessary to allow for back 
and parallel substitutions as well as multiple substitu- 
tions. T o  obtain  an analytic result I follow the model 
of JuKES and CANTOR (1  969), supposing that nucleo- 
tide  substitution  occurs at  rate X i  in the  ith lineage to 
one of the  three  other nucleotides, with the same rate 
of X,/3 to each of them  at each site; a  heuristic way of 
relaxing  these rather restrictive assumptions will be 
described subsequently. 

Let P,(t) be the probability that species i a n d j  differ 
at a  particular site at time t ,  satisfying the differential 
equation 

dPq/dt = (1 - P,)(Xi + Aj) - ?@,(X; + X,) (6) 
Pq(0) = 0 

whose solution at time t = T is 

P, = %(1 - exp - 4/3(ai + a,)). (7) 
Pi,. can  be  estimated by &, the observed  proportion of 
differing sites, so that 

d, = %ln(l - "3pV) (8) 

is an estimator of (a; + a,). As before, p ,  is a binomial 
proportion with variance P,(l - P,)/n; the approxi- 
mate variance of d, based on  the Delta technique 
(Taylor series expansion) is 

Var(d,) = %(%exp Y3(ai + a,) 
(9) + !hexp 4/3(a, + a,) - 9/41/71, 

as shown by KIMURA and  OHTA (1972). 

An argument set out in Appendix  1 shows that  the 
covariance is 

Cov(d,, dik) = %( %exp 8/s a, 
(10) + Y2 exp 4/3a, - 9/41/72. 

This equation can also be justified by the following 
informal argument. The covariance between d, and 
dik should  depend only on events in the  ith lineage 
and so should  not depend  on a, or a&. Equation 10 
holds when a, = (Yk = 0,  since in this case the covariance 
is the same as Var(d,), and should therefore hold  for 
all values of aj and (Yk. 

The Jukes-Cantor  method assumes an equal substi- 
tution rate between different  nucleotide pairs so that 
at equilibrium the  four nucleotides are equally fre- 
quent. TAJIMA and NEI (1984) suggested that Equa- 
tions 7 and 8 could be generalized to 

Pq = b(1 - exp - (ai + aj ) /b)  
dq = -b In(1 - pv/b) (1  1) 

where b allows for  differences in nucleotide  frequen- 
cies. Since p ,  is a binomial proportion,  the  approxi- 
mate variance of d, as before is 

Var(d,J = b((1 - b)exp 2(ai + aj)/b 
(12) + (2b - l)exp(a, + aj)/b - bJ/n,  

as obtained by TAJIMA and NEI (1984). By analogy 
with Equation 10 and  the informal argument follow- 
ing  that  equation, it is conjectured  that  the covariance 
is given by 

Cov(dij, dik) = b((1 - 6)exp 2aJb 
(13) + (2b  - 1)exp a i /b  - bJ/n .  

The computer simulations of TAJIMA and NEI 
(1 984) show that  Equation  1  1 gives a reasonably good 
estimate for  a wide range of substitution  patterns. 
This question is discussed further by LEWONTIN 
(1989).  Another complication arises from  the  need to 
estimate synonymous and nonsynonymous substitu- 
tion rates  separately, but Equations 12  and  13 can 
probably be used as  adequate  approximations with 
appropriate  definition of n. 

ANALYSIS OF DATA ON SUBSTITUTION 
RATES 

Testing uniformity of substitution  rates: Consider 
first the theoretical  situation in which the  number of 
substitutions  between  pairs of species can  be  observed 
directly with no need  for  correction.  Let X;  be the 
total  number of substitutions in the  ith lineage which 
is assumed to be  a Poisson variate with mean na;, and 
write xi = Xi/n. The observations are d,, = xi + x,, with 
Var(d,) = (a; + aj)/n and Cov(d,,,  d,k) = a;/n. The 



Variability of Substitution Rates 617 

following identities hold  between the xi’s and  the dq’s: 

x; = (0; - 1/2sd)/(s - 2) ( 1 4 4  

2 = Y2d (1 4b) 

s, = S d / ( S  - 2) (144 

where 

Di = 2 d, + 2 dji (i fixed) 
3 5  j4 

s, = (Xi - 2)* (15) 
i 

S d  = 2 (d, - 
i<j 

If the substitution rates are the same  in  all  lineages, 
nSx/3c is approximately a chi-square variate with 
(s - 1) degrees of freedom which  can be used to test 
this  hypothesis. From Equation 14, 2nSd/(s - 2)d is 
an identical  test  statistic. 

In practice d,  will not be a direct measurement on 
(x; + xj) but a corrected estimate of this quantity. The 
identities in Equation 14 cease to hold, but the expres- 
sion on the right hand side  of Equation 14a remains 
a sensible estimator of a;, which  we  now denote a;: 

a1 = (0; - Y*sd)/(s - 2). (16) 

Either of the sums  of squares Sa or S d  can be used  as 
a basis for testing the null  hypothesis, though they are 
not equivalent and their sampling distributions must 
be determined. It is shown  in APPENDIX 2 that 

(s - 2)Sa/(v + (s - 4)c) (17) 

is approximately a chi-square variate with (s - 1) 
degrees of freedom under  the null  hypothesis, where 
v = Var(dy) and c = Cov(d,, da) as evaluated previ- 
ously. (Note that with a, = a for all i, the variances 
have a common  value,  as do  the covariances  with one 
lineage in common. In evaluating v and c, a can be 
estimated by ii = 1/22.) The distribution of S d  is more 
complicated and is not asymptotically chi-square, but 
its  Expected  value is 

E&) = %(s + l)(s - 2)v - 2(s - 2)c. (18) 

It is both simpler and more efficient to use Sa rather 
than S d  as a test  statistic. 

Equation 17 implies that  the need to correct the 
observations for multiple (and possibly  also for back 
and parallel) substitutions has inflated the expected 
value  of Sa by the factor 

p(Sa) = n(v + (S - ~)c)/cY(s - 2). (19a) 

The Expected  value of s d  is inflated by the factor 

p(Sd) = n(1/2(~ + 1 ) ~  - 2c) /a(s  - 1). (19b) 

These inflation factors are evaluated in Table  1  for 
the Poisson formula appropriate to amino acid  substi- 

TABLE 1 

Inflation  factors  evaluated from Equation 19 

5 

a 3 4 5 6 

0.1 1.16 1.11 1.09 1.08 p(S.) 
0.25 1.46 1.30 1.24 1.22  Poissonformula 
0.5 2.14 1.72 1.58 1.51 
1.0 4.67 3.20 2.70 2.46 

0.1 1.16 1.14 1.14 1.13  SI) 
0.25 1.46 1.40 1.38 1.36 Poisson formula 
0.5 2.14 2.00 1.93 1.89 
1.0 4.67 4.18 3.93 3.78 

0.1 1.36 1.23 1.19 1.17 p(S.,) 
0.25 2.21 1.76 1.61 1.53 Jukes-Cantor 
0.5 5.36 3.56 2.96 2.66 formula 
1.0 40.11 21.84 15.74 12.70 

0.1 1.36 1.32 1.30 1.28 p(Sd) 
0.25 2.21 2.06 1.99 1.94 Jukes-Cantor 
0.5 5.36 4.76 4.46 4.28 formula 
1.0 40.11 34.02 30.97 29.15 

tutions (taking values  of v and c from Equation 5) and 
for the Jukes-Cantor formula appropriate for nucleo- 
tide substitutions (taking values  of v and c from Equa- 
tions 9  and 10). The inflation is substantial, and can- 
not  be ignored, as  suggested by KIMURA (1 983, 1987), 
unless a is very  small. It is  likely to be particularly 
important in estimating synonymous substitution rates 
using the Jukes-Cantor formula. The synonymous  sub- 
stitution rate per site  in a mammalian  lineage  since 
the origin of  mammals is  typically between 0.25  and 
0.5, which  gives an inflation factor of  between  two 
and fourfold for Sd.  

The values  in Table  1 can  also  be interpreted as 
predicted values  of R ,  the variance to mean ratio, 
calculated from the naive formulae nS,/(s - 1)ii or 
2nSd/(s - l)(s - 2)d. Thus values  of R calculated in 
this way  may  well be  as  high  as 4  for synonymous 
substitutions without  invalidating the neutral theory. 
It is recommended that R should be  calculated by 
dividing the formula in Equation 17 by (s - 1). 

GILLESPIE (1 986) developed an alternative method 
of correcting for multiple substitutions in amino acid 
data and of  allowing for  the effect  of  this correction 
on the variance.  His method does not require  the 
assumption  of an underlying Poisson  process, but the 
method developed here is both simpler and in other 
respects more general since it can  be applied to nu- 
cleotide  as  well  as amino acid data. 

Estimating the substitution  rates: If there is signif- 
icant  evidence  of heterogeneity of the a,’s, then we 
will want to estimate these parameters as accurately 
as  possible. The estimates ai are unbiased estimators 
of the ai’s with  variances and covariances  with  can  be 
calculated  as  follows.  First find the variances and 
covariances  of the dq’s  by substituting a, for a, in the 
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equations in the previous section; then  find  the vari- 
ances and covariances of the ai’s from  the  standard 
formulas  for  linear  functions of random variables: 

The estimators ai are unbiased and  are likely to be 
reasonably efficient but they are  not  the minimum 
variance unbiased estimators since they give equal 
weight to all observations despite the fact that some 
observations are more  accurate  than  others. Fully 
efficient estimators can be found by the  method of 
weighted least squares. The model of Equation 1 can 
be written in matrix  form as 

d = X a + e  (21) 

where d and e are  the column vectors of observations 
and sampling errors respectively, a is the column 
vector of the ai’s and X is the N X s incidence matrix 
with two 1’s in appropriate positions in each row and 
zero  everywhere else. The method of weighted least 
squares finds the estimates c i  which minimize the 
weighted sum of squares 

SS = (d - Xa)TV-’(d - Xu) (22) 

where V is the variance-covariance matrix of the dw’s. 
The estimates are 

ii = (XTV-’X)”XTV-’d, (23) 

with variance-covariance matrix 

Var(ii) = (XV’X) - ’ .  (24) 

If we substitute  these estimates in Equation 22, the 
residual sum of squares is 

SS = dTV”d - aTXTV-’d. (25) 
This quantity has a chi-square distribution under  nor- 
mality  with N - s = ? h ( s  - 3) degrees of freedom, 
which can be used to test the validity of some aspects 
of the model. If this statistic is significant, it can be 
concluded  that  either the assumption of a  star phy- 
logeny or  the assumption of independent Poisson 
distributions is incorrect. No test is available unless 
there  are  more  than  three species, corresponding to 
the fact that  an  unrooted  tree with three species can 
always be  made  into  a  star phylogeny by appropriate 
choice of the  root. 
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APPENDIX 1 

Define yq = 0 or 1 according as  species i and j have the  same  1, . . . , 5) and T for  the  vector of these probabilities. Under  the 
or a different  nucleotide  at a particular site. T h e  state with Jukes-Cantor  model  it will satisfy the  differential  equation: 
respect  to  three species i, j and k is defined by the  triplet ( y u  y;t 
yjh). Only five states are possible: (0 0 0), (1 1 0), (1 0 l), (0 1 1) 
and (1 1 l), which will be  indexed by the  integers 1 to 5 .  Write d r / d t  = Au 
q ( t )  for  the  probability  that  the system is in  state i at  time t (i = ~ ~ ( 0 )  = 1, ~ ~ ( 0 )  = 0, i > 1 (1.1) 

-(At + Aj + Ah)  Ail3 Aj/3 0 

A = [  ?: -(Ai13 Ad3 + hj + A h )  -(A; + Aj/3 + A h )  413 hl3 (A; + L)/3 
(xj + AS13 

At Aj /3  h/3 -(A; + + h/3)  (h + Aj)/3) 
0 2(4 + Ah)/3  2(Ai + xh)/3  2(A, + Aj)/3 -2(h + + Ah)/3 1 
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T h e  eigenvalues of A are: = -4(Xi + X, + XJ/3, ~2 = 

T h e  solution of the  differential  equation  at  time t = T is 
-4(Xi + Xj)/3, FLQ = -4(Xi + Xh)/3. p4 = -4(Xj + Xh)/3, p5 = 0. 

3  3 3 1  

9 -3  -3 3 
12 -6 -6 -6 6 

We now compute 

cov(ytp r t h )  = E(y& - E(y,j.)E(y,k) 
= 3r2 + a5 - P p $ *  

Equation 10 is obtained by the  Delta  technique. 

APPENDIX 2 

Suppose  that y is a multivariate  normal  random  vector with 
zero mean and variance-covariance matrix V. Consider  the 
distribution  of the quadratic  form 

Q = yTAy. (2.1) 

SEARLE ( 1  97 1 ,  Chapter 2) shows that 

E(Q)  = tr(AV). (2.2) 

H e  also shows that kQ is a chi-square variate if and  only if  RAV 
is idempotent,  having in  this case degrees of freedom  equal to 
the  rank of A; it follows that 

k = rank(A)/tr(AV) (2.3) 

is the only constant  that  need  be  considered. 
Consider  first  the  distribution  of 

s d  = dTAd (2.4) 

c = Cov(dij, dah)  in off-diagonal  positions representing pairs of 
values with one  lineage in common,  and  zero  elsewhere.  It 
follows that 

E ( S d )  = tr(AV) = ( N  - 1)U - 2(S - 2)C. (2.5) 

Furthermore RAV  is not  idempotent, so t!l.at no  multiple  of s d  

has a  chi-square distribution. 
Consider now the  distribution  of 

S, = a'Aa (2.6) 

where a is the  column  vector of the a,'s and A is a square  matrix 
of  order s and  rank (s - 1)  having (s - l)/s on the  diagonal  and 
-I/s elsewhere. Under  the null  hypothesis  V  has 

u, = Var(a,) = (2s' - 7s + 6)u 
(2.7) + 2(s - 2)(s2 - 5 s  + 5 ) ~ ] / 2 ( ~  - I)(s - 2)' 

on  the  diagonal,  and 

C, = COV(U~, aj) = (C - %u)/(s - I)(s - 2) (2.8) 

elsewhere.  Define 

6 = u, - c, = [u + (s - 4)c]/(s - 2). (2.9) 

Then 

E(&) = tr(AV) = (s - 1)6. (2.10) 

Also, AV/6 is idempotent, so that Sa/6 is a  chi-square variate 
with (s - 1)  degrees of freedom. 


