Skip to main content
. 2025 Apr 25;104(17):e42262. doi: 10.1097/MD.0000000000042262

Table 4.

The machine learning techniques for the validation set.

AUC (95% CI) Cutoff (95% CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) F1 score (95% CI)
XG Boost 0.801 (0.701–0.901) 0.48 (0.323–0.637) 0.662 (0.611–0.713) 0.969 (0.908–1.030) 0.652 (0.494–0.811) 0.734 (0.602–0.866)
Logistic 0.841 (0.754–0.927) 0.245 (0.231–0.259) 0.708 (0.644–0.771) 0.977 (0.933–1.022) 0.636 (0.601–0.671) 0.671 (0.587–0.756)
Random Forest 0.781 (0.675–0.887) 0.5 (0.402–0.598) 0.721 (0.708–0.734) 0.855 (0.711–0.999) 0.672 (0.595–0.749) 0.735 (0.718–0.753)

AUC = area under the curve, 95% CI = 95% confidence interval.