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ABSTRACT 
When there is no  recombination  among  nucleotide  sites in DNA sequences, DNA polymorphism 

and  fixation  of  mutants at nucleotide  sites are mutually  related.  Using the method of gene  genealogy, 
the relationship  between  the DNA polymorphism  and  the  fixation  of  mutant  nucleotide was quanti- 
tatively  investigated  under the assumption  that  mutants are selectively neutral, that there is no 
recombination  among  nucleotide  sites,  and  that the population is a random  mating  population  with 
N diploid  individuals. The results  obtained  indicate  that the expected  number of nucleotide  differences 
between  two DNA sequences  randomly  sampled  from the population is 42% less  when a mutant  at a 
particular  nucleotide  site  reaches  fixation  than  at a random  time,  and  that  heterozygosity is also 
expected  to be  less  when fixation  takes  place  than  at a random  time,  but the amount of reduction 
depends on the value  of 4Nv in this  case,  where v is the  mutation rate per DNA sequence  per 
generation. The formula  for  obtaining  the  expected  number of nucleotide  differences  between the 
two DNA sequences  for a given  fixation  time  is  also derived,  and  indicates that, even  when it takes a 
large  number of generations for a mutant to reach  fixation,  this  number is 33% less than at a random 
time. The computer  simulation  conducted  suggests  that the expected  number of nucleotide  differences 
between the two DNA sequences at the  time when an  advantageous  mutant  becomes  fixed is essentially 
the same  as that of neutral  mutant if the fixation  time is the  same. The effect of recombination on 
the  amount of DNA polymorphism was  also investigated by using  computer  simulation. 

D NA polymorphism and fixation  of  mutants at 
nucleotide sites are  not  independent  phenom- 

ena,  but they are mutually related. For example, the 
fixation of selectively advantageous allele at  one locus 
can reduce  the  amount of polymorphism at linked 
locus (KOJIMA and SCHAEFFER 1967; MAYNARD SMITH 
and HAIGH 1974; OHTA and KIMURA 1975). Recently 
KAPLAN, HUDSON and LANGLEY (1989)  have  exam- 
ined  this  hitchhiking  effect at  the DNA level, and 
concluded  that  in  the  region  of low crossing over  the 
fixation  of selectively advantageous  mutant at  one 
nucleotide  site can substantially reduce  the  number of 
segregating or polymorphic  nucleotide sites in a sam- 
ple of DNA sequences from  that  expected  under  the 
neutral  mutation  model. 

The effect of the fixation  of  a mutant  on  the  amount 
of polymorphism may occur  even  when  the  mutant is 
selectively neutral. WATTERSON (1 982a,b) has shown 
under  the  neutral  mutation model that fixations tend 
to occur in clusters rather  than  behave  as a Poisson 
process. This suggests that  there might be some  effect 
of  fixation on DNA polymorphism  even if  all the 
mutants are selectively neutral. 

The purpose of this  paper is to  examine  quantita- 
tively the relationship  between the DNA polymor- 
phism and  the fixation  of  a mutant nucleotide. 

The amount of DNA polymorphism  can  be meas- 
ured by the  average  number of (pairwise) nucleotide 
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differences among a sample of DNA sequences or by 
the  number of segregating (or polymorphic) sites in  a 
sample of DNA sequences  [for their statistical prop- 
erties  under  the  neutral  mutation model, see WAT- 
TERSON (1 975)  and TAJIMA (1 983)]. In this  paper we 
use the  expected  number of nucleotide  differences 
between  two DNA sequences  randomly  sampled from 
a  population as a measure  of  the  amount of DNA 
polymorphism. This  number equals not only the ex- 
pectation  of the  average  number of nucleotide  differ- 
ences among a sample of DNA sequences but also the 
expected  number  of  segregating sites in a  sample of 
two DNA sequences. 

The fixation  time is one of the most important 
quantities  that  characterize  the  fixation. In this paper 
we study the relationship  between the  amount of DNA 
polymorphism at  the time  when  a mutant  at a  partic- 
ular  nucleotide  site  has  fixed  and the fixation  time for 
this  mutant. 

THEORY 

Assumptions: Consider  a  random  mating  popula- 
tion with N diploid individuals, so that  there  are 2N 
homologous DNA sequences in the population. As- 
sume  that  each DNA sequence has infinitely many 
nucleotide sites (KIMURA 1969),  and  that  there is no 
recombination  between  them. Also assume that newly 
arisen  mutations are selectively neutral (KIMURA 
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1968,  1983), and  that they occur at  the  rate of v per 
DNA sequence per generation. 

Fixation time: Using the diffusion model, KIMURA 
(1 970) has obtained the probability distribution, y ( t ) ,  
of the  number of generations until a newly arisen 
mutant becomes fixed in the population,  excluding 
the cases where the  mutant is lost from it, which is 
given by 

m 

y ( t )  = c ( 2 i  + I)(-I)+'Xiexp(-Xit), (1) 
i= I 

where t > 0 and Xi = i(i + 1)/(4N). Let us obtain this 
probability, using the  method of gene genealogy or 
coalescent process, since this method directly gives the 
relationship between fixation and polymorphism as 
will be shown later. 

In order to study branch  length and branching 
pattern, we use the Wright-Fisher model with non- 
overlapping  generations and Moran's model, respec- 
tively. This is because branching  pattern can be  more 
easily studied by using Moran's model than the 
Wright-Fisher model. Needless to say, the mixed use 
of different models may not be desirable. However, 
some  quantities  obtained  from the Wright-Fisher 
model are known to be  approximately the same as 
those of Moran's model although  certain changes of 
definitions, e.g., time scaling and  the effective popu- 
lation size, are necessary (KINGMAN 1982a,b; WAT- 
TERSON 1984).  Furthermore, as will be shown later, 
computer simulations conducted indicate that this 
treatment  does  not cause any serious error. 

Let us  now consider the genealogical relationship 
of DNA sequences when the fixation takes place. We 
assume that at each unit of time one of the 2N DNA 
sequences is randomly chosen to  die,  and it is replaced 
by a replicate of a  randomly chosen sequence  from 
the remaining 2N - 1 DNA sequences. This model is 
called MORAN'S (1958)  model,  though it is slightly 
different from Moran's original model [see WATTER- 
SON (1982a)l. One example of the  birth  and  death 
process in Moran's model is shown in Figure  1  where 
2N = 4 is assumed. In this example three events of 
fixation are possible, as  indicated by arrows. This can 
be explained in terms of gene genealogy. First, 2N 
DNA sequences from the present  population, which 
are assumed to be  mutants,  came  from 2N - 1 DNA 
sequences at  the immediately previous time. At this 
time the remaining  one DNA sequence is not  the 
mutant. Then, these 2N - 1  mutant DNA sequences 
have  the original mutant DNA sequence  as common 
ancestor at some time in the past, and  the remaining 
one  nonmutant DNA sequence has an ancestor at this 
time which is a  nonmutant DNA sequence. Figure 1 
shows the  three genealogical relationships where the 
fixations can take place in this example. The distri- 
bution of the genealogical relationship under  the con- 
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FIGURE 1 .-One example of the birth-death process in Moran's 
model. The arrows in the  top  figure indicate the time when  fixation 
can take place. The bottom three figures show the genealogical 
relationships for the three possible events of fixation. 

dition of fixation is different  from  that without any 
condition, and this difference is caused by branching 
pattern,  but  not by branch  length, since there is no 
restriction on branch  length. Because of this, the 
probability distribution of fixation time can be easily 
obtained. 

Let &(t )  be the probability that n + 1 DNA  se- 
quences randomly chosen from the population are 
derived  from n DNA sequences for  the first time t 
generations ago. Using the Wright-Fisher model  with 
nonoverlapping  generations, KINCMAN (1 982a), HUD- 
SON (1 983)  and TAJIMA (1 983) have shown that f n ( t )  
is approximately given by 

fn(t) = Xnexp(-Xnt), (2) 
where the mean and variance are 1/X, and 1/X:, 
respectively. Then, the probability distribution, y ( t ) ,  
of the  number of generations until fixation can be 
obtained  from  the  convolution  of h N - l ( t ) ,  f2~-2(t), 

. . . , f i ( t ) ,  namely 
2N-I 

y ( t )  = (2i + I)(-l)q - X,exp(-Xit). (3) 
i= 1 ,=I 2N + j 

' 2 N - j  

This equation can be  approximately given by 
2N-I 

y ( t )  = (2i + l)(-I)i+~Xexp[-Xi(t + 2)], (4) 
i= 1 

which is essentially the same as (1). 
DNA polymorphism: WATTERSON (1 975) showed 

that  the  expected  number, E(k) ,  of nucleotide differ- 
ences between two DNA sequences randomly sampled 
from  the population is given by 

E(K) = M, (5) 
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FIGURE 2.-One example of genealogical relationship  among six 
DNA sequences. A, is the  ith  oldest  ancestor  to  these six sequences. 

where M = 4Nv. This  number can easily be  obtained 
by considering  gene genealogies. The probability that 
two randomly chosen DNA sequences are  derived 
from  their  common  ancestral  sequence  for  the  first 
time t generations ago  isfl(t), which gives the proba- 
bility distribution of branch  length  between one of 
the chosen DNA sequences and  the common  ancestral 
sequence in terms of the, number of generations, so 
that  the mean branch  length is 1 /X, or 2N.  Since there 
are two branches  between  the two sequences ran- 
domly chosen from  the  population, we have 

E ( k )  = 2N X 2v = M .  

This equation  can also be  obtained in a  different 
way. Consider the genealogical relationship  among 
2N DNA sequences. When two DNA sequences are 
randomly chosen from  these 2N sequences, there  are 
2N - 1 possible ancestral sequences. Denote the  ith 
oldest possible ancestral  sequence by A;.  One example 
is shown in Figure 2 ,  where 2N = 6 is assumed. Also 
denote by ai the probability that  the  common  ancestral 
sequence to two sequences chosen at  random is Ai. As 
shown in the APPENDIX, this probability is given by 

2(2N + 1) 
ai = (i + l)(i + 2)(2N - 1)' 

where  1 S i d 2N - 1.  For  example, when 2N = 6, 
we have al  = 7/15, a2 = 7/30, a3 = 7/50, a4 = 7/75, 
and a5 = 1/15.  When Ai is the common  ancestor,  the 
expected  number, E(ki), of nucleotide  differences be- 
tween the two sequences is 

This equation can be  obtained as follows: First, we 

notice  from ( 2 )  that v/X, mutations are expected to 
take place on each sequence while j + 1 sequences are 
derived fromj sequences. Considering two sequences, 
we obtain (7) since we can detect all the mutations in 
the infinite site model. Then,  the expected number 
of nucleotide  differences between two DNA se- 
quences  randomly chosen from  the  population is given 
by 

2N- I 

E(k)  = aiE(ki) = M .  
i= 1 

Thus, we obtain (5). 
Using the infinite allele model, KIMURA and CROW 

(1964) have shown that  the  expected homozygosity, 
E ( F ) ,  or  the probability that  the  randomly chosen two 
DNA sequences is identical is given by 

1 
1 + M '  

E ( F )  = ~ 

This equation can be  obtained in the same way as the 
above, namely, we have 

2N- 1 

E ( F )  = C aiE(Fi), (9) 
I= 1 

where E(FJ is the expected homozygosity when Ai is 
the common  ancestor to  the randomly chosen two 
sequences. Since the probability distribution of the 
number of generations between A, and A,+l is given 
by ( 2 ) ,  we have 

2N- 1 

E(Fa) = n bj, (10) 
j=; 

where bj is given by 

In these  equations bj is the probability that  there is no 
mutation on  the two sequences while j + 1 sequences 
are derived  from j sequences. Since the expected 
homozygosity is given by the  product of bj's, we obtain 
(1 0). Substituting  (1 0) into (9), we obtain (8). 

DNA polymorphism  at  the  time of fixation: Let 
us now study DNA polymorphism at  the time when a 
mutant at a  particular site has fixed. In this case the 
genealogy of 2N DNA sequences shows unique topol- 
ogies as mentioned  earlier.  Figure  3 gives one example 
where 2N = 6 is assumed. 

The expected number, E(k  I fix), of nucleotide dif- 
ferences  between two DNA sequences randomly cho- 
sen from  the  population at  the time when a  mutant at 
a  particular  nucleotide site has fixed can be  obtained, 
using the same method  as  the above. Let A, be the  ith 
oldest possible common  ancestral  sequence to  the two 
DNA sequences randomly chosen from 2N DNA se- 
quences with the fixed  mutant. Then,  the probability, 
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2N- 1 

FIGURE 3.-One example of genealogical  relationship among six 
DNA sequences,  given  that  fixation  took  place. A, is the  ith  oldest 
ancestor  to  these six sequences. Bold lines show the  sequences  with 
the  mutant  nucleotide  fixed. 

a,, that the common  ancestor of the two randomly 
chosen sequences is Ai is given by (6), as shown earlier. 
The expected number, E(ki I fix), of nucleotide  differ- 
ences between the two sequences when A; is their 
common  ancestor is given by 

2N- 1 

This equation can be  obtained by replacing i with i + 
1 in (7) since there  are i + 1 sequences, namely i 
mutant sequences and  one  nonmutant sequence, at 
the time when Ai occurred. Then, E(k I fix) is given by 

2N-2 

E ( k  I fix) = aiE(ki I fix),  (1 2) 
1= 1 

which approximately becomes 

E(k I fix) = 2 - - 3 M = 0.5797 ... M .  (13) (T ) 
This formula indicates that, when fixation takes place, 
the average  number of nucleotide  differences is ex- 
pected  to  be 42% less than  at  a  random  time. 

Using the infinite allele model, the expected ho- 
mozygosity, E(F I fix), at  the time of fixation can  be 
obtained in exactly the same way as the above. 
Namely, we have 

2N-2 

E(F I fix) = u,E(F~ I fix), (14) 
i= 1 

where E(Fi I fix) is given by 
2N- 1 

E(Fi I fix) = n bJ. 
j = t + l  

This formula can be simplified as 

which is approximately given by 

E(F I fix) = [ 1 - exp(-M + c1M2 - c2M3)]/M, (16) 

where c1 = (47r2 - 39)/6 = 0.07973 ... and c2 = (79 - 
8a2)/3 = 0.01438 ... . From this formula we can see 
that, when fixation takes place, the  amount of poly- 
morphism in terms of heterozygosity is also expected 
to be less than at random times, but  the  amount of 
reduction  depends  on  the value of M .  

DNA polymorphism for a given fixation time: Let 
us now study the expected number, E(k I T ) ,  of nu- 
cleotide differences between the two DNA sequences 
randomly chosen from  the  population at  the time of 
fixation, given that  the fixation time is T. As men- 
tioned  earlier,  the probability distribution of fixation 
time can be  obtained  from  the convolution ofJ;(t)'s 
for all i 's ,  where j ( t )  is given by (2). This can be 
expressed as 

where  gi(t) can be  obtained  from  the convolution of 
f ; ( t ) ' s  for all j ' s  exceptj = i. The conditional  expecta- 
tion, E(ti I T ) ,  of the  number of generations  between 
Ai-1 and Ai, which has the probability distributionj(t), 
can be given by 

E(ti I 7') = G(T)/J(T), (1 7) 
where zi(T) is given by 

zi(T) = g(t)gi(T - t)dt .  (18) 

y(T) can be  obtained by using (3) or (4), and z;(T) can 
be given by 

2N- 1 2 N -  k X, 
z:(T) = (2j  + 1) (-ly'+' n - 

j= 1 k = l  2N + k Xi - A, 
J#i 

-[exp (-hjT) - exp(-hiT)] + (2i + l)(-lyl 

2 N - k  
k = l  2N + k e n  - XiT exp (-X,T), (19) 

which is approximately given by 
2N-1 

Zi(T) = (2j  + l)(-I)j+l 
j= 1 hi - hj 
j#i 

- exp(-hiT)]exp(-2Xj) 

+ (2i + 1)(-1Y+'hiT exp[-hi(T + 2)]. (20) 

In the same way as the above,  the  expected number, 
E(ki I T ) ,  of nucleotide  differences between the two 

2N + 1 
(2N - l)M 

E(F I fix) = 
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DNA sequences when their  common  ancestor is Ai, 
given that  the fixation time is T ,  is given by 

2N-1 

E(ki I T )  = 2vE(t, I T ) .  (2 1)  
j=i+l 

Since the probability that Ai is the common  ancestor 
to the  randomly chosen two sequences is ai, the ex- 
pected number, E(k I T ) ,  of nucleotide  differences be- 
tween the two DNA sequences  randomly chosen from 
the population at  the time of fixation, given that  the 
fixation time is T ,  is given by 

2N-2 

E(k I T )  = C a B ( k  I T ) ,  (22) 
i= 1 

which can be simplified as 
2N-2 

E(k I T )  = 2vdiE(ti+l I T ) ,  (23) 
i= 1 

where di is given by 

i(2N + 1)  
di = (i + 2)(2N - 1)'  

Although  numerical examples will be shown later, 
here we notice that, as T increases, E(ti I T )  approaches 

4N 
E(ti I 00) = (i - l)(i + 2)' 

so that  from (23) we have 

E(k I 00) = 
2(2N - 2)M  2 
3(2N - 1 )  3 

z - M = 0.6666 ... M. (25) 

This  formula indicates that, even when it takes a  large 
number of generations  for  a  mutant to reach  fixation, 
the  amount of DNA polymorphism at  the time of 
fixation, in terms of the  number of nucleotide  differ- 
ences between the two DNA sequences randomly 
chosen from  the  population or  the average  number 
of (pairwise) nucleotide  differences  among  a sample 
of sequences, is expected  to  be 33% less than  at  a 
random time. 

NUMERICAL EXAMPLES AND COMPUTER 
SIMULATION 

In  order to check the accuracy of the formulae 
obtained,  computer simulations were  conducted. T o  
save computer  time,  the telescoping method  proposed 
by KIMURA and TAKAHATA ( 1  983) was used, which is 
an improved version of the pseudosampling-variable 
method (KIMURA 1980). 

Neutral  mutation: First, we consider the case where 
a newly arisen mutant is selectively neutral.  Let xi be 
the relative  frequency of mutant  at  generation i. As- 
sume  that  there is no  mutant  at  generation 0 and a 
new mutation takes place at generation 1 ,  so that x. 
= 0 and x1 = 1/(2N). Then, we start  computer simu- 

TABLE 1 

Results of computer simulation 
~~~ ~~ ~ 

Average  no. of nu- 
Fixation No. of Average fix- cleotide  differences 

time  cases  ation  time  between  two  DNAs" 

-49 
50-99 

100-149 
150-199 
200-249 
250-299 
300-349 
350-399 
400-449 
450-499 
500-549 
550-599 
600-649 
650-699 
700-749 
750-799 
800-849 
850-899 
900-949 
950-999 

1000- 

Total 

0 
29  89.5 

351 131.3 
947  177.6 

1,226 225.4 
1,316 275.0 
1,223 324.1 
1,013 375.0 

828  423.9 
662  474.5 
512  522.9 
424  572.6 
327 623.4 
227 674.2 
1 80  723.1 
149 773.8 
129 823.1 
114 874.6 
73 924.2 
67 976.8 

203  1,196.2 

10,000  399.1 

0.301 
0.374 
0.450 
0.501 
0.547 
0.576 
0.596 
0.622 
0.621 
0.654 
0.651 
0.662 
0.688 
0.680 
0.679 
0.650 
0.690 
0.688 
0.666 
0.639 

0.573 

This number is measured with 4Nu. 

lation followed by the telescoping method  and  record 
the frequency of mutant at every generation  until  the 
mutant  reaches  fixation or extinction. In  the case  of 
extinction we discard all the  records  and  repeat  the 
simulation from  the  beginning. In this simulation the 
population size (N) was assumed to be 100 and we 
have obtained 10,000 events of fixation. 

From  a set of data we can easily obtain the fixation 
time. Since the probability that  the two randomly 
chosen mutant sequences at  generation i + 1 has their 
common  ancestor at  generation i is 1/(2Nxi), the ex- 
pected  number of nucleotide  differences between the 
two sequences can be  obtained, using 

repeatedly  until  fixation,  where E(k1) = 0. The result 
of computer simulation is shown in Table 1 .  The 
average fixation time  obtained was 399 generations, 
which is almost the same as 4N.  The average of the 
expected number of nucleotide  differences  between 
the two DNA sequences  obtained was 0.573M. This 
indicates that ( 1  3) is a  good  approximation.  Figure 4, 
as well as Table 1 ,  shows the relationship  between the 
fixation time and  the expected number of nucleotide 
differences  between the two DNA sequences ran- 
domly chosen from  the  population at  the time of 
fixation obtained in this simulation. In this figure  the 
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Fixatlon tlme (in generations) 

FIGURE 4.-Relationship between the expected number of nu- 
cleotide differences between the two DNA sequences randomly 
sampled from the population and the fixation time, where N = 100 
was assumed. The line was obtained from (23) with (17), (4)  and 
(20). Closed circles are the results of computer simulation, whose 
data are shown in Table 1. 

line that was obtained by using ( 2 3 )  with (17), ( 4 )  and 
( 2 0 )  shows a  good  agreement with the result  of simu- 
lation. 

Advantageous  mutation: So far we consider only 
the case  of neutral  mutation.  Here we examine  the 
effect of an advantageous  mutant on the  expected 
number of nucleotide  differences  between the two 
sequences, using computer simulation. If we denote 
by s the selective advantage of mutant  over non- 
mutant,  the mean rate of  change in xi  per  generation 
is approximately given by 

h i  = SXi (  1 - Xi). 

Then, computer  simulation was conducted  under this 
selection model,  where s = 0.005, 0.01, 0 .02 ,  0.05, 
0.1 and 0.2 are used together with s = 0. The method 
of simulation is the same as the  above,  except  the 
change in frequency of the  mutant is affected by 
selection. For each value of s, 100 events  of  fixation 
were  collected,  where N = 100 was also assumed. 

The results of simulation are shown in Figure 5 ,  
where  each  point is the sum of ten replicates classified 
according to  the  length of fixation  time so that  there 
are ten  points for each value of s. Interestingly, this 
figure shows that  the  expected  number of nucleotide 
differences  between the two  sequences at  the  time 
when an advantageous  mutant becomes fixed is essen- 
tially the same as that of neutral  mutant if the fixation 
time is the same. It should  be noted  here  that  the 
fixation of an advantageous mutant  tends  to  reduce 
the  amount of DNA polymorphism more strongly 
than  that of a neutral  mutant since the fixation  of an 
advantageous  mutant  tends to take place more rapidly 
than  that of a neutral  mutation.  This conclusion is 
consistent with that of KAPLAN, HUDSON and LANGLEY 
(1 989). 

0.6 - 

0.4- 

A S - 0.05 
A 5 = 0.1 

+ s = o . 2  

2 0 s s-0.005 s-0.01 = 0.02 

- Expected 

0.0 
0 200 400  600  800 1 

Fixation time (in generations) 

0 

FIGURE 5.-Results of computer simulation conducted  under the 
genic selection model of advantageous mutation. The line was 
obtained from (23) with (17), (4) and (20) under the neutral muta- 
tion model. 

Effect of recombination: We  have shown that  the 
amount of DNA polymorphism is  less when a  mutant 
at a  particular  nucleotide site becomes fixed, com- 
pared  to  random times. This conclusion was obtained 
under  the assumption that  there is no  recombination 
in DNA sequence.  When there is some  recombination, 
the  degree of reduction  might  not  be so large as that 
of no recombination. To know it quantitatively, com- 
puter simulation was conducted. 

Let r be  the recombination rate between the site 
where  a mutant fixes and sites where  divergence is 
being  considered,  and xi be  the relative  frequency  of 
the  mutant  at  generation i. Then, RICHARD R. HUD- 
SON (personal  communication) has shown that  the 
expected  number  of  nucleotide  differences  between 
two  sequences can be  obtained by using 

1 R ( l  -xi) 
2Nxi 2N 

R( 1 - xi) M + E ( k ( )  + - 
2N 2N ' 

Rx,  R( 1 - xi) M + E@:) + 
4N 

E(V) + - (27b) 
2N ' 

1 
2N( 1 - xi) 2N 

E(k:)  

R x ~  M 
+ - E ( k 0  + - 

2N  2N ' 

where M = 4Nv, R = 4Nr,  E(k,) is the  expected  number 
of  nucleotide  differences  between  two  sequences  ran- 
domly chosen from  the sequences which bear  the 
mutation  going  to  fixation, E ( k 0  is the  expected  num- 
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TABLE 2 

Expected  number of nucleotide differences between  two DNA sequences  when  a  mutant  at a linked site is fixed, obtained by  computer 
simulation 

Selection coefficient ( 5 )  

4Nr 0 0.005 0.01 0.02 0.05 0.1 0.2 

0 0.576 0.573 0.552 0.506 0.380 0.266 0.170 
0.01  0.579 0.577 0.555 0.508 0.381 0.268 0.170 
0.1  0.607 0.604 0.578 0.527 0.394 0.277 0.177 
0.2  0.634 0.631 0.602 0.547 0.408 0.287 0.184 
0.5  0.700 0.696 0.662 0.599 0.448 0.316 0.204 
1 0.773 0.769 0.734 0.667 0.507 0.362 0.237 
2  0.855 0.851 0.821 0.760 0.601 0.442 0.298 
5  0.941 0.938 0.923 0.886 0.769 0.616 0.450 

10 0.977 0.975 0.969 0.95 1 0.887 0.778 0.625 
20 0.993 0.992 0.990 0.984 0.959 0.907 0.810 

Average fixation time 40 1 389 326 244 138 82  47 

N = 100 and 4Nv = 1 were assumed. For each selection  coefficient, 5 ,  1000 events of fixation were collected. 
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FIGURE 6,"Three examples of the  changes in the  frequency  of DNA sequence with mutant  nucleotide  and in the  expected  number of 
nucleotide  differences between the two DNA sequences randomly  chosen  from  the  population which were  obtained  from  the  computer 
simulation where N = 100 was assumed. (a) s = 0 and T = 367; (b) s = 0.02 and T = 220; (c) s = 0.2 and T = 45. 

ber of nucleotide  differences  between two sequences 
one  bearing  the  mutant  and  one  not,  and E(k:)  is the 
expected  number of nucleotide  differences for two 
sequences  not  bearing the  mutation.  These  three 
equations can be  derived  from  (26) with the same 
reasoning as equations (1 5 )  of KAPLAN, HUDSON and 
LANGLEY (1 989), assuming r << 1. Starting  from E(k1) 
= 0 and E ( k ; )  = E ( k ; )  = 4Nv, we obtain E(ki). 

The method of simulation is the same as the  above, 
except  (27) is used instead of (26). In this simulation 
N = 100 was also assumed, and 4Nv = 1, s = 0 ,  0.005, 
0.01, 0.02, 0.05, 0.1 and 0.2, and 4Nr = 0,  0.01, 0.1, 
0.2, 0.5, 1, 2, 5, 10 and 20 were used. For  each value 
of s, 1000 events of fixation  were  collected. The 

results are shown in Table 2, which indicates that,  as 
the recombination rate increases, the  amount of DNA 
polymorphism also increases. In  the case of a neutral 
mutant (s = 0), if 4Nr is larger  than  10,  the  amount 
of polymorphism at a  time of fixation is almost the 
same as that of a  random time. This table also indicates 
that, when a  strongly  advantageous (s > 0.1) mutant 
is fixed, the  amount of polymorphism is substantially 
smaller than at a random time even if 4Nv is larger 
than 10. This result is consistent with that of KAPLAN, 
HUDSON and LANGLEY (1 989). 

DISCUSSION 
We consider the DNA polymorphism only at  the 

time of fixation. In  the case of neutral  mutation the 
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expected  number  of  nucleotide  differences  between 
the two DNA sequences  randomly chosen from  the 
population is M (= ~ N v ) ,  while the  number becomes 
0.58M at  the  time of fixation. This  difference  might 
be caused by the large amount of DNA  polymorphism 
on  the way to fixation.  Figure  6 shows some  examples 
of the relationship  between the frequency  of mutant 
and  the  expected  number of  nucleotide  differences 
between the two sequences, which were  obtained  from 
the  computer simulation in the previous section. Fig- 
ure  6a shows the  example in the case of s = 0, where 
the fixation  time was 367 generations. In this example 
the  expected  number of  nucleotide  differences is 
larger  than 4Nv when the frequency  of mutant is 
intermediate.  This does not  occur in the case of rapid 
fixation as shown in Figure  6c.  At  any  rate,  the 
amount of  DNA  polymorphism  changes drastically, 
depending  on  the  frequency of the  mutant.  This 
might  be one of the main reasons for a  large stochastic 
variance of the  amount of DNA polymorphism. 

The results of the  computer simulation  conducted 
have shown that  the  formulas (22),  (23) and (25)  
obtained  under  the assumption of neutral  mutation 
also hold in the case of  advantageous  mutation. This 
conclusion, however,  might  be  correct only in the 
genic selection model or the semi-dominant  mutation 
model. In fact, in the case where the advantageous 
mutation is recessive or dominant  the results of the 
computer simulation conducted in the same way as 
the above show that this is not  the case (data not 
shown). At any rate  more extensive  studies are needed 
for various types of selection model,  including  over- 
dominance selection model. 

I thank R. R. HUDSON for showing me equations (27) which 
improved this paper greatly. I also thank R. R. HUDSON and two 
anonymous reviewers for  their valuable suggestions and comments. 
Contribution No. 1823 from the National Institute of Genetics, 
Mishima, 41 1  Japan. 
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APPENDIX 

Denote by Ai the  ith oldest  ancestral  DNA  sequence 
to a sample of n sequences as shown in Figure 2.  Also 
denote by ai,, the probability that  the common ances- 
tor  to  the two sequences  randomly  chosen from a 
sample  of n sequences is Ai, where 1 d i d n - 1. First, 

we notice that  there  are pairwise combinations 

and  that only one of them  creates the latest ancestor 
(A5 in Figure 2) ,  so that we have 

($ 

&-I,, = 1/($ = 
2 

n(n - 1)’ (AI) 

After this combination we now have n - 1 sequences. 
If we know a,,,-l, then ai,, can be given by 

where 1 d i c n - 2. From  these  equations we have 

2(n + 1) 
(i + I)(i + 2)(n - 1)’ ai,, = (A3)  

If we denote ai,2N by ai, we finally have  (6). 


