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ABSTRACT 

A detailed analytic and numerical study is made of the potential for  permanent genetic variation 
in frequency-dependent models based on pairwise interactions among genotypes at  a single diallelic 
locus. The full equilibrium structure  and qualitative gene-frequency dynamics are derived analytically 
for a symmetric model, in  which pairwise fitnesses are chiefly determined by the genetic similarity of 
the individuals involved. This is supplemented by an extensive numerical investigation of the general 
model, the symmetric model, and nine other special  cases. Together  the results show that  there is a 
high potential for  permanent genetic diversity in the pairwise interaction  model, and provide insight 
into  the  extent to which various forms of genotypic interactions  enhance or reduce this potential. 
Technically, although two stable polymorphic equilibria are possible, the increased likelihood of 
maintaining both alleles, and  the poor  performance of protected polymorphism conditions as a 
measure of this likelihood, are primarily due  to a greater variety and frequency of equilibrium patterns 
with one stable polymorphic equilibrium, in conjunction with a  disproportionately  large domain of 
attraction  for stable internal equilibria. 

F REQUENCY-dependent selection has been widely 
cited as a potentially important mechanism for 

the  preservation of genetic diversity in natural  popu- 
lations. Under this type of selection the fitness of a 
genotype  depends on  the  genetic composition of the 
population in  which it is found. For  example, many 
general  population studies have demonstrated nega- 
tive frequency  dependence, in  which the fitness of a 
genotype is highest when rare (e .g . ,  TEISSIER 1954; 
PETIT 1966;  SNYDER  and  AYALA  1979; ANDERSON et 
al. 1986). A low frequency  advantage may  also arise 
in a variety of special situations, such as rare male 
mating advantage, in  which minority genotypes par- 
ticipate in mating in greater  numbers  than  expected 
based on  their  frequencies in the  population (e .g . ,  
PETIT and  EHRMAN  1969; SPEISS 1987;  PARTRIDGE 
1988); minority advantage in predation, in  which a 
rare form may be  overlooked when predators  concen- 
trate on one  or only a few common prey varieties (e .g . ,  
ALLEN  and  CLARKE  1968);  and in the classic operation 
of  Batesian mimicry where palatable individuals can 
avoid predation by mimicking other, unpalatable 
prey,  provided such mimics are  rare (e .g . ,  SHEPPARD 
1959). The opposite  phenomenon of positive fre- 
quency dependence has also been reported, in  which 
common genotypes are favored. Causative factors in- 
clude  predation when prey density is high (ALLEN 
1988), as well as selection based on  the  production of 
toxins and allelopathic agents in bacteria  (LEVIN  1988) 
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and  other  forms of intraspecific competition (ANTO- 
NOVICS and KAREIVA 1988). 

More  generally,  a  particular  genotype may be fa- 
vored in the presence of certain  genotypes  but  be at 
a  disadvantage in the presence of others  (LEVENE, 
PAVLOVSKY and DOBZHANSKY 1954,  1958;  DOBZHAN- 
SKY 1957; SAKAI  1961; KOJIMA and YARBROUGH 
1967; KOJIMA and TOBARI 1969a,  b;  HUANG, SINGH 
and KOJIMA 1971; PRICE and WASER 1982).  This is 
particularly true in plants, where the  performance of 
an individual is often  affected by its neighbors  (AL- 
LARD and ADAMS  1969a, b; ANTONOVICS and ELLS- 
TRAND 1984).  A  common,  but  not ubiquitious finding 
is that individuals are least fit when in association with 
others of the  same, or similar, genotype. Further 
examples of frequency-dependent selection can be 
found in reviews by AYALA  and CAMPBELL  (1  974) and 
CLARKE  and PARTRIDGE  (1 988). 

Together these abundant experimental findings 
provide  strong evidence that  intergenotypic  interac- 
tions may be  an  important  evolutionary  force.  This 
conclusion has  in turn motivated  a number of theo- 
retical studies of frequency-dependent selection. 
Some of these models assume that genotypic fitnesses 
are direct  functions of the gene  frequencies in the 
population (e .g . ,  WRIGHT  1955;  LEWONTIN  1958; 
RAVEH and RITTE 1976; CURTSINGER 1984).  Other 
models focus on  the evidence for negative frequency 
dependence, assuming each genotype’s fitness is a 
decreasing  function of the genotype’s frequency in 
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the population (e.g., CLARKE  and  O’DONALD  1964). 
Considerable attention has  also been paid to a  general 
class  of models in  which genotypic fitnesses are  deter- 
mined by pairwise interactions  among the individuals 
in the population (see, e.g., SCHUTZ, BRIM and USANIS 
1968; ALLARD and  ADAMS  1969a;  COCKERHAM  and 
BURROWS 197 1;  HUANC,  SINCH  and KOJIMA 197 1; 
HEDRICK  1972,  1973;  COCKERHAM et al. 1972). The 
latter includes subclasses  of negative and positive fre- 
quency-dependent models as special  cases. 

These  theoretical investigations have provided  fur- 
ther evidence that  frequency-dependent selection can 
facilitate the  preservation of genetic variation by 
showing that, in contrast to  the classical, diallelic se- 
lection model in  which genotypic fitnesses are constant 
through  time, (i) genetic variation can be  maintained 
without heterozygote  advantage; and (ii) multiple sta- 
ble polymorphic equilibria are possible, in  which ge- 
netic diversity is preserved. These results give no 
indication, however, of  how much genotypic interac- 
tions increase the likelihood of preserving genetic 
variation, or even whether this increase is significant. 
Here we formally address this issue within the class  of 
diallelic, pairwise interaction models. We first present 
a complete analytic description of the equilibrium 
structure  and  the qualitative gene  frequency dynamics 
under  a new, symmetric model. This is supplemented 
by a Monte Carlo simulation which provides  a  quan- 
titative assessment of the potential  for  genetic varia- 
tion in this and  other special  cases, as well as under 
the  general pairwise interaction  model. As a  by-prod- 
uct, our analysis  shows that this potential can be vastly 
underestimated by the  rough  estimate based on con- 
ditions for  a  protected polymorphism. 

GENERAL  FREQUENCY-DEPENDENT 
FORMULATION 

We are concerned with the genetic composition at 
a diploid autosomal locus with two alleles, A1 (with 
frequencyp)  and A:! (with frequency 9 = 1 - p ) ,  subject 
to  the following assumptions: (i) a  large (effectively 
infinite),  randomly  mating  population with discrete 
non-overlapping generations; (ii) identical selection in 
the two sexes, which acts only through viability differ- 
ences; and (iii) the  net fitness of each genotype AiAj is 
a  differentiable  function of the  gene  frequency, P, 
denoted by W,] = Wq( P) for i ,  j = 1, 2. 

The adult  gene  frequency (P) is then  governed by 
the  transformation 

where ‘ denotes  the value after  one  generation, 

WI(P) = PWII(P) + (1 - P)WI:!(P) (2) 
is the marginal fitness of allele A I ,  and 

R f i )  = P‘WI,(P) + 2P(l - P ) n ’ I B ( P )  

+ (1 - p)2wB:!(p) (3) 

TABLE 1 

Local stability criteria for general frequency-dependent 
fitnesses 

Equilibriunl Local stability crite~-ion 

is the mean fitness in the population. The change in 
gene  frequency  from  one  generation to  the  next is 
given by 

where 

WAP) = PWIdP) + (1 - P)WBdP) ( 5 )  

is the marginal fitness of allele AB.  
The population is at gene frequency  equilibrium if and 

only if Ap = 0. In addition  to the two boundary (or 
fixation)  equilibria, p^ = 0 and p^ = 1,  there may be 
polymorphic (internal)  equilibria, with 0 < p^ < 1, 
given by the solutions to the  equation Wl(p) = W,(p). 
The exact number of polymorphic equilibria (if any) 
depends on the functional  form of the fitnesses. 

An equilibrium  frequency, p^, is called locally  stable 
if the infinite  sequence of gene  frequencies deter- 
mined by recursion ( I ) ,  { P O ,  PI = f ( p o ) ,  PB = f ( P , ) ,  ... 1, 
converges to p^ for all initial gene  frequencies, po ,  
sufficiently close to p̂ . This definition leads to  the 
functional local stability criterion, 

-1 <f’(p^) < 1 (6) 

(or equivalently, -2 < - < 0 or -2 < - < 0 )  d AP d 4 
dP d9 

where 

with ‘ here  denoting  the first derivative with respect 
to P (see (e.g., EDELSTEIN-KESHET 1988). The values 
off ’( P) are given in APPENDIX A, from which we obtain 
the general local stability criteria in Table 1. Equilib- 
ria which  fail (6) are classified as  neutrally stable 
( I f ’(j) I = 1) or unstable ( I f’(p^) I > 1). 

CLASSICAL  SELECTION  MODEL 

The basis of comparison in the subsequent analysis 
is the classical selection model, in  which the genotypic 
fitnesses are independent of gene  frequency and con- 
stant  over time ( i . e . ,  W,(P) = W,j where W, is a  constant 
which can be  normalized to lie  in [0, 11). This model’s 
salient features  are summarized in Table 2  where it is 
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TABLE 2 

Equilibrium patterns and dynamical behavior of the gene 
frequency, p , ,  in each generation t 2 0 under the classical 

selection model 

Equilib~-ium 
l . ' i t l ~ e ~  condition pattern' P (pattern)  frequencyb l'rajectory' 

Initial 

~~ ~ 

* The leftmost entry indicates the stability ofp* = 0 (U = unstable, 
S =-locally stable), while the  rightmost  entry indicates the stability 
of p = I .  The  intermediate  entry indicates the stability of the 
lmlymorphic equilibrium, when it exists. 

" i  = 
W I L '  - w p 2  

2 w , ,  - \ v , ,  - w,, is the  unique polynlorphic equilibrium. 

' t (L) denotes a monotone increasing (decreasing)  sequence. 
'' With at least one inequality strict. 

seen that (i) there  are only four possible equilibrium 
patterns, in terms of the  number  and stability char- 
acteristics of the equilibria present; (ii) there is at most 
one internal  equilibrium; (iii) whenever W12 > W11, 

WZ2 there is a stable polymorphic equilibrium which 
is converged to monotonically from all initial (poly- 
morphic)  gene  frequencies; and (iv) under all other 
fitness  conditions, the  gene  frequency monotonically 
converges to  one of the fixation states, 0 or 1. (Note 
that our discussion excludes the  degenerate case  with 
W1 I = Wlz = W22 for which p ,  = for all t 3 0.) 

These  properties in turn imply three final key fea- 
tures of the classical constant viability selection model: 
the "probability" that there is a locally stable polymor- 
phic equilibrium,  the probability that  the  gene  fre- 
quency converges to a polymorphic equilibrium, and 
the probability that  genetic variation is maintained in 
the population are all 1/3. Paralleling other studies of 
constant viability and fertility models (e.g., KARLIN 
and CARMELLI 1975; LEWONTIN, GINZBURG, and TUL- 

198  1 ; CLARK and FELDMAN 1986),  these probabilities 
are based on the assumption that the  three genotypic 
fitnesses are  independent  and uniformly distributed 
on [0, 11. They  therefore do not necessarily reflect 
the  true probabilities in natural  populations, for these 
depend on the actual distribution of the fitness values 
in nature, of  which we have no a priori knowledge. 
Rather  the probabilities here  measure the  proportion 
of three-genotype-fitness arrays which  give rise to each 
of the events above,  and  thereby  represent  the  poten- 
tial for  the  preservation of genetic variation under  the 

JAPURKAR 1978; KARLIN 198 1 ; KARLIN and FELDMAN 

TABLE 3 

Genotypic viabilities in pairwise association or competition 

Competing with 

Genotype A I A ,  AlA2 AnAn Net fitness 

AIAI WII I ,  w11.12  w11.22 WII ( P )  
AIAY U'l2.11 WI.L.12 w12.22 W12(Pl 
A2A2 W22,Il w22.12  w2,;22 w 2 2  ( P )  

classical selection model. A similar approach is used 
in our analysis  of the frequency-dependent models 
below. 

PAIRWISE INTERACTION MODEL 

Consider now the  general class of  frequency-de- 
pendent selection models in  which genotypic fitnesses 
are based on pairwise interactions between the various 
individuals in the population (e .g . ,  HUANG, SINCH and 
KOJIMA 1971; COCKERHAM et al. 1972). Under this 
selection scheme the  net fitness of an AiAj individual 
is the weighted average of  its fitness taken across all 
pairwise associations, with 

W,,(P) = p2w1,,,, + 2/41 - p)wI1.12 

+ (1 - P)'WI 1.22 

W1z(p) = p2w12,11 + 2p(1 - p)w12,12 

+ (1 - p)2w12.22 

WZZ(P) = p2w22.11 + 2p(1 - p)w22 ,12  

+ ( 1  - p ) 2 w 2 2 . 2 2  (8) 

where in the present  notation, w,,& (Table 3) is the 
(constant) viability  of genotype A,A, in the presence of 
genotype ALA,. Since the  gene  frequency dynamics in 
(1)  are unchanged if the pairwise fitness parameters 
Wlj,h, are each multiplied (or divided) by the same 
constant  factor, we assume without loss  of generality 
that  the fitnesses are normalized so that each W,,h, lies 
in [0, 11. 

Note that  the pairwise interaction model includes 
the classical selection model as a special case, since if 
fitnesses are independent  of  interactions ( i e . ,  for each 
genotype AIA,, W G , ~ ,  E W, for k, 1 = 1, 2, where WG is 
a  constant) the  net fitnesses reduce  to W,(p) = W,. 
The fitness scheme in (8) also subsumes cases of neg- 
ative frequency  dependence. For example,  taking 
W.. 9.4 .. = W,j( 1 - sg) and W9,k, = W,j for k, I # i, j where 
0 <: sg G 1, leads to the  net fitnesses Wll(p) = 
W11(1 - s ~ l p ~ ) ,  w , ~ ( p )  = Wl2[1 - 2512p(l - p ) ] ,  and 
W Z ~ (  p )  = Wp,[ 1 - s22( 1 - p)'], each of which is a  de- 
creasing  function  of the  corresponding  genotypic  fre- 
quency. The same example with sij replaced by -sg 
in the definition of W,,q similarly  shows that (8) also in- 
cludes cases of positive frequency  dependence. 



218 M. A. Asmussen and E. Basnayake 

TABLE 4 

Standard equilibrium patterns for the pairwise interaction 
model 

No. of  polynlorphic 
equilibria 

Equilibrium 
stability pattern” 

0 su 
us 

1 sus 
usu 

2 susu 
usus 

3 susus 
ususu 

a The  end  entries  indicate  the stability of p^ = 0 and p^ = 1 (U = 
unstable, S = locally stable), while the  intermediate  entries (if any) 
refer to the stability of polymorphic  equilibria. 

Applying the general  equilibrium analysis to  the 
pairwise interaction model (8), we find that  the  inter- 
nal equilibria are  here roots of a complicated cubic 
equation (APPENDIX B). It is therefore possible to have 
either 0,  1, 2, or 3 distinct, polymorphic equilibria in 
(0 ,  1) .  Although the exact number is still difficult to 
predict in general, some additive X dominance or 
dominance X dominance effects are necessary for  the 
existence of multiple internal equilibria (COCKERHAM 
et al. 1972). The derivatives comprising the local 
stability criterion  for polymorphic equilibria (Table 1 )  
are complex and can be  found in APPENDIX B. The 
local stability criterion  for the fixation states (Table 
1) are quite simple for this model, however, with 
p̂  = 0 locally stable whenever W 1 2 , 2 2  < W 2 2 . 2 2  and 
p^ = 1 locally stable whenever W12,11 < W1l,ll .  In or- 
der  to have a  “protected polymorphism” in  which 
neither allele can be lost, it is thus sufficient that each 
homozygote have a lower fitness in the presence of its 
own genotype  than do heterozygotes in the presence 
of that homozygote. More precise, necessary and suf- 
ficient conditions can be  found in COCKERHAM et al. 
( 1  972). As  we shall see later,  however,  protected poly- 
morphism conditions greatly underestimate this mod- 
el’s potential  for  the  maintenance of genetic  variation. 

The complexity of the frequency-dependent  fit- 
nesses  in (8) precludes  a full analytic characterization 
of the  gene  frequency dynamics through  time. Even 
the equilibrium structure is complex and difficult to 
predict, with eight  standard  equilibrium  patterns  the- 
oretically possible, in  which stable and unstable states 
alternate  along  the line from p = 0 to p = 1 (Table 
4). Many other, nonstandard  patterns could conceiv- 
ably arise, however, including  ones in  which none of 
the equilibria are stable, if damped or permanent  gene 
frequency oscillations occur. [See MAY (1974) and 
ASMUSSEN ( 1  986) for ecological and ecological genetic 
examples of the  latter  situation.] 

Note  that again our classification extends  to  the 

TABLE 5 

Pairwise fitnesses  under the symmetric model 

Competing with 

Genotype A , A ,  A I A y  A 2 A 2  Net  fitness 

A I A ,  a b c W , , ( p )  = (a + c - 2b)p‘ 
+ 2(b - c ) p  + c 

AIA? b d  b M / 1 2 ( p ) =  2 ( d -  b)p( l  - p )  + b 
AYA2 c b a \V,,(p) = (a + c - 2b)p2  

+ 2(b  - a l p  + a 

complete  equilibrium set (compare Table 2), including 
both fixation and (any) polymorphic equilibria. The 
notation in Table 4 therefore  differs  from  that in 
COCKERHAM et al. (1 972) in that  the  end entries always 
denote  the stability of p^ = 0 and p^ = 1, and  the 
intermediate  entries focus simply on  the distinct inter- 
nal equilibria. Their original analysis  of a subclass of 
general  dominance models suggests that all the stand- 
ard  patterns shown for polymorphic equilibria can 
indeed  be realized, but gives no indication of their 
relative frequency in the fitness space nor of the 
likelihood of convergence  to  a polymorphic equilib- 
rium. 

Greater insight into  the  potential  for  genetic poly- 
morphism under  the pairwise interaction model is 
obtained in the  next sections through  a  complete 
analytic investigation of a new, symmetric version. 
This analytic study is augmented by an extensive 
numerical analysis  of the symmetric model, the gen- 
eral  dominance model of COCKERHAM et al. (1972), 
and  other special  cases of particular biological interest, 
in addition  to the general case (Table 3). Together 
the results help  determine when and how often  the 
various equilibrium  patterns  arise,  together with the 
likelihood of permanent  genetic variation under  fre- 
quency-dependent selection generated by pairwise in- 
teractions. 

SYMMETRIC PAIRWISE INTERACTION MODEL 

We introduce  here  a symmetric model in  which the 
pairwise fitnesses are principally determined by the 
degree of genetic similarity of the individuals involved 
(Table 5). This formulation has some empirical justi- 
fication (e.g., HUANG, SINGH and KOJIMA 197 1) and is 
reminiscent of the classical  two-locus symmetric via- 
bility model in  which fitnesses are based on  the gen- 
otype’s heterozygosity (see e.g. ,  KARLIN 1975). The 
nine pairwise fitness parameters in the  general case 
(Table 3) are  here  reduced to four,  reflecting  the 
following classes  of interactions: homozygote x like- 
homozygote (a), homozygote X heterozygote ( b ) ,  ho- 
mozygote X unlike-homozygote (c), and heterozygote 
X heterozygote (d ). Under this formulation,  both 
interacting individuals have the same fitness, and  the 
separate  parameters a and d partition the effects of 
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like X like interactions between homozygotes and 
heterozygotes. 

The potential  internal equilibria are easily derived 
from  the  general  equilibrium  equation (Bl), which 
here reduces  to 

(2p - 1)[(4b - u - 2d - c)p(l - p )  + u - b] = 0. (9) 

Clearly p^ = M is  always a solution of (9). Further 
inspection reveals that  the symmetric model has either 
a single polymorphic equilibrium (p̂  = Y2) or three 
polymorphic equilibria (0 < p^, < p^2 = !h < p^3 < l),  
where 

c + 2d - 3a 
PI, p s  = - 

- 
2 2  a + 2d + c - 4 b '  (10) 

Three internal solutions arise if and only if b < a < 
(c + 2 d ) / 3  or b > a > (c + 2 d ) / 3 ,  in  which  case the 
two outer polymorphic equilibria, p ^ 1  and $3, are sym- 
metrically located about  the  central  equilibrium $2 = 
Yz. Observe  from Table  5  that these existence condi- 
tions (for multiple internal  equilibria) are equivalent 
to  the  requirement  that  the homozygote X like-ho- 
mozygote fitness (a)  be  intermediate between the ho- 
mozygote X heterozygote fitness (b) ,  and a weighted 
average of homozygote x unlike-homozygote (c) and 
heterozygote x heterozygote fitnesses (d ), in  which 
the  latter  interactions are given double weight. 

Proceeding  to  the stability  analysis, we find  that 
the  general local stability conditions in Table 1 and 
APPENDIX B here  reduce  to (i) b < a for  both p^ = 
0 and p^ = 1; (ii) a < (c + 2 d ) / 3  for p^ = !h; and (iii) 
( c  + 2 d ) / 3  < a < b for  both  and $3. Note  that the 
outlying  internal  equilibria, and $3, are  either  both 
locally stable or both locally unstable,  whenever they 
exist. Moreover, the equilibrium structure of the sym- 
metric model depends solely on  the relative magni- 
tudes of the  three quantities a ,  b ,  and ( c  + 2 d ) / 3 ,  with 
only four distinct equilibrium  patterns possible (Table 
6), corresponding  to  the  standard  patterns  expected 
with either  one or  three polymorphic equilibria. 

In  addition  to allowing a  complete  equilibrium 
analysis, the prevailing symmetry makes this model, 
like the classical model, one of the few nonlinear 
systems for which a  complete analytic characterization 
can be  made of the qualitative gene  frequency trajec- 
tory  through  time. The full behavior is derived in 
APPENDIX C and summarized in Table  6.  Three im- 
mediate  observations  from this detailed analysis are 
that, paralleling the classical model, (i) the  gene  fre- 
quency always converges monotonically to a locally 
stable equilibrium, with no overshooting possible; (ii) 
the  range of initial frequencies  (domain of attraction) 
leading to a locally stable fixation equilibrium ($ = 0 
or p^ = 1)  extends  to  the  nearest unstable (polymor- 
phic) equilibrium; and (iii) the domain of attraction  of 

TABLE 6 

Equilibrium  patterns and dynamical behavior under the 
symmetric  model 

Equilibrium Initial 
Fitness condition pattern P (pattern)  frequency"  Trajectoryh 

(I 2 b,- 
c + 2 d c  

3 
sus 0.352 0 < P o  < % J 0 

% < po < 1 p ,  f 1 

(I 5 b,- 
c + ?d< usu 

3 
0.352 0 < P o  < '/z Pt f YZ 

Yz < p , ,  < 1 p ,  1 Y? 

b < ( I < -  
c + 2d 

SUSUS 0.148 0 < P O  < p ^ ~  p ,  J 0 
3 

pl < po < Y2 p ,  f Yz 

p ,  < PI) < 1 p i  t 1 
'!2 < PI, < j, pt .1 % 

b > ( I > -  
c + 2d 

USUSU 0.148 0 <PI, < p ^ l  p ,  $1 
3 

j I  <PI, < '!2 p ,  .1 SI 

y Z < p o < p ,  p t f @  p ,  <PI, < 1 p ,  1 p 3  

* p^,, p̂, are defined in Equation 10. 

' With  at  least one inequality strict. 
f (1) denotes  a monotonically increasing (decreasing) sequence. 

a given locally stable polymorphic equilibrium  extends 
to  the  nearest unstable equilibrium  on  either side. 

Further key observations are evident  from the pat- 
tern probabilities shown in Table  6.  These  are derived 
analytically in APPENDIX D assuming, in analogy to  the 
classical model above,  that the  four fitness parameters 
(Table 5) are independent  and uniformly distributed 
on [0, 11. From the  pattern  frequencies we conclude 
that  the symmetric model has the potential to  produce 
(i) three  internal equilibria (SUSUS, USUSU) 30% of 
the time; (ii) two stable  internal equilibria (USUSU) 
15% of the time; and (iii) one stable internal equilib- 
rium  (USU, SUSUS) 50% of the time. This is in strong 
contrast to  the classical model (Table 2 )  for which the 
corresponding  percentages are O,O, and 33.  

Even more importantly, there is at least one stable 
polymorphic equilibrium as long as the homozygote 
X like-homozygote fitness ( a )  is  less than  either  the 
homozygote X heterozygote fitness ( b )  or the weighted 
average, (c + 2 d ) / 3 ,  of the homozygote X unlike- 
homozygote and heterozygote X heterozygote fit- 
nesses. This means that  genetic variation can be  pre- 
served under  65% of the symmetric pairwise fitness 
space, which is almost double  the  corresponding  frac- 
tion for  the classical selection model. Furthermore, 
permanent  genetic diversity is guaranteed in 50% of 
the fitness space, since the  gene  frequency necessarily 
converges to a polymorphic equilibrium if the  homo- 
zygote X like-homozygote fitness is  less that in homo- 
zygote X heterozygote  interactions (ie., a < b) .  

These computations  provide our first quantitative 
measure of when and how much pairwise interactions 
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enhance  the likelihood of permanent genetic varia- 
tion. They also suggest that the simple protected 
polymorphism condition (a  < b )  may seriously under- 
estimate the  potential  for  permanent genetic diversity 
i n  this system. In particular,  although  both alleles are 
always maintained by the fitness sets producing  a 
protected polymorphism (USU, USUSU), these un- 
derestimate by 23% the fitness sets under which a 
permanent genetic polymorphism is possible (50% us. 
65%). 

Similar results hold for  the fully symmetric model 
i n  which fitnesses are completely determined by the 
degree of genetic similarity of the interacting individ- 
uals ( i . e . ,  d = a) .  In this case the equilibrium  structure 
and dynamical behavior simply depend on the relative 
magnitudes of the  three pairwise fitnesses correspond- 
ing to like X like (a ) ,  homozygote x heterozygote (b),  
and homozygote X unlike-homozygote ( c )  interac- 
tions. Many  of the results above consequently have a 
more  straightforward  interpretation, because all con- 
ditions involving the weighted average, ( c  + 2 d ) / 3 ,  
reduce  to equivalent conditions  on the single fitness, 
c .  The quantitative  statements are only  slightly altered 
by the  change in the  pattern probabilities in Table 6 
to  1/3,  1/3, 1/6, and  1/6. 

The analytic investigation of the symmetric models 
demonstrates  that  frequency-dependent selection 
based on pairwise interactions can significantly facili- 
tate  the  maintenance of genetic variation (relative to 
the classical, constant fitness regime). The equilibrium 
pattern probabilities on which these comparisons have 
been made, however, do not fully measure the poten- 
tial for  permanent genetic variation in frequency- 
dependent systems, due to the uncertain  outcome 
under  patterns  where fixation and polymorphic equi- 
libria are simultaneously stable (e.g., SUSUS). In such 
cases, not all gene  frequency  trajectories will converge 
to  the stable polymorphic value, since under some 
initial frequencies the trajectory will converge to 0 or 
1. Thus, in contrast  to  the classical model,  the exist- 
ence of a locally stable polymorphic equilibrium  does 
not generally guarantee  that  genetic variation will be 
maintained in the  population. 

T o  properly ascertain the  potential  for the mainte- 
nance of genetic variation under  frequency-depend- 
ent models, and  others  where  boundary  and  internal 
equilibria can be simultaneously stable, we must also 
compute  the  average  proportion of initial gene  fre- 
quencies that lead to  a polymorphic equilibrium. 
These  expected values are difficult to  determine  an- 
alytically, for even in the fully symmetric case the 
delimiting frequencies, p ^ l  and p^s, defined in (10) have 
complex functional forms. The following sections for- 
mally address this issue through  an extensive numer- 
ical investigation of symmetric and  other special forms 

of pairwise interactions, as well as of the general case 
in Table 3 .  

NUMERICAL STUDY 

Twelve  different pairwise fitness schemes were ana- 
lyzed numerically. These  include 

1. General  pairwise  interaction  model: All 9 pairwise 
fitnesses (Table 3 )  are independently  generated by a 
random  number  generator with a  uniform  distribu- 
tion on [0, 11. 

2. Symmetric pairwise  interaction  models: The four 
fitness parameters  (Table 5 )  are randomly generated 
from [0, 11, or  just  three in the fully symmetric case 
with d = a .  

3. General  dominance model (COCKERHAM et al. 
1972): The dominance  parameters, h and k ,  and  the 
four homozygote X homozygote fitnesses (Wl1,,] for i ,  
j = 1, 2 )  are randomly  generated  from [0, 11 and  the 
remaining fitnesses computed by 

W,j,12 = (1 - k)W,,ll + k W i p  i ,  j = 1, 2 

and 

W1e.ii = (1 - h)WlI , ,  + hW22,ij i ,  j = 1, 2. 

4 .  Negatively  ordered model (generalization of nega- 
tive frequency  dependence,  where individuals are 
least fit when interacting with others of the same 
genotype): All 9 pairwise fitnesses (Table 3 )  are  ran- 
domly generated  from [0, 11 and  rearranged, if nec- 
essary, so that  for each genotype AiA, 

W . .  11.Y . .  < wlj,k, for k ,  1 # i ,  j .  

5. Fully  negatively  ordered model (negatively ordered 
fitnesses where additionally each homozygote’s pair- 
wise fitnesses decrease with increasing genetic similar- 
ity  of the interacting individuals): All 9 pairwise fit- 
nesses (Table 3 )  are randomly  generated  from [0, 11 
and  rearranged, if necessary, so that 

W,,,,, < W,,,12 < Wlla i ,  j = 1, 2 with i # j ,  

and 

Wl2,ln < W I ~ , ~ ~  i = 1, 2. 

6. Positively ordered model (generalization of positive 
frequency  dependence  where individuals are most fit 
when interacting with others of the same genotype): 
All 9 pairwise fitnesses (Table 3 )  are randomly  gen- 
erated  from [0, 11 and  rearranged, if  necessary, SO 

that  for each genotype AiA, 

Wq,,l > W,,,, for k ,  1 # i ,  j .  

7. Fixed maximum interaction models (where  a given 
genotypic interaction has maximum fitness): One pair- 
wise fitness (wl],kl) is fixed at  1  and  the remaining 8 
fitnesses are randomly  generated  from [O, 11. 

Numerical methods: In each case the  random fit- 
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ness parameters (Wq,hl) were produced by the uniform 
random  number  generator (UNIFORM) proposed by 
L'ECUYER (1988)  for 32-bit computers. This algo- 
rithm was selected because of its high periodicity 
(2.30584 X lo'*)), uniformity, and randomness. We 
independently verified the  latter two properties by a 
series of four basic tests (APPENDIX E). Two  to five 
replicate runs, each with at least 20,000 fitness sets 
(with a maximum of 80,000), were analyzed for each 
model. 

Each fitness scheme was investigated through  the 
four-step  procedure  outlined below. (Verification of 
the numerical protocol can be  found in APPENDIX E.) 

Step 1. Iterate to assess likelihood of genetic variation : 
This step was used to identify stable equilibria,  the 
extent of the domains of attraction of  all internal 
equilibria, and any limit cycles or nonmonotonic  tra- 
jectories. Recursion (1) is iterated  from p~ = 0.01, 
. . . , 0.99  (or in the symmetric cases PO = 1/99, . . . , 
98/99) until convergence ( I  Apt I < lo-') or 10,000 
generations, whichever comes first. If ( p , ]  converges 
for  a given po,  the final iterate is saved as a stable 
equilibrium value ( j ) ,  and  counters  updated  for (i) the 
number of sequences (i.e., initial P o  values) that con- 
verged to a polymorphic equilibrium; and (ii) the 
number of distinct,  stable polymorphic equilibria 
found  for  that fitness set.  Although  iteration  cannot 
locate unstable internal  equilibria,  a fixation equilib- 
rium is considered unstable at  the  end of this step if 
no sequences converged to it. In  order  to  detect  the 
potential  for limit  cycles and nonmonotonic  trajecto- 
ries, a fitness set is stored  for individual investigation 
and  an  error signaled if, for any initial PO,  convergence 
is not  attained in 10,000 generations or  the sign of 
Apt changes at any iterate. 

Paralleling other iterative studies (e.g., CLARK  and 
FELDMAN  1986) this step rests on the following prac- 
tical principle: Two limiting values, j ,  and j j ,  are 
considered  equivalent if I j, - j j  1 < This as- 
sumption further implies that any value less than  1 0-4 
is treated as 0, any value greater  than  0.9999 is treated 
as 1,  and any value in  [O.OOOl, 0.99991 is classified as 
polymorphic. While this convention may  fail to distin- 
guish between nearby, distinct equilibria, the risk is 
apparently small, since no nonstandard  equilibrium 
patterns ( i . e . ,  not in Table 4) were detected. 

Step 2. Identijy the equilibrium  pattern for  thejtness 
set: This  step was used to identify all equilibria,  both 
stable and unstable, and as a  by-product  provided an 
independent check of whether all stable equilibria 
were found by iteration. The internal equilibria are 
obtained by first finding all real-valued solutions of 
the  equilibrium  equation (Bl) via the cubic-equation- 
solving-method presented in PRESS et al. (1  986). Roots 
classified  as polymorphic by the convention  outlined 
in Step  1  are  then substituted back into (Bl)  and 

judged valid if the absolute value of (Bl) is  less than 
lo-'. (This test was always satisfied in our runs.) 

The stability of the equilibria are then  determined 
by evaluating (Al)  at j = 0 and j = 1,  and (A2) at all 
internal  equilibria,  where in deference  to possible 
roundoff error an  equilibrium is considered  neutrally 
stable if 1 s I f  '( j )  I < 1 .OOO 1. Neutrally stable points 
are  then reclassified as stable if  they were identified 
as stable equilibria in Step 1, and otherwise recorded 
as unstable. 

The results are then  compared to those from  Step 
1 with respect to  the  number of stable polymorphic 
equilibria, the values of the stable polymorphic equi- 
libria (for  agreement  to within 1 0-4), and  the stability 
of the fixation states, 0 and 1.  In cases where a 
boundary  equilibrium is judged stable by (Al)  but 
unstable by Step  1 (e.g., I f '(0) I < 1 but  no trajectories 
converged to p = 0) the  program  attempts to resolve 
the discrepancy by performing  an additional  iteration 
from p o  = 0.0001  for p = 0, or P o  = 0.9999  for 
p =  1. 

If there is no discrepancy, the  equilibrium  pattern 
is classified and  the following 19 statistics updated: 
(1-3) N t :  the  number of fitness sets with i = 1, 2, or 3 
distinct, polymorphic equilibria; (4-6) Nip: the  number 
of initial frequencies that converge to a  polymorphic 
equilibrium, for those fitness sets with exactly i = 1, 
2, or 3  stable polymorphic equilibria; (7-14) 
Num-pattern: total number of fitness sets with the 
observed  equilibrium pattern (pattern) found in Table 
4; (15-18) P-pattern: total number of initial frequen- 
cies that converge to a polymorphic equilibrium, if 
the equilibrium pattern (pattern) is USU,  SUSU, 
USUS, or SUSUS; and (19) FITSETS:  the  number of 
fitness sets with no  errors. 

A fitness set is stored  for individual investigation 
and  an  error signaled if either  the results from  the 
two steps disagree or  the observed pattern is not 
shown in Table 4. 

Step 3. Calculate measures of genetic variation : After 
each 10,000 fitness sets the following 20 probability 
statistics are calculated, based on the cumulative error 
free fitness sets (where n = total number of initial 
frequencies used for  iterating each fitness set): (1 -8) 
P(pattern) = (Num-pattern)/FITSETS, for each equi- 
librium pattern in Table 4; (9-1 1) P(exact1y i stable 
polymorphic equilibria) = NJFITSETS,  for i = 1,  2, 
and 3; (1 2-14) P(converge  to  a polymorphic equilib- 
rium given there  are i stable  internal  equilibria) = Nip/ 
[Ni X n ] ,  for i = 1, 2, and 3; (15)  P(converge  to  a 
polymorphic  equilibrium) = x:=, Nip/[FITSETS X n]; 
(16)  P(protected polymorphism) = P(USU) + 
P(USUSU); and  (1 7-20) P(converge to a  polymorphic 
equilibrium given the equilibrium pattern) = 
P-pattern/[Num-pattern X n ]  for  the  equilibrium pat- 
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TABLE 7 

Summary probabilities for pairwise interaction models 

0.506 0.433 0.250 
0.842 0.814 0.774 

0.648" 0.594 0.500" 
0.662" 0.578 0.498" 
0.248 0.248 0.248 
0.125 0.099 0.020 
0.333 0.333 0.333 
0.191 0.117 0.000 
0.5 1 1 0.423 0.249 
0.512 0.447 0.246 
0.579 0.524 0.252 
0.767 0.694 0.499 

Wd 0.826 0.808  0.772 

" N o t ?  close agreement  to analytic values in Table 6 and text. 

terns with exactly one stable polymorphic equilibrium 
(i.e., USU, SUSU, USUS, SUSUS). 

A model's run is terminated  after  100,000 fitness 
sets, or if the following 14 statistics agree  to within 
5 X of their values after  the last 10,000 sets: the 
probabilities in (1 -8) corresponding  to  patterns with 
exactly one stable polymorphic equilibrium, and all 
probabilities in (9-14) and (17-20). 

Step 4 .  Individually  examine  all  fitness sets which sig- 
nal  errors: All fitness sets/limiting values saved be- 
cause of nonmonotonic  trajectories,  nonconvergence 
after  10,000  generations,  a discrepancy between steps 
1 and  2, or a  nonstandard  equilibrium  pattern  are 
individually investigated with the aid of a special pro- 
gram which implements Steps 1-3. N o  more  than  109 
(with an average of 20) of the  20,000-80,000 fitness 
sets on a run fell  in this category. 

Numerical results: The numerical results are sum- 
marized in Tables 7-9, where in each case the values 
shown represent  the  average across 2 to 5  replicate 
runs. Key features of this analysis are highlighted 
below. 

1. Probability of at  least one  stable internal  equilib- 
rium: The summary statistics in Table 7 confirm that 
genotypic interactions can greatly facilitate the main- 
tenance of genetic variation. In  the  general model 
5 1% of the pairwise fitness space produces at least one 
stable polymorphic equilibrium as opposed to 33% of 
the fitness space for the classical model and 65-66% 
of the fitness space for  the symmetric models. This 
probability has a  remarkable maximum of 84% in the 
negatively ordered model,  where individuals are least 
fit when interacting with another of their own geno- 
type. Interestingly, this value is slightly lower (83%) 
in the fully negatively ordered case, where  addi- 
tionally each homozygote's pairwise fitnesses decrease 
with increasing genetic similarity of the  interacting 

individuals. In  contrast,  a stable polymorphic equilib- 
rium exists for only 25% of the  general  dominance 
fitnesses (COCKERHAM et al. 1972),  and, in keeping 
with the analytical results for  the symmetric model 
(Table  6), is least  likely (1  3%) in the positively ordered 
case. 

The fixed maximum interaction models provide 
further insight into the types  of interactions which 
increase or decrease the likelihood of a stable poly- 
morphic  equilibrium. On average, this likelihood is 
lowest (19%) when a homozygote X like-homozygote 
interaction fitness is highest (W, = l),  and greatest 
(77%) when a  heterozygote x homozygote fitness is 
highest (W12.22 = 1). The two extreme values thus 
correspond to  the two fitness schemes which respec- 
tively insure the stability or instability of one of the 
fixation states (see Table  1). In the  other  three cases, 
where  a homozygote x heterozygote fitness is maxi- 
mal ( W I I , I ~  = l) ,  a homozygote X unlike-homozygote 
fitness is maximal (W11.22 = l) ,   or the heterozygote x 
heterozygote fitness is maximal (W12.12 = 1) the  bound- 
ary equilibria may be  either stable or unstable. For 
the first two of these, the likelihood of a stable poly- 
morphic  equilibrium is equivalent to  that  for  the 
general model (5 1 %), and interestingly is only slightly 
higher (58%) in the  third ( W 1 2 , , 2  = l) ,  which could be 
viewed as the  heterotic, pairwise fitness scheme. 

2. Probability of converging to a  polymorphic  equilib- 
rium: A more precise measure of the potential for 
permanent  genetic variation is provided by the overall 
fraction of initial gene  frequencies which lead to a 
polymorphic equilibrium. This statistic exhibits  the 
same relative ordering as the probability of having at 
least one stable internal  equilibrium, and is in fact 
only  slightly reduced by the possible simultaneous 
stability of one  or  both fixation equilibria. For the 
basic models in Table 7 (i.e., not  fixed-maximum), the 
probability of converging to a polymorphic equilib- 
rium is again only  less than  the classical value (33%) 
in the  general  dominance (25%)  and positively or- 
dered  (1 0%) models. On average,  a polymorphic equi- 
librium is reached  for  43% of the fitness space/initial 
frequencies in the  general case and  for  81 % in the 
negatively ordered models. This value is intermediate 
(58-59%)  for  the symmetric models. 

In  the fixed maximum interaction models, the like- 
lihood of converging to  an  internal  equilibrium 
ranged  from  a minimum average value of 12% when 
a homozygote x like-homozygote fitness is highest 
( W l l , l l  = I), to a maximum average value of 69% 
when a  heterozygote x homozygote fitness is highest 
(W,2,22 = 1). In the  other  three cases, this probability 
is similar to that in the  general model (43%), with a 
notable  difference only in the heterotic scheme (W12.12 

= 1)  where the value is increased to  52%. 
3. Probability of a protected polymorphism  as a n  esti- 
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TABLE 8 

Pattern and conditional convergence probabilities 

Pattern  General ~ y r n m e t r i c ~  
General 

ordered"  dominance 
Positively 
ordered Classiral 

su 0.127 (0,000) 0.074  (0,000) 0.000 (-) 0.251 (0,000) 0.057 (0,000) 0.167 (0.000) 
C S  0.128 (0.000) 0.063 (0.000) 0.000 (-) 0.253  (0.000) 0.084 (0.000) 0.167 (0.000) 
sus 0.239  (0.000) 0.020  (0.000) 0.352 (0.000) 0.247  (0.000) 0.734  (0.000) 0.333  (0.000) 
usu 0.238  (1.000) 0.736  (1.000) 0.352 (1.000) 0.248 (1.000) 0.020 (1.000) 0.333  (1.000) 
susu 0.124  (0.718) 0.039  (0.585) 0.000 (-) 0.000 (-) 0.022  (0.817) 0.000 (-) 
usus 0.120  (0.715) 0.029  (0.582) 0.000 (-) 0.000 (-) 0.046  (0.800) 0.000 (-) 
SUSUS 0.013  (0.712) 0.000' (-) 0.147 (0.632) 0.000 (-) 0.037 (0.656) 0.000 (-) 
ususu 0.012  (1,000) 0.038 (1.000) 0.148 (1.000) 0.000 (-) 0.000' (-) 0.000 (-) 
1 Stable polymorphic  equilibrium 0.494  (0.853) 0.804 (0.965) 0.499  (0.891) 0.248  (1.000) 0.125  (0.792) 0.333  (1.000) 
2 Stable polymorphic equilibria 0.012 (1.000) 0.038 (1.000) 0.148 (1.000) 0.000 (-) 0.000'(-) 0.000 (-) 
At least 1 stable  polymorphism 0.506 (0.856) 0.842 (0.967) 0.648 (0.916) 0.248 (1,000) 0.125  (0.792) 0.333  (1.000) 

Pattern probabilities  followed by P(converge  to  polymorphic equilibrium I pattern) in parentheses  for each pattern with frequency of a t  

" For the fully negatively ordered  model,  the  pattern probabilities are within 0.03 of the  entries  for  the negatively ordered model; the 

For  the fully symmetric model,  the  pattern probabilities are within 0.03 of  those for  the symmetric model;  the conditional  conver-gence 

Pattern  occurred i n  only 1-2 fitness  sets, with frequency  of 5 X 10" or less. 

lKlst 5 X 

conditional convergence probabilities differ only for SUSU (0.667), USUS (0.659), and  for 1 and  at least 1 stable  polymorphism (0.978). 

probabilities differ only for SUSUS (0.492) and  for 1 stable (0.830) and  at least 1 stable (0.874) polymorphism. 

TABLE 9 

Pattern and conditional convergence probabilities for the fixed maximum interaction models 

Pattern w,,,,, = 1 n.,,.,, = 1 LV,,,,, = 1 w,,,,, = 1 12'1,,,, = 1 

SU 0.000 (-) 0.030  (0,000) 0.084 (0,000) 0.108 (0.000) 0.000 (-) 
us 0.318 (0.000) 0.208 (0.000) 0.171  (0.000) 0.1 12 (0.000) 0.233  (0.000) 
sus 0.491 (0.000) 0.251 (0,000) 0.233 (0.000) 0.201 (0.000) 0.000 (-) 
usu 0.000 (-) 0.224 (1.000) 0.240 (1.000) 0.252 (1.000) 0.476 (1.000) 
SUSU 0.000 (-) 0.220 (0.702) 0.167  (0.769) 0.141  (0.847) 0.000 (-) 
usus 0.180  (0.614) 0.042  (0.461) 0.080  (0.739) 0.140 (0.848) 0.269  (0.727) 
SUSUS 0.010 (0.655) 0.001 (0.678) 0.018 (0.726) 0.046  (0.730) 0.000 (-) 
USUSU 0.000 (-) 0.025 (1.000) 0.006 (1.000) 0.000 (-) 0.023 ( I  ,000) 
1 Stable  polymorphic  equilibrium 0.191  (0.616) 0.486 (0.818) 0.506 (0.872) 0.579  (0.905) 0.744  (0,902) 
2 Stable polynlorphic  equilibria 0.000 (-) 0.025 (1 .OOO) 0.006 (1 .000) 0.000 (-) 0.023  (1.000) 
At least 1 stable  polymorphism 0.191 (0.616) 0.51 1 (0.827) 0.512 (0.874) 0.579  (0.905) 0.767 (0,905) 

Pattern probabilities followed by P(converge  to a polymorphic equilibrium I pattern)  for each pattern with frequency of at least 5 X 10". 

mate of the potential for  permanent genetic variation: It 
is clear from Table 7 that  the probability of a  pro- 
tected polymorphism ( i . e . ,  p^ = 0 and p̂  = 1 both 
unstable) is usually a  poor  estimate of the full potential 
for  permanent  genetic  variation.  For  the  general 
model this probability underestimates  the likelihood 
of having a stable internal  equilibrium by 51 %, and 
the probability of actually converging to a polymor- 
phic equilibrium by 42%. The same is true  for  the 
three middle fixed maximum models in  which a ho- 
mozygote x unlike-type or heterozygote x heterozy- 
gote fitness is maximal. The discrepancies are some- 
what  less  in the  other special  cases,  with the exception 
of the two fitness schemes with the lowest potential 
for  permanent  genetic variation. For  the positively 
ordered model, the  protected polymorphism condi- 
tion underestimates the  more precise measures of 
genetic variation by 5- to 6-fold. The worst discrep- 
ancy occurs under  the fixed maximum interaction 
model where  a  homozygote X like-homozygote fitness 

is maximal (WII , l l  = 1).  In this case there is never  a 
protected  polymorphism, yet there is a  stable  internal 
equilibrium 19% of the time and  one is reached 12% 
of the time. Interestingly,  the  protected polymor- 
phism conditions  appear to be perfect  predictors of 
the maintenance of genetic variation in the general 
dominance model just as  in the classical model (see 
pattern probability discussion below). 

4. Pattern  probabilities: Further general observa- 
tions are evident  from the individual pattern  proba- 
bilities in Tables 8 and 9: (i) Only the 8 standard 
equilibrium  patterns (Table 4) were ever  detected. (ii) 
Pattern  frequencies strongly depend  on  the pairwise 
fitness regime. The full range of patterns was only 
found in the general case and in the two fixed maxi- 
mum models in  which a homozygote x unlike-type 
fitness is maximal. All but  one  pattern was found  for 
negatively or positively ordered fitnesses (see last foot- 
note  to  Table 8), and  for fixed maximum fitnesses in 
which the heterozygote X heterozygote fitness is max- 
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imal. At the opposite extreme, only four  patterns were 
found for the classical, general  dominance, and sym- 
metric models, as well as for  the fixed maxilnum 
models where a homozygote X like-homozygote or 
heterozygote X homozygote fitness is maximal. (iii) 
For some models, the missing patterns may be corn- 
pletely excluded by the fitness regime. Such is the 
case for  the classical model, the symmetric models, 
and  the  fixed maximum models in  which Wti.lt = 1 or 
11112,~~ = 1 for i = 1 or  2. In other models, the missing 
patterns lTlay be theoretically possible but  restricted 
to such a small range  of  their fitness space that they 
were not encountered.  This seems the most likely 
explanation of the results for the general  dominance 
model, since although its stability analysis (COCKER- 
HAM et al. 1972)  appears  to have been based on an 
analog of the insufficient condition,f’( p̂ ) < 1, rather 
than the full stability criterion in (6), the model did 
not  produce any nonmonotonic  trajectories (which 
should occur  wheneverf‘(6) < O}. (iv) With the slight 
exception of the general  dominance case, the two 
equilibrium patterns with one  internal  equilibrium 
(SUS, USU) are  together  the most frequent. In the 
general case these  constitute almost half the total 
distribution, with the twin patterns with zero or two 
internal equilibria each occurring in 24-25% of the 
fitness space, and  the two patterns with three internal 
equilibria occurring in  less than 3% of the fitness 
space. (Note  the symmetric frequencies  for each pair 
of patterns with the same number of internal equilib- 
ria.) (v) Although it is possible to have two stable 
polymorphic equilibria, this evidently only occurs in a 
small subset of the total fitness space. The associated 
pattern  (USUSU) was only produced by -1% of the 
general pairwise interaction fitness space and by  less 
than 4% of the fitness space for all the special  cases 
except the t w o  bymmetric models. I t  was never  en- 
countered in the general  dominance model or in the 
fixed maximum models where  a like X like fitness is 
maximal, and  occurred only twice in the positively 
ordered model. Note  that the  latter findings are con- 
sistent with the analytic results for  the symmetric 
model (Table 6). (vi) Each pattern probability ob- 
tained under  the negatively ordered model is close to 
that  for the “complementary”  pattern (i.e., the  pattern 
obtained by replacing every “U”  by “S” and every “S” 
by “U”) in the positively ordered model. 

5. Probability of Converging to a polymorphic equilib- 
rium  given the equilibrium  pattern: The conditional 
probabilities in Tables 8 and 9 show that genetic 
variation is very  likely to be maintained in all  cases 
where there is a stable polymorphic  equilibrium 
(USU, SUSU, USUS, SUSUS, USUSU).  In the gen- 
eral model, the gene  frequency converges to a poly- 
morphic value 86% of the time that at  least one stable 
polymorphic equilibrium exists. Although this always 

occurs when both fixation states are unstable (USU, 
USUSU),  a stable polymorphic equilibrium is even 
reached  (on  average) from over 7 1% of the initial 
frequencies when one  or both fixation states are also 
stable. 

The various special models are also very apt  to 
maintain both alleles whenever there is at least one 
stable polymorphic equilibrium. The likelihood is low- 
est, but still fairly high (62%), for  the fixed maximum 
model where  a homozygote X like-homozygote fitness 
is maximal, and highest (97%)  for  the negatively or- 
dered model. The values in the  other cases range 
from 79  to 92%. With a single exception  (USUS 
pattern when W,,,12 = 1) the probability of converging 
to a polymorphic value exceeds, and often greatly so, 
the fraction of stable equilibria that  are polymorphic. 
(The classical and general  dominance models are 
omitted  from this  discussion because both fixation 
states are,  or were found  to  be, unstable whenever a 
stable internal  equilibrium exists.) T h e  surprisingly 
high probabilities of converging to a stable polymor- 
phic equilibrium in the presence of one  or  more stable 
fixation equilibria (ie., for SUSU, USUS, and SUSUS 
patterns)  further  account  for  the generally high like- 
lihood of maintaining genetic variation in the pairwise 
interaction  model, as well as for the often  poor  per- 
formance of protected polymorphism conditions as a 
measure of this potential. 

6. Nonmonotonic  trajectoriesllimit cycles: In contrast 
to the symmetric model, fitness sets with nonmono- 
tonic  gene  frequency  trajectories are possible under 
other pairwise fitness schemes. Such behavior is rare, 
however, and was found only  in runs for the general 
pairwise interaction  model, the negatively ordered 
model, and  the fixed  maximum model with a  homo- 
zygote x unlike-homozygote fitness maximal. In  all 
nonmonotonic  trajectories the gene  frequency  over- 
shot the ultimate  equilibrium in the first generation, 
with the subsequent  trajectory generally converging 
very quickly, either monotonically or with further 
oscillations. 

Most fitness sets with errors were so identified be- 
cause of nonconvergence in the  allotted 10,000 gen- 
erations, All such cases were found upon individual 
investigation to be converging  to an equilibrium fre- 
quency, albeit very  slowly, without any cyclical behav- 
ior. Since there is no  evidence of limit  cycles, the 
statistics concerning polymorphic equilibria suffice to 
assess the potential for genetic variation in this class 
of models. 

DISCUSSION 

The present  study of frequency-dependent,  pair- 
wise interaction models joins a growing series of quan- 
titative assessments of the  potential  for  permanent 
genetic variation under various forms of natural selec- 
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tion (e .g . ,  KARLIN and  CARMELLI  1975;  LEWONTIN, 
GINZBURC and TULJAPURKAR 1978; KARLIN 1981; 
KARLIN and  FELDMAN  198 1 ; CLARK and  FELDMAN 
1986). The results from such studies provide a novel 
perspective on the biological conditions which en- 
hance or reduce this potential,  as well as on  the 
relative strengths of their effects. Here,  the primary 
measures of genetic variability are (i) the fraction of 
pairwise fitness sets which produce  at least one stable 
polymorphic equilibrium; and (ii) the overall fraction 
of  initial gene  frequencies,  averaged across all  possible 
fitness sets, which converge to an internal  equilibrium, 
calculated under  the assumption that the pairwise 
fitnesses are independently  and uniformly distributed 
on [O, 11. 

Our first step involved a  complete analytic descrip- 
tion  of the equilibrium structure  and dynamical be- 
havior under  a symmetric model, in which the pair- 
wise fitnesses depend on the genetic similarity of the 
individuals involved. This was supplemented by an 
extensive numerical investigation of the equilibrium 
patterns and gene  frequency dynamics under  the gen- 
eral pairwise interaction  model, as well as under the 
symmetric model and  other special  cases. A key aspect 
of the numerical study was an assessment of the com- 
bined domains of attraction of stable polymorphic 
equilibria. 

The results from  both phases of the study provide 
concrete evidence that models which incorporate  the 
frequency-dependent effects of  pairwise interactions 
have a high potential for permanent genetic variation. 
For general pairwise fitnesses, the probabilities of 
producing  at least one stable internal equilibrium and 
of actually converging  to  a polymorphic frequency are 
respectively 51%  and 4396, versus 33% for  the classi- 
cal, constant viability selection model. These  proba- 
bilities are both highest (84% and 8 1 %) when  like x 
unlike interactions are beneficial with respect to those 
between like types (negatively ordered fitnesses), and 
lowest (1 3% and 10%) when like X unlike interactions 
are detrimental (positively ordered fitnesses). In the 
symmetric models these two conditions respectively 
insure  and  preclude  the  maintenance of genetic vari- 
ation. T h e  potential for permanent  genetic variation 
is only reduced below that in the classical model when 
each individual’s fitness is highest in association with 
like genotypes (positively ordered model), a homozy- 
gote X like-homozygote fitness is maximal, or fitnesses 
satisfy the  conditions of the  general  dominance model 
(COCKERHAM et al. 1972). 

These results are consistent with qualitative predic- 
tions on biological grounds, as well  as with theoretical 
demonstrations of an increased retardation  of fixation 
in finite populations under  certain pairwise fitness 
arrays (HEDRICK  1972, 1973).  What is perhaps  sur- 
prising, however, is the actual extent  to which inter- 

genotypic interactions can enhance  or  reduce genetic 
variability. Our quantitative results also provide a 
number of other useful insights into this class of 
models. For instance, the numerical analyses of  the 
negative and fully negatively ordered models show 
that  the likelihood of maintaining genetic variation is 
not increased if in addition to having each genotype’s 
fitness lowest in association with another of the same 
genotype, each homozygote’s pairwise  fitnesses are 
decreasing functions of the genetic similarity of the 
interacting individuals. 

Another  important  point, from the numerical in- 
vestigation of the  set of fixed maximum models, is 
that it is the homozygote X like-homozygote and 
heterozygote X homozygote fitnesses which, presum- 
ably because they determine  the stability of the fixa- 
tion states, have the greatest impact on the likelihood 
of genetic diversity. Interestingly, the  “heterotic” pair- 
wise fitness scheme, in  which the heterozygote x 
heterozygote fitness is maximal, is only  slightly more 
likely to  preserve  both alleles than is the “average” 
pairwise fitness scheme. In  the same vein, the  heter- 
ozygote X heterozygote fitness only affects the  out- 
come under  the symmetric model as part of a weighted 
average  including the homozygote X unlike-homozy- 
gote fitness. Although the stability of the  boundary 
equilibria strongly influences the likelihood of stable 
polymorphic equilibria and of ultimately converging 
to  a polymorphic frequency, the conditions for a pro- 
tected polymorphism, which ensure genetic variability 
through  the instability of both fixation states, under- 
estimate by an  average of 50%  the full potential for 
permanent genetic variation. 

The increased likelihood of maintaining both al- 
leles, and  the  poor  performance of a  protected poly- 
morphism as a measure of  this likelihood, are caused 
primarily by a greater variety and  frequency of equi- 
librium patterns with one stable polymorphic equilib- 
rium, in conjunction with a large domain of attraction 
for stable internal equilibria. For instance, on average, 
the  gene  frequency converges to  a polymorphic value 
86% of the time that  a stable internal equilibrium 
exists, and even does so over 71% of the time if one 
or both fixation states are simultaneously stable. The 
existence of multiple, stable internal  equilibria, on the 
other  hand,  does  not  contribute significantly to  the 
increased potential for genetic variation in these 
models since, although it is possible to have two stable 
internal  equilibria, this situation is highly  unlikely 
except in the symmetric models, where it occurs in 
15-1796  of the fitness space. In all other cases consid- 
ered, multiple, stable polymorphisms were generated 
in  less than 4% of the fitness space, and  did not arise 
at all (or with negligible frequency) when  like x like 
fitnesses are maximal  (positively ordered  model, sym- 
metric models, or fixed maximum schemes with a 
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homozygote X like-homozygote or  the heterozygote 
x heterozygote fitness maximal). 

Two further points should be borne in mind when 
interpreting  the numerical results from this and simi- 
lar studies. First, the statistics are based on a uniform 
distribution of initial frequencies (as  well as the un- 
constrained pairwise fitnesses), whereas the initial fre- 
quencies in actual populations are perhaps  more  apt 
to be near 0 or  1,  due  to  the  recent  appearance of a 
new mutant.  Moreover, in such cases random genetic 
drift may critically influence the ultimate outcome. 
Second, in addition  to  trajectories which converge to 
an internal  equilibrium, genetic variation can also in 
principle be preserved through  regular or chaotic 
limit cycles (see e.g., ASMUSSEN 19'79, 1983,  1986).  In 
fact,  at least  in density-regulated systems, the  potential 
for  permanent genetic diversity may be significantly 
greater when the  conditions  producing limit cycles 
are taken into  account. A number of previous theo- 
retical studies of frequency-dependent selection (LE- 

ERHAM et al. 1972; ENDLER 1988), as well as a recent 
population genetics textbook (HARTL and CLARK, 
1989 pp. 159- I6  l ) ,  have referred to the insufficient 
local stability criterion d A q / d q  < 0, or equivalently 
f ' (p^)  < 1 ,  rather than  the full condition in (6). By 
failing to check that f ' ( p ^ )  > -1,  a stability analysis 
may not only  be invalid, it misses the potential  for 
l i m i t  cycles. Our detailed study shows, nonetheless, 
that limit cycles evidently do not play a  role in main- 
taining genetic variation in the pairwise interaction 
model. 

I n  conclusion, this investigation sheds considerable 
insight into  the  potential  for  permanent genetic vari- 
ation in deterministic,  frequency-dependent selection 
models based on pairwise interactions  among the gen- 
otypes at  a single diallelic locus. Important  further 
steps will  be to  determine  the  extent  to which the 
present results extend  to pairwise interactions at mul- 
tiallelic  loci and  other forms of frequency-dependent 
selection, as  well to stochastic models incorporating 
the effects of drift. 
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APPENDIX A 

Local stability eigenvalues for frequency-depend- 
ent fitnesses: At the  fixation  equilibria, p^ = 0 and 
p^ = 1 ,  (7) reduces  to 

while at  polymorphic  equilibria (0 < p̂  < l), 

where 

APPENDIX B 

Internal equilibrium equation and local stability 
derivatives under the painvise interaction model: 
Substituting (8) into  the  internal  equilibrium  equa- 
tion, Wl( p )  = W2( p ) ,  shows that  the  polymorphic  equi- 
libria are  the  roots (if any)  on (0, 1) of  the  cubic 

c 3 p  :7 + c2p‘ + c,p + co = 0 (B1) 
where 

~ S = ~ I I . I I - ~ ~ ~ ~ , I . ~ + ~ I I . ~ : ! - ~ W I ~ , ~ ~ + ~ W I ~ , ~ : !  

- 2Wl2.22 + w22.1 I - 2w22.12 + w22.22 
~~=2w~1,1~-2w11.~~-6W1~,1~+5w~~.~~+441/112~,~~ 

- 3W22.22 + w12.11 - w22.11 
c1 =w11,~-4w12,82+ 3w22.22+ 2w12.12+ 2W22,12 

co = w12.2, - w,,,,,. 
Local  stability  of  each  polymorphic  equilibrium j is 
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determined by applying the  criterion in (6) to (A2), 
where  from (8) 

Wh(p)  = 2(Wq,11 + w i j , 2 2  - 2w~,12)p  

+ 2(WG,12 - WG,22) for i, j ,  = 1 ,  2 .  

APPENDIX C 

Proof of monotonic  convergence  under  the  sym- 
metric  pairwise  interaction  model: For this model 
Ap, given by (4) can be written as 

where 

g ( p , )  = (4b - u - 2d - C)p,(l - p , )  + u - b (C2) 

and 

m ( p t )  = hpP + kspB + k2p: + klpt  + ko (C3) 

with coefficients 

kq = 2 ( ~  + 2d + c - 4b)  

k 3  = -4(a + 2d + c - 4b) 

k p  = 2(3~ + 2d + c - 6b)  

kl = 4(b - a) 

ko = a. 

The proof is divided into  four  parts  depending  on 

Case 1. b > a > (c + 2d)/3 (USUSU): Under this 
the relative order of a, b,  and (c + 2d)/3. 

condition g(pJ in (C2) can be  factored as 

g( p t )  (a + 2d + c - 4b)(p t  - p ^ l ) ( p t  - $3) (C4) 

where j l  and j 3  are  the  internal equilibria defined in 
(10). It follows that 

To prove monotonicity we must rule out overshooting 
by showing that 

0 < p ,  < !h implies 1 Ap, I < I p ,  - p ^ ~  I ,  (C6) 

and 

'/2 < p ,  < 1 implies I Ap, 1 < I p ,  - p ^ ~  I .  (C7) 

Observe that  the implication (C6) holds if and only if 

2p4 1 - p , , < j s  - f i t ) ( %  - P,)(4b - a - 2d - 4 
W( P I )  

(C8) 

less than 1. 

To establish (C8) it suffices to show that 

2p4l - pt)*(9'2 - pJ(4b  - a - 2d - C) < W ( P t )  
which from (C3) reduces to 

-(4b - u - 2d - c)p:(l - p , )  - (3a - 2d - C) 

* [% -pt(l -pf)] - (a + 2d + c)/4 < 0 ,  
which clearly holds under  the prevailing pairwise fit- 
ness relations. 

The implication (C7) similarly holds if and only if 

To show (C9) it is sufficient to prove  that 

2p?(1 - p , ) ( p t  - 'h)(4b - u - 2d - c)< W ( p f )  (C10) 
or, equivalently, that 

4pt(1 - pt)'(a - b) + a[3@:(1 - p t )  - 11 
- p:(1 - pt ) (c  + 2d) < 0 

which is also true  under  the prevailing fitness rela- 
tions. Since for every initial polymorphic gene  fre- 
quency 0 < P o  < 1 the sequence ( p , ]  is bounded within 
[0, 11 and monotonic, the sequence necessarily con- 
verges (BUCK 1978, pp 47,57). In fact,  from (C5) to 
(C7) we must have lim p ,  = fi  for some fi  t (0, 1). It 

remains to show that  the limiting value f i  is indeed j 1  
if 0 < P o  < 9'2 and f i 3  if Y2 < Po < 1. To prove this note 
first that 

t-m 

The continuity of the recursion  function f( .) on 
[0, 13 in turn implies 

limf(pt) t-ww =?E,, f-m p t ]  = f ( f i )  

(BUCK 1978, p. 74). Since a  converging  sequence can 
only have 1 limit (BUCK 1978, p. 47) we must have 
f i  = f(j), where fi  E (0, ?h) if 0 < p o  < Yz, and 
p" E (%, 1 )  if $4 < p o  < 1 .  Since f i  is thus  an  internal 
equilibrium, we conclude in the first case that = $1,  

and in the second,  that p' = $3. 
Case 2. b < a C (c + 2d)/3 (SUSVS): Ap, is again 

given by (Cl)-(C4), but  the inequalities in (C5) are 
reversed.  Arguments  analogous to those given for case 
1 can be invoked to show that  here (i) p ,  1 0 if PO E 
(0, j l ) ,  since p^ = 0 is the only equilibrium below j l ;  

and (ii) p ,  T 1 if p o  E ( j 3 ,  l ) ,  since p  ̂ = 1 is the only 
equilibrium  above $3. 

T o  prove  monotone  convergence  to $ = !hz from p ^ ~  
< p o  < $3 we have only to establish that $1 P I  < 1 3  

implies I Ap,l < I p ,  - %I.  Using (Cl)-(C4) we see that 
the  desired implication holds if and only if 

-2Pdl - P, )g (P t )  < w-4 F 1 1 )  
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or, equivalently, 

2(b - a)P,(l - p,) + a > 0. (C12) 

This is clearly the case since p,(l - p,) 6 % on [O, 11 
implies that 

2(b - a)p,(l - p,) + u 3 - > 0. 
b + a  

2 

Hence, by analogy to case 1 we conclude  that p, 
‘/2 if $1 < P o  < 9’2 and p, 1 ?4 if 9‘2 < Po < $3. 

Case 3. a < b, (c + 2d)/3 with  at least one inequality 
strict (USU): In this case $ = 9’2 is the only polymorphic 
equilibrium, and  (Cl)-(C3) imply that 

T o  prove  monotonic  convergence to $ = 9’2 we have 
only to show that I Ap,I < 1 p, - ’ / 2 1  for all 0 < p, < 1. 
As in  Case 2, this inequality reduces to (C1  1) and 
thence  to  (C12), which  obviously holds under  the 
current pairwise fitness relation.  Hence, p, t 9’2 if 0 < 
p o < 9 ’ ~ a n d p f ~ M i f ’ / 2 < p ~ < 1 .  

Case 4.  a 3 b, (c + 2d)/3 with  at least one inequality 
strict (SUS): Here  the inequalities in (C13) are re- 
versed. By analogy to Case 2 we conclude  that p ,  1 0 
if 0 < p,, < !h and p ,  T 1 if M < Po < 1. 

APPENDIX D 

Pattern probabilities for the symmetric pairwise 
interaction model: The probabilities in Table 6 as- 
sume that  the pairwise fitness variables, a, 6, c and 
d are independently and uniformly distributed  on 
[0, 11, with joint density functionf(a, b ,  c ,  d )  = 1 on 
[O,l]X[O,l]X[O,l]X[O,1](Ross1988,p.203).Writing 
e = (c + 2 d ) / 3 ,  the probabilities for  the  patterns with 
three internal equilibria are  found by straightforward 
integration to be 

P(USUSU) = P(b > a > e )  

= l1  l1 l1 lb 1 da db dc dd 

4 
27 

- ( ~ 0 . 1 4 8 )  ” 

and 

P(SUSUS) = P(b  < a < e )  

4 
27 

- ” (EO. 148). 

The probabilities for  the two remaining  patterns 

with one  internal  equilibrium can now be easily de- 
rived from  the  partitions 

P(USU) = P(a < b,  e )  

= P(a < b < e )  + P(a < e < 6) (Dl) 

and 

P(SUS)  = P(a 3 b,  e )  

= P(a 3 b 3 e )  + P(a 3 e 3 b). (D2) 

By symmetry with respect to a and b,  the last terms 
on  the right-hand sides of (Dl) and D2) are equivalent, 
the first right-hand  term of (Dl) is equivalent  to 
P(b < a < e )  = 4/27,  and  the first right-hand  term of 
(D2) is equivalent to P(b > a > e )  = 4/27. Since the 
USU and SUS patterns  are equally likely and  the  four 
pattern probabilities must sum to  1, these two final 
patterns each have probability 19/54 ( ~ 0 . 3 5 2 ) .  

APPENDIX E 

Verification procedures for numerical  methods: 
The programs  to assess the relative frequencies of the 
various equilibrium  patterns  (Table 4) and  the likeli- 
hood of permanent genetic variation were written in 
Turbo Pascal 4.0,  and  run in extended precision (1 9- 
20 significant digits) on  an IBM PS/2 Model 80-1 11 
with a 20 MHz 32-bit 80386 processor coupled with 
a 20  MHz 80387 coprocessor. 

Because of its complexity, the  general  program was 
tested by (i) executing it for the classical and symmet- 
ric models, for which the  equilibrium structure, 
pattern probabilities, and qualitative dynamics are 
known; and (ii) hand-calculating the  output in small- 
scale runs with 100 random fitness sets iterated with 
up  to  29 initial frequencies. The statistics for  the 
general model were also checked against those pre- 
dicted  from  the  runs  for  the fixed-maximum models, 
assuming that each of the  nine pairwise fitnesses is 
equally likely to be maximal. The predicted probabil- 
ity of a given event E under  the general model can be 
simply calculated as P ( E )  = P(M,)P(E I M J ,  where 
M, is the event  that  the  ith pairwise fitness is maximal. 
The predicted value of each conditional  convergence 
probability P(C I E )  can be calculated from  standard 
conditional probability rules (Ross 1988) as 

9 

P(C n E n MJ 

c P(E n M )  
P(C I E )  = 2 = 1  

I= 1 

0 

c ~ ( w v  I M,)P(C I E n M )  

c P(M)P(E I MJ 

- - * = I  
9 

,= 1 
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Similar methods were used to check for  internal con- 
sistency among  the summary statistics for individual 
models. 

Two  further technical issues involved in the  numer- 
ical method  are discussed below. 

1. Random number generator (UNZFORM): UNI- 
FORM'S required twin seeds were generated  from [0, 
11  by the compiler's built-in random  number  genera- 
tor  and  recorded in the  output.  In this way different 
seeds were used for  replicate  runs. As a  safeguard, 
UNIFORM'S uniformity and randomness  (L'ECUYER 
1988) were independently checked by the following 
tests. (a) Visual test: 100,000  ordered pairs (xI,y,) were 
obtained by generating  the  numbers xi and yi on 
[0, 11 using UNIFORM. The plotted  points  appear to 
be  distributed evenly throughout  the unit  square,  and 
no distinct pattern is evident.  (b) Estimation of area 
under  the  curve y = x*: 100,000 ordered pairs (x i ,  9,) 
were again generated  on [0, 13 x [0, 11 using UNI- 
FORM. The area  under  the  graph y = x* was estimated 
by 

Area = 
number of (xi, yi) points for which yi x: 

100,000 

The resulting value was 0.33304 . . . which agrees to 
the  third decimal place with the  true  area of !h. (c) 
Chi-square test: Three sets of 100,000  numbers  were 
generated  on [0, 11 using UNIFORM,  and  the  counts 
of the  numbers lying within each of n = 10  (or 101) 
equal subintervals were determined  and  tested  for 
uniform  distribution  over those intervals via a chi- 
square test with 9 (or 100) degrees of freedom.  This 
test was satisfied in  all 6 cases at  the 0.05 significance 
level (SCHEFLER 1988). (d) Serial correlation test: 

Three sets of 100,000  numbers were generated  on 
[0, 11  by UNIFORM  and  their  correlation coefficients 
( C )  calculated and tested at  the 0.05 significance level 
for  the null hypothesis, Ho: no correlation exists be- 
tween the  data (C = 0), versus the  alternative  hypoth- 
esis, H a :  the  numbers  are  correlated. Based on the 
resulting values for Fisher's test statistic, z, we con- 
clude with 95% confidence  that the null hypothesis 
Ho holds, i . e . ,  the  numbers  generated by UNIFORM 
are uncorrelated  (FREUND  1988). 

2. Cubic-solver: A  potential  problem with the cubic- 
solver adopted  from PRESS et al. (1 986) is the  need  to 
evaluate  the arccosine function (Cos"(x)). T o  over- 
come the potential error when I x 1 is near  1, Cos"(x) 
was set to 0 if < 10"" and x > 0, set to II if 

< 10"" and x < 0, and otherwise evaluated 
by the basic identity 

rI 
2 

Cos"(x) = - - Tan" 

using the  compiler's built-in Tan"  function. 
In order  to check this procedure, several relative 

error plots were made  comparing this method  and 
a polynomial approximation to Cos-l(x) presented 
by CODY and WAIT (1 984). The results from  the rela- 
tive error curves  for x E [0.95, 0.99951 and 
[0.9999999998, 1.0) suggest that  the relative error is 
no  more  than 10"'. As a further check,  the relative 
error between the two methods was also calculated 
during actual runs  for  the  general pairwise interaction 
model, the symmetric pairwise interaction  model,  the 
general  dominance model (COCKERHAM et al. 1972), 
the negatively ordered model, and  other special  cases 
(for  a total of 280,000 comparisons). The relative 
error never  exceeded 10"'. 


