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ABSTRACT 
As a nearly neutral mutation model, the house-of-cards model is studied in finite populations using 

computer simulations. The distribution of the mutant effect is assumed to be normal. The behavior 
is mainly determined by the product of the population size, N ,  and the standard deviation, u, of the 
distribution of  the  mutant effect. If 4Nu is large compared to  one,  a few advantageous mutants are 
quickly fixed in early generations. Then most mutation becomes deleterious and very slow increase 
of the average selection coefficient follows. I t  takes  very long for the population to reach the 
equilibrium state. Substitutions of alleles occur very infrequently in the later stage. If 4Na is the  order 
of one or less, the behavior is qualitatively  similar to that of the strict neutral case. Gradual increase 
of the average selection  coefficient occurs and in generations of several  times the inverse of the 
mutation rate  the population almost reaches the equilibrium state. Both advantageous and neutral 
(including slightly deleterious) mutations are fixed. Except  in the early stage, an increase of the 
standard deviation of the distribution of the mutant effect decreases the average heterozygosity. The 
substitution rate is reduced as 4Nu is increased. Three tests of neutrality, one using the relationship 
between the average and the variance of heterozygosity, another using the relationship between the 
average heterozygosity and  the average number of substitutions and Watterson’s homozygosity  test 
are applied to the consequences of the present model. It is found that deviation from the neutral 
expectation becomes apparent only  when 4Na is more than two.  Also a simple approximation for the 
model is developed which works well  when the mutation rate is very  small. 

T he  mechanism of protein  evolution  has  been  one 
of the  most  debated issues  in the  study  of evo- 

lution.  KIMURA  (1968)  emphasized  the  effect of ran- 
dom  genetic  drift  and  the  neutral  theory which  states 
that  the  main  cause  of  evolutionary  change  at  the 
molecular level is random  fixation of selectively neu- 
tral  or very nearly  neutral  mutants  rather  than posi- 
tive  Darwinian  selection is gaining  support  from  most 
molecular  genetic  data  rapidly  accumulating  these  ten 
years  (see  KIMURA  1983,  1987).  Although  some dis- 
crepancies  between  the  prediction  of  the  strict  neutral 
theory with the  assumption  of a constant  mutation 
rate  and  observations  may  exist (GILLESPIE 1987; 
TAKAHATA 1987), we can say at  this  point  that  the 
effect  of  random  genetic  drift is very important  in 
molecular  evolution  and  should be considered in 
models  of  protein  evolution. 

On  the  other  hand  there  are  observations which 
indicate  the  importance of very weak  selection  in 
protein  evolution.  DEAN,  DYKHIZEN  and  HARTL 
(1 988) have  shown  that  new  mutations  which  caused 
replacements  of  amino  acids  in  @-galactosidase in Esch- 
erichia coli have small  fitness  effects.  Effects  of  many 
of them  are  not  detectable by their  method,  but  some 
caused  detectable  increase or decrease of fitness. Al- 
though  the  detected selection  coefficients are  in  the 
order of  one  percent,  they  speculate  that  the  selection 
coefficients  in nature  are  much  smaller  because  of  the 
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severe  competition  used in the  experiment.  Another 
observation is that of AQUADRO,  LADO and NOON 
(1988). They estimated  DNA  sequence  variation  of a 
region  including rosy locus  in both Drosophila  mela- 
nogaster and Drosophila  simulans. In  contrast  to  the 
result  for  protein  polymorphism  which shows that 
both species have  almost  the  same  amount of protein 
variation  (CHOUDHARY  and SINCH, 1987),  they ob- 
served  that D.  simulans has  several  times more  DNA 
variation  than D. melanogaster has. They  hypothesize 
that D.  simulans has  a  larger  population size and  that 
this  causes the  increase  of  complete  neutral  variation 
(DNA  variation) in  this  species  while  slightly  deleteri- 
ous  variation  (protein  variation)  does  not  increase  due 
to  more effective  operation  of  selection in larger 
populations.  Finally, GOJOBORI (1 982) observed  that 
some  of  the substrate-specific  enzymes  involved  in 
main  pathways or  single  pathways  have  lower  vari- 
ances  of  heterozygosity  than  those  expected  from 
complete  neutrality.  Although statistical  significances 
were  not  examined  and  another  study which  consid- 
ered statistical  significances  did not  find  any  discrep- 
ancy from  that  expected  from  complete  neutrality 
(FUERST, CHAKRABORTY  and NEI 1977),  Gojobori sus- 
pects  that slightly deleterious  mutations (OHTA 1973) 
have  occurred  in  these  enzymes.  Thus,  it is worthwhile 
to  investigate  models  which  incorporate  both  random 
genetic  drift  and weak  selection. 
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OHTA  and TACHIDA (1990)  proposed  a model of 
protein evolution in  which effects of random genetic 
drift and very  weak selection are  incorporated. In this 
nearly neutral  mutation  model, the distribution ofthe 
effect of mutant allele on selection coefficient is fixed. 
More precisely, the fitness effect of any mutation is a 
random  number sampled from  a fixed distribution 
regardless of the original state of the allele. This 
model is different  from previous models of nearly 
neutral  mutation in  which the distribution of mutant 
effect is shifted so that  the  difference between the 
original and  the  mutant alleles has a  constant distri- 
bution (see OHTA  1977; KIMURA 1979). A motivation 
for  the model of OHTA  and TACHIDA (1  990) is our 
biological intuition  that there must be a limit  in the 
improvement of a  protein and  that  after  major im- 
provements there would be some fine tuning of the 
function. In this model,  the  proportion of advanta- 
geous mutations decreases as the  population  accumu- 
lates advantageous  mutations and in consequence has 
higher  average fitness. Such behavior may explain the 
pattern of amino acids substitution in the globin gene 
family where adaptations  leading to responses to new 
chemical stimuli have evolved by only a few amino 
acid substitutions in key positions (PERUTZ  1983). The 
fixed mutation model is the same as the "house-of- 
cards" model of KINCMAN (1978). The model is also 
adopted in the studies of evolution of quantitative 
characters and selection limits (COCKERHAM and 
TACHIDA 1987; ZENG, TACHIDA and COCKERHAM 

The behavior of the house-of-cards model in finite 
populations with finite allelic states was studied in the 
equilibrium  state by ZENG, TACHIDA and COCKERHAM 
(1989).  However, we are also interested in the  tran- 
sient state since adaptation of protein  occurs in this 
stage. Moreover,  their  concern was directed  toward 
selection limits  in quantitative  characters. Thus,  quan- 
tities of interest in molecular evolution such as substi- 
tution  rates and heterozygosities were not  studied 
there. Some aspect of the  transient  state was studied 
in OHTA  and TACHIDA (1990) in conjunction with 
molecular evolution.  However,  their model incorpo- 
rates population  structures assuming spatial fluctua- 
tion of selection coefficient and  thus systematic study 
was not performed  due  to  the computational limita- 
tion.  In  the  present  study,  I investigate the house-of- 
cards model in finite panmictic populations. I first 
examine how long does it take  for the population to 
reach  the  equilibrium  state in this model. Then var- 
ious properties of evolutionary  interest such as substi- 
tution  rate and heterozygosity are investigated. Fi- 
nally, three tests of neutrality are applied to this model 
to see whether these tests can distinguish between 
complete  neutrality and  the action of very  weak  selec- 
tion. 

1989). 

MODEL 

Consider  a  random  mating population of N diploid 
individuals. The standard Wright-Fisher model in 
population genetics is assumed (see, for  example, 
CROW and KIMURA 1970). A mutation occurs with a 
rate u per generation per gene. If mutation occurs, 
the selection coefficient of the mutated  gene is a 
random numbers drawn  from  a fixed distributionf(s) 
regardless of the original state of the  gene. This 
mutation model is the house-of-cards model (KING- 
MAN 1977). The fitness of a  genotype AiAj is 1 + si + 
sJ where si is the selection coefficient of the allele i. In 
the present  study, we assume that f(s) is normally 
distributed with mean zero and variance a*. Because 
we are interested in mutations with  very  small effects, 
the magnitude of u is assumed to be 0(1/N) through- 
out  the  paper. The assumption of mean zero is not 
restrictive since changing the mean by m corresponds 
to changing the initial selection coefficients by -m in 
the zero-mean case. 

Since it is difficult to obtain analytical results for 
this model,  I used mainly computer simulation to 
investigate the  properties of the model. However, 
before  going  into simulation studies, I try to obtain 
some results using approximations  to  guide  the simu- 
lation studies. First 4Nu << 1 is assumed. Then, the 
population is mostly monomorphic  experiencing in- 
frequent transitions among  monomorphic states. Let 
p ( s ,  t )  be  the density function of the  population being 
fixed with an allele whose selection coefficient is s at 
time t .  From (A2) in APPENDIX, the equilibrium dis- 
tribution p ( s )  = p(s ,  ") is 

Puttingf(s) = (&a)" exp(-s2/2a2) into (l) ,  we ob- 
tain 

p(s)  = (&a)"exp[-(s - (2) 

At equilibrium the effect, s, of the allele fixed in the 
population is normally distributed with mean (4Na)a 
and variance u2. The distribution  does  not  depend on 
the mutation  rate.  In other words, the  distribution of 
the allelic effect is shifted upward by 4Na times the 
standard deviation from  that of the  neutral case. 
Thus, selection is very effective in bringing the pop- 
ulation fitness to a high value if 4Na is, say, greater 
than  four. Next we consider the substitution rate still 
assuming 4Nu << 1.  In this case, the  substitution rate 
is approximately  computed by multiplying the total 
number of mutants in one generation by the fixation 
probabilities of them (KIMURA 1983). Since the  equi- 
librium distribution is represented by (l) ,  the substi- 
tution rate  per generation in the equilibrium  state is 
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If we note  that  the expression (3) is an  expectation of 
a  function of the difference of two independent  nor- 
mal random variables, it can be rewritten  as 

where E is an  expectation operator  and Z is a  normal 
random variable with mean  -4Na2  and variance 2. 
Therefore, if 4Na is large, say larger  than  four, when 
the distribution of Z is mostly  in negative region and 
the equilibrium  distribution and  the  mutant distribu- 
tion virtually do not  overlap, there will be very little 
substitution in the equilibrium  state. When 4Nu is 
much smaller than  one,  an  approximate simulation 
method  described in APPENDIX can be used to com- 
pute  the expected number of substitutions in t gen- 
erations. 

If protein evolution occurs in a  manner similar to 
this model, is it reasonable to assume that  populations 
have been in the equilibrium  state? So the next ques- 
tion is  how long does it take  for  the  population to 
reach the equilibrium  state and what is the time 
course. For very small u such that  4Na << 1 ,  the final 
rate of approach  to  the  equilibrium value of the mean 
fitness is shown to be u per  generation  for  general 
values of u (Z. ZENG and H. TACHIDA, unpublished 
results). So the equilibrium is reached in the  order of 
l / u  generations. This is expected because this case is 
almost the same as the  neutral case. Except for this 
case, we could  not  obtain  an explicit expression for 
the  rate of approach  to  the  equilibrium.  However, as 
shown in the APPENDIX, for very small mutation rate 
such that 4Nu << 1 ,  the  rate of approach  to  the 
equilibrium is proportional  to  the  mutation  rate u if  
we measure  time in generations. 

SIMULATION EXPERIMENTS 

Runs  of simulation were  performed  to investigate 
the dynamics of the house-of-cards model.  In the 
simulation,  gene  frequencies are changed by three 
causes, mutation, selection and  random sampling of 
gametes in this order. So one  generation consists of 
three stages, that is, those of mutation, selection and 
random sampling. 

For  mutation, first the  number, M ,  of mutations in 
the population is determined by using a Poisson ran- 
dom number with mean 2Nu. Then, M normal  ran- 
dom  numbers with mean zero and variance u2 are 
sampled and assigned as selection coefficients of new 
mutants. Since I assume the infinite allele model (KI- 
MURA and CROW 1964), each mutant is identified as 

having a completely new allelic state and  numbered 
as such. T o  compute  the  substitution rate, each gene 
has a counter which records the total number of 
mutations which occurred in the descent of  the  gene. 
When a new mutant is created,  the  counter of the 
gene is increased by one. Finally, the alleles in  which 
mutations have occurred  are  determined. For each 
mutant,  the allele is determined  randomly,  the  prob- 
ability of one allele being chosen is proportional to its 
frequency, x, and 1/2N is deducted  from  the  fre- 
quency. If the allele frequency is  less than 1/2N, the 
allele frequency is made  zero and a uniform number 
is drawn to  determine  another allele from which fre- 
quency 1/2N - x is deducted.  This  procedure is 
continued sequentially for M mutants. Selection is 
performed in a  deterministic way. Gene  frequencies 
after selection are  determined by the  standard  for- 
mula (see Chapter 5 of CROW  and KIMURA 1970). 

In order  to save the computational  time,  the tele- 
scoping method of sampling multiple alleles (KIMURA 
and TAKAHATA 1983) is used to  perform  the  random 
sampling stage.  Instead of drawing 2N uniform  ran- 
dom  numbers  to  produce  a binomial random number, 
this method uses a  uniform  random  number with the 
same variance as that  of  the binomial random  number. 
In my simulation, I followed KIMURA and TAKAHATA'S 
method  for sampling multiple alleles one by one ex- 
cept  that I used the  infinite allele model and  that  the 
alleles other  than  the  one whose frequency is the 
highest before sampling are sampled to maximally 
avoid using the recipe  for nk d 20 [see KIMURA and 
TAKAHATA (1983) for  the method and  the meaning 
of nh]. 

Each simulation is continued  for 1O/u generations. 
The population is monitored every I/( 1 OOu) genera- 
tions for  the first 1/u generations and every l /( l Ou) 
generations in the remaining  period. At these gener- 
ations the average selection coefficient, the total num- 
ber of substitutions and  the  average heterozygosity 
are computed. The total  number of substitutions is 
computed by averaging  the counter  numbers of all 
genes in the population. In  addition,  the  numbers  of 
advantageous substitutions are estimated  approxi- 
mately as follows. If a  gene  frequency of an allele 
exceeds 0.90 for the first time, I regard  that  a fixation 
has occurred  at  that  generation. If a fixation occurs, 
the selection coefficient, sf, of the fixed allele and  that, 
sp, of the previously dominant allele were compared. 
If their  difference, sf - sp, is larger  than 1/2N, the 
fixation is regarded  to be advantageous. The criterion 
is taken because if the difference is less than 1/2N or 
so the  changes of gene  frequencies are mostly deter- 
mined by random  genetic  drift. All other substitutions 
are considered to be  neutral in the following. This 
class includes slightly deleterious substitutions. This 
procedure will cause inaccuracy from two reasons. 
First, the allele whose frequency exceeds 0.90 may 
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FIGURE 1 .-Changes of the average selection coefficient through 

time for various 4Nu’s. Values at : on the horizontal axis are the 
mean values during the period from 1,000,000 to 1,500,000th 
generation. Five values, 0 . 2 ,  1.0, 2.0 ,  10.0 and 20.0 ,  of 4Nu are 
used. Other parameters used are u = 0.001, 2N = 100.  The 
selection coefficient of the initial allele  fixed in the population is 
zero 

not be fixed. Second, if the  mutation rate is high and 
the  population is highly polymorphic,  next substitu- 
tion processes may start  before the present fixation 
process is finished. Thus, virtual substitutions may 
occur without the maximum frequency of  alleles ex- 
ceeding 0.9. The former leads to  an overestimation 
and  the  latter leads to  an  underestimation in this 
counting of advantageous  substitutions.  However,  un- 
less the  population is very polymorphic, the  error is 
not  large. 

The population size used in  all simulations is 2N = 
100. Several values of a and u are chosen. By an 
appropriate time scaling, the results can be  extended 
to cases  with the same values of 4Na and 4Nu. Initial 
populations are assumed to be monomorphic.  For 
each parameter set 1000 replications are  performed 
and the  average and  the variance over  these replica- 
tions are obtained. In order  to see the long-term 
consequences, another set of simulations is carried  out 
in which generations  from lOOO/u to lOOO/u + 
500,000 are observed. In these simulations, only 25 
replications are made. 

In order to  monitor the approach of the  population 
to  the  equilibrium  state,  the  average selection coeffi- 
cient of the  population is observed through time.  In 
Figure 1 ,  the changes of the average selection coeff- 
cient with various values of 4Na are shown when the 
mutation  rate is 0.001. The initial average selection 
coefficient is zero. As noted in the previous section, 
the  average selection coefficient becomes very  close 
to  the equilibrium values in several times l / u  = 1000 
generations if 4Na is small (4Na = 0.2, 1.0, 2.0). 
However,  for  larger 4Na, the behavior becomes dif- 
ferent.  Though  the average selection coefficient 
quickly increases in the first l /u generations,  a slow- 
down of increase occurs after  that  and  at  the 1O/u = 
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FIGURE 2.-Changes of the average selection coefficient through 

time for various u’s. Generations are scaled by l/u. Values at * on 
the horizontal axis are the mean values during the period from 
1OOO/u to lOOO/u + 500,000th  generation. Four values, u = 
0.0002,0.0005,0.001 and 0.002,  are used. Other parameters used 
are 4Nu = 2.0,   2N = 100. The selection coefficient of the initial 
allele fixed in the population is zero. 

10,000th  generation,  the population is still far from 
the  equilibrium. In fact, even after  1 ,OOO/u + 500,000 
= 1,500,000 generations, the population may not 
have reached  the  equilibrium since the average equi- 
librium selection coefficients computed  from  the  for- 
mula in the previous section are  0.5 for 4Na = 10.0 
and 2.0 for 4Na = 20.0 (see Table 1). Thus,  the 
approach  to the equilibrium is extremely slow  when 
4Na is large.  This slow approach is due to  the  extreme 
rareness of high fitness alleles  in the  present  normal 
distribution model. 

Effects  of different  mutation rates on  the  change of 
the  average selection coefficient are shown  in Figure 
2. Here time is measured in units of l/u generations. 
4Na is 2.0. Difference of mutation  rate causes a  pro- 
portional slowdown. Thus, by this scaling, changes of 
the average selection coefficient through time with 
different  mutation  rates  are very similar. For larger 
4Na, this tendency is more  pronounced  and  graphs 
overlap almost completely. Both approximations  for 
small mutation  rates and  for weak selection in the 
previous section predicted  that speed of the approach 
to the equilibrium is proportional to u. This seems to 
hold for  general  parameter values. The average selec- 
tion coefficient is smaller for  larger  mutation  rates 
because mutation is working against selection in the 
final stage. Most mutations are deleterious at this 
stage. 

Different initial values change  the behavior of  the 
average selection coefficient only  in the early stage of 
the evolution. Results of the simulations in  which the 
initial populations were monomorphic  for alleles  with 
selection coefficients -a, 0 and a with u = 0.001  and 
4Na = 2.0 show that  after 2/u = 2000  generations, 
the  average selection coefficients are almost the same 
for  the  three initial values (data  not shown). Thus,  the 
previous results seem to hold true for  general values 
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FIGURE 3.-Numbers of  substitutions  as  functions  of time.  Ad- 
vantageous  (broken lines) and  total  substitutions (solid lines) are 
separately plotted. For the  definition of advantageous  substitutions, 
see  the  text.  Three values, 0.2,  2.0  and 20.0, of  4Nu are used. 
Other  parameters  are  2N = 100, u = 0.001 and  the initial selection 
coefficient is zero. 

of initially fixed alleles except  at  the initial stage. 
The total number of substitutions are plotted 

against time in Figure 3.  Solid lines represent  the total 
numbers of substitutions and  the  dotted lines repre- 
sent  the  numbers of advantageous  substitutions. 
Three values of 4Na are used. The mutation rate is u 
= 0.001. When 4Na = 0.2,  all fixations are  neutral 
and  the  accumulated  number increases linearly with 
time. The behavior is very similar to  that  expected 
from  the  neutral case. In the  neutral case, the  ex- 
pected number of substitutions in 10,000 generations 
is 10 and  that for 4Na = 0.2 is 9.737 f 0.200. When 
4Na = 2.0, a significant proportion of the substitutions 
is due  to advantageous  mutations.  A  retardation of 
advantageous  substitution rate can be seen in the  later 
generations. The neutral  substitutions  occur at an 
almost constant  rate. When 4Na = 20.0, almost all 
fixations are advantageous and  their  occurrences are 
mostly  in the early generations. Very few substitutions 
occur  after  one  thousand  generations.  After  one  and 
a half  million generations,  the  numbers of advanta- 
geous and  the  total  substitutions are 5.32 & 0.49 and 
6.44 k 0.76, respectively. The retardation of the 
substitution  rate in the  later  stage when 4Na is large 
in the  present model is  in sharp  contrast with the 
constancy of the  substitution rate in the shift model 
of OHTA (1 977) and KIMURA (1 979). In this range of 
a, the substitution rate thus  depends  on  the initial 
condition. 

Since a  drastic  change of behavior with regard  to 
the  number of substitutions  occurs between the cases 
with 4Na = 2.0 and 10.0, a  more  detailed study was 
carried  out  and  the  result is shown in Figure 4. Total 
numbers of substitutions after  one  and  a half million 
(1 500/u)  generations  are shown. 4Na is changed from 
2.0 to 10.0 with an  increment of one. From this figure, 
it can be seen that  a  rapid  reduction of the total 
number of substitutions  occurs between 4Na = 2.0 to 
5.0 

Changes of the average heterozygosity are shown 
in Figure 5. The mutation rate is 0.001 and five a's 

2 3 4 5 6 7 6 9 1 0  
4No 

FIGURE 4.-Numbers of total and advantageous substitutions in 
1,500,000 generations as  a function of 4Nu. Advantageous  (broken 
lines) and total (solid lines) substitutions are  plotted separately. 
Other  parameters  are u = 0.001 and  2N = 100. T h e  initial selection 
coefficients are all zero. 
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FIGURE  5,"Changes of the  average heterozygosity through time. 

Values at t on  the horizontal  axis are  the  mean values during  the 
period  from 1,000,000 to  1,500,000th  generation. Five values, 0.2, 
1.0, 2.0, 10.0 and  20.0, of 4Nu are used. Other  parameters used 
are u = 0.001, 2N = 100. The  selection  coefficient  of the initial 
allele  fixed in the population is zero. 

are used. The average heterozygosity approaches to  a 
constant in  less than  one  thousand  generations. With 
small a's (4Na G 2.0), the increase to  the  constapt is 
monotone  and  the value reached in  less than one 
thousand  generations is very  close to  the  equilibrium 
value. However, with larger values  of a (4Na 3 10.0), 
the average heterozygosity first increases and then 
decreases quickly. Afterwards  the  decrease becomes 
gradual. The initial increase is due to the fixation of 
advantageous mutations. In the course of fixation, the 
population becomes very polymorphic. However, 
after  the  population fitness becomes high,  the  propor- 
tion of mutations which can contribute  to heterozy- 
gosity decreases and  the average heterozygosity be- 
comes very small. In these cases, the  gradual  decrease 
continues  for a long  period. 

In the previous section and APPENDIX, approximate 
methods are developed to compute the equilibrium 
distribution of alleles fixed in the  population  and the 
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TABLE 1 

Comparison of approximations and simulation results:  average 
selection coefficient 

Mean Variance 

4Nu 4No App." Sirn.' A P P  Sim. 

0.04 1.0 0.0050 0.0046 0.000025 0.000023 
0.1  0.0050  0.0043  0.000025  0.000022 
0.2  0.0050  0.0041  0.000025  0.000022 
0.4  0.0050  0.0037  0.000025  0.000019 
0.04 0.2 0.0002  0.0002  0.000001  0.000001 

2.0 0.0200 0.0161 0.000100 0.000072 
10.0 0.5000 0.1225 0.002500 0.000703 
20.0 2.0000 0.2600 0.010000 0.002350 

Means and variances of the average selection coefficient at the 
lO/uth generation are shown. Numbers of replications are 1000 
for all simulations. 2N = 100. 

a App., approximations computed from (2). 
' Sin)., simulation results. 

TABLE 2 

Comparison of approximations and simulation results: 
substitutions 

Total" Adv.' 

4Nu 4No App.' App. Sim. 

0.04 1.0  7.91  8.05  0.59  0.57 
0.1  8.03  8.14  0.53  0.57 
0.2 8.01  8.24  0.53  0.52 
0.4 8.00 8.53  0.53  0.51 
0.04  0.2  9.85  9.87  0.0  0.0 

2.0 5.07 5.38 1.33 1.44 
10.0 2.67 2.69 2.33 2.35 
20.0 2.85 2.87 2.78 2.71 

Mean numbers of the total and  the advantageous substitutions 
in 1O/u generations are shown. Numbers of replications are 1000 
for all simulations. 2A' = 100. 

a Total, mean number of total substitutions. 
' Adv., mean number of advantageous substitutions. 
' App., approximate simulations using (A6). 

Sim., simulation results. 

expected  number of substitutions when 4Nu is much 
smaller than  one. Here, we briefly check the validity 
of these approximations. From (2), the  equilibrium 
mean and variance of the average selection coefficient 
are approximately  computed  to  be 4Na2 and a, re- 
spectively, when 4Nu << 1. The approximate values 
computed from these and values computed  from  the 
simulation at lO/uth generation are tabulated in 
Table 1. If 4Na and 4Nu are small, values computed 
from both methods agree fairly well as expected. The 
reason why  we do not have good agreements when 
4Na is large even though 4Nu is small is that  the 
population is not in the  equilibrium  state at lO/uth 
generation in these cases  while the  approximate values 
are for  the  equilibrium. The expected  numbers of the 
total and the  advantageous  substitutions are computed 
by the simulation method using (A5) and (A6) of 
APPENDIX. They  are compared with those from the 
simulation used in the present work (Table 2). The 
expected  numbers of substitutions in 1 O/u generations 
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FIGURE 6.--The variance of heterozygosity plotted against the 

average heterozygosity. The solid line represents the relationship 
expected from complete neutrality. For each 4Nu value, four values 
of 4Nu, 0.04,  0.1,  0.2,  0.4, are used.  The population size is 2N = 
100. 

are tabulated. For these  quantities,  the  approximation 
works quite well and we find discrepancies only  when 
4Nu is fairly large (4Nu = 0.4). Thus,  the approximate 
methods which are derived by regarding  the fixation 
process as instantaneous are  appropriate when 4Nu is 
small, say  less than  0.1. 

As a test for  neutrality of alleles, plots of the vari- 
ances of heterozygosity against the  average heterozy- 
gosity have been used in the  literature (FUERST, CHAK- 
RABORTY and NEI 1977; GOJOBORI 1982). so this 
relationship was also investigated in the  present 
model. The variances of heterozygosity among  1,000 
replicate populations are computed every I /( 1 Ou) 
generation  from 2/u to lO/uth generation and  the 
average  over this period was calculated. The earlier 
generations are removed because of the peculiar be- 
havior of the  average heterozygosity in this phase 
when 4Na is large. The result is shown  in Figure 6.  
Four values of 4Nu, 0.04,O. 1 ,0 .2 ,0 .4,  and five  values 
of 4Na, 0.2, 1.0, 2.0, 10.0, 20.0 are used and all 20 
combinations are  tried.  The solid line represents val- 
ues expected  from  complete  neutrality. For 4Na less 
than 2.0, points  obtained  from  the simulation are on 
the line expected  from  complete  neutrality. Thus, it 
is very difficult to distinguish the complete neutral 
case and those with 4Na 2.0 with this test. For 
greater values  of 4Na, points are  under  the expected 
line. Similar observations were made in LI (1 978)  and 
KIMURA and TAKAHATA (1  983) in their slightly dele- 
terious  mutation models. 

Another type of test for  neutrality uses the  relation- 
ship between the variation within and between popu- 
lations (WARD and SKIBINSKI 1985; KREITMAN and 
AGUADE 1986; HUDSON, KREITMAN and AGUADE 
1987).  In these tests, the observed variation between 
populations is compared  to  that  expected from the 
neutral case  with the same amount of variation within 
population. One measure of the variation between 
populations is the total number of substitutions which 
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FIGURE 7.-The relationship between the  average heterozygos- 
ity and  the total number of substitutions. The  average heterozygos- 
ity is measured  at  10,000th  generation  and  the total number of 
substitutions are  counted in the  period  from 0 to  10,000th  gener- 
ation. The  solid line represents  the  relationship  expected  from 
complete  neutrality.  For  each 4No value, four values of 4Nu, 0.04, 
0.1, 0.2, 0.4, are used. The  population size is 2N = 100. 

have occurred since the divergence of the populations. 
Here I investigate the relationship between the total 
number, K ,  of substitutions in T generations and  the 
heterozygosity, H .  Under  the completely neutral case, 
the relationship is expressed as 

E [ K ]  = WHI 
4N( 1 - E [ H ] )  

where E denotes  the  expectation  operator. The ob- 
served relationship between E [ K ]  and E [ H ]  is shown 
in Figure 7 with the same combinations of u and a as 
in Figure 6. 2N = 100 and T = 10,000 are used. The 
solid line shows the  relationship  under  complete  neu- 
trality represented by ( 5 ) .  Again, when 4Na is equal 
to  or smaller than two, points are on the line expected 
from  complete  neutrality.  However, when 4Na is 
greater  than  ten, points are above the line. 

Finally, WATTERSON'S (1 978) homozygosity test was 
applied to  the simulation results. This test is based on 
the observation that  the  distribution of sample allele 
frequencies  conditioned on  the  number of alleles in 
the sample is free of the nuisance parameter 4Nu 
under neutrality (EWENS 1972). Thus, conditioned on 
the  number of alleles in the sample, the distribution 
of the sample homozygosity defined as the sum of 
squares of the sample gene  frequencies  does  not  de- 
pend  on 4Nu. WATTERSON (1 978) tabulates conserv- 
ative  percent points for  the  neutral sample homozy- 
gosity and I used 2.5% and 97.5% points of them. 
One  hundred genes are sampled randomly  from sim- 
ulated populations at  the  10,000th generation with 
replacement. The sample homozygosity is computed 
and  the  numbers of  cases where the homozygosity is 
less than or equal  to 2.5% point,  more  than or equal 
to 97.5% point and in between were counted. Some 
of the results are tabulated in Table 3. The test can 
be carried  out only when there  are  more than  one 
allele and the numbers of tests performed in 1000 

TABLE 3 

Results of WATTERSON'S homozygosity test 

1'1-ohability" 

4h'n e!..:,% H,,  297.5% No. t(.stck 

0.2  0.041 0.959 0.000 562 
1.0 0.016 0.984 0.000 567 
2.0 0.019 0.981 0.000 483 

10.0 0.000 1.000 0.000 25 1 
20.0 0.006 0.994 0.000 164 

Tests  are  performed  at  the 10,000th generation.  Other  param- 
eters  are 2N = 100  and 4Nu = 0.2. 

a 5 2 . 5 % ,  297.5% and H,, are  the probabilities  of the hotnozy- 
gosity to be less than  or equal to 2.5% point,  greater than or equal 
to 97.5% point and between these two points, respectively. 

Numbers of tests performed in the 1000 replications. 

replications are also shown. We can see that this test 
does  not discriminate the  present model from com- 
plete neutrality  for any  value of 4Na used i n  our 
study. This may be expected because WAI-I'ERSON'S 
test is not powerful when the  number of' alleles is 
small. For large 4Na, the  number of  alleles becomes 
very  small except  for  the early stage. 

In summary, we can identify three types of'behavior 
which emerge as 4Na is changed. If  4Na is very small, 
say  less than 0.2, the behavior is very similar to that 
of the  neutral case (the almost neutral case). The 
average selection coefficient does not go up and all 
substitutions are  neutral. I f  4Na becomes ilrtcrmedi- 
ate (0.2 < 4Na < 3 to 5), the behavior is nearly neutral. 
Here  a gradual increase of the  average selection coef- 
ficient occurs and both neutral (including slightly 
deleterious) and advantageous  mutations are fixed. 
The total number of substitutions and  the  average 
heterozygosity are reduced from those i n  the  complete 
neutral case as 4Na increases. I n  both the almost and 
the nearly neutral cases, the population reaches the 
equilibrium  state i n  several times 1/u generations. 
Also the  substitution  rate is almost constant  through 
time. The variance of heterozygosity has the same 
relationship with the average heterozygosity as i n  the 
complete  neutral case. The relationship between the 
variation within and between populations is the same 
as that of complete  neutrality (Equation 5). If 4Na is 
bigger  than three  to five, the behavior is conlpletely 
different. The average selection coefficimt quickly 
goes up i n  early generations (up to I/u generations). 
Then the increase becomes gradual. Even after 1 000/ 
u generations,  the population has not yet reachcd  the 
equilibrium  state. Several advantageous substitutions 
occur in early generations and very few sulxtitutions 
occur  afterward.  Neutral substitutions do n o t  occur 
in early generations. When advantageous substitutions 
occur,  the  average heterozygosity increases \.el.); rap- 
idly. Later it goes down quickly and becomes very 
small compared  to  that of the almost and  the  near 
neutral cases. The variance of heterozygosity is 
smaller compared to that  expected  fro^^^ corllplete 
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neutrality and  more  substitutions  than  those  expected 
from the completely neutral case  with the same aver- 
age heterozygosity occur. 

DISCUSSION 

In the  present  model, the house-of-cards model of 
mutation was used instead of the shift model previ- 
ously studied (OHTA 1977; KIMURA 1979).  In  the shift 
model,  the fitness difference of the  mutant  gene  and 
the original gene has a constant  distribution. One  of 
the major differences of the consequences of these 
two models is that in the shift models there is no limit 
in the increase or  the decrease of fitness while  in the 
house-of-cards model there is a limit. Thus, if some 
proportion  of  mutations is advantageous, very rapid 
substitutions occur in large populations in the shift 
model (KIMURA 1979). This is contrary to observa- 
tions. However, in the house-of-cards model, only 
several advantageous fixations bring  the  population 
fitness to a high value for  larger 4Nu and in this state 
most mutations become deleterious  as shown in this 
study. Thus, unrealistically rapid  substitutions do not 
occur i n  the house-of-cards model. Furthermore, in 
the shift model continuous  deterioration of the  pop- 
ulation fitness results if there is no advantageous mu- 
tation. In the house-of-cards model, there is a stochas- 
tic equilibrium to which the  population  approaches 
and  the population fitness goes up and down through 
time according to this distribution in the equilibrium 
(for an example see Equation 2). Thus, indefinite 
deterioration of the  population fitness does  not  occur 
in this model. The existence of advantageous  muta- 
tions was demonstrated by DEAN,  DYKHUIZEN and 
HARTL (1988)  although only one such mutant was 
found  thus  far. So consideration of models which 
incorporate  advantageous  mutations and which do not 
contradict observations seems important. 

Many proteins are now known to be encoded by 
genes belonging to some gene family. They  are con- 
sidered to have been created by gene duplication and 
subsequent adaptations (OHTA 1988). Our study may 
be relevant to  the stage  after  these  duplications. Only 
a small number of sites are considered to be  apparently 
contributing  to  adaptations of proteins (PERUTZ 
1983). At  many other sites, replacements of amino 
acids do not cause drastic changes of the  structure 
and activity of the  protein (BOWIE et al. 1990). Thus 
we  may divide the  amino acid sequence of a protein 
into  three parts,  one with a large u, one with inter- 
mediate u and  the  other with  small u. 

In  the  first part, adaptation quickly occurs in  less 
than l / u  generations and  then very slow fine tuning 
occurs. At present  not many data have accumulated 
to estimate the mutation  rate. However in both human 
and Drosophila, estimated values  of mutation  rate are 
in the  order of to 1 0-7 per year (MUKAI and 
COCKERHAM 1977; NEEL et al. 1986). Thus, this quick 

adaptation is expected to occur in  less than one to  ten 
million years. According to  our model, this part  of 
proteins has not  reached the final equilibrium state 
because even 1 OOO/u = one billion to ten billion years 
is not  enough  to achieve the  equilibrium  state. The 
retardation in the later stage and  the  dependency with 
regard  to  the initial condition of the substitution rate 
when 4Nu is large discriminate the present model 
from  the shift model which  has constancy and  inde- 
pendence of the  substitution  rate. 

For the second part with intermediate u (nearly 
neutral case), substitutions occur  at a fairly constant 
rate  for fixed u and 4Nu and most of them would  be 
now  in the equilibrium state. Thus, in the present 
model, if enough  generations have passed and  the 
proportion  of nearly and almost neutral sites is large 
so that  contributions  from quick adaptation is negli- 
gible,  substitution occurs at a constant rate in a pop- 
ulation with a fixed size. The behavior of mutants in 
this part  depends  on  the population size, and  the 
substitution  rate decreases by bringing  the population 
size larger. Thus the  evolutionary  pattern is similar to 
that under  the slightly deleterious  mutation model 
(OHTA 1973). It is possible that  the value  of u becomes 
smaller for  larger population size because of the av- 
eraging effects of fluctuating selection intensity 
(OHTA 1972; OHTA and TACHIDA 1990). Then the 
value of 4Nu would not be strictly proportional to N 
but would be mildly dependent on N. Thus,  the 
increase of the population size by  say ten times would 
not  bring this class of sites to  the large u class in a 
structured population with fluctuating selection inten- 
sity. 

The mutations in the  third  part  are almost neutral, 
and  the substitution  pattern is very similar to  that of 
the completely neutral case. However, in our model, 
the  change of population size  causes changes of sub- 
stitution rate  and even leads to a shift of amino acid 
sites from one class to  another.  Thus, different behav- 
ior  from  that of the  complete  neutral case will show 
up even for this class  of sites when the population size 
is changed. 

In conclusion, three types of behavior are identified 
in the  present model depending  on  the  parameter, 
4Nu. Though  the behavior is very different when 4Nu 
is large from that of the completely neutral case, the 
qualitative behaviors of the nearly neutral  and almost 
neutral case are very similar to  that of the completely 
neutral case and can not be distinguished from  the 
latter using three types  of neutrality tests studied  here 
which  use relative relationships among observed quan- 
tities. However there  are differences of consequences 
between the  present model and  the completely neutral 
case. For example,  the  absolute values of the  average 
heterozygosity and  the substitution rate  are reduced 
in the nearly neutral case compared  to  the values of 
those under  complete  neutrality with the same muta- 
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tion  rate. Also the  change  of  population sizes leads to 
a  shift  of  amino  acid sites from  one class to  another. 
Thus,  the  evolutionary  consequences  of  them  are very 
different.  Further analyses of  molecular  data  are nec- 
essary in order to clarify the  extent  of nearly  neutral 
and almost  neutral  amino  acid sites in these  smaller u 
sites. 
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APPENDIX 

We first compute  the  equilibrium  distribution  of 
alleles  when there  are k alleles and  the  mutation  rate 
from  the  ith  allele to thej th  allele is u, using the weak 
mutation  approximation  of ZENG, TACHIDA and 
COCKERHAM (1 989). T h e  selection  coefficient  of the 
ith  allele is assumed to be si. If four  times  the  product 
of  the  mutation  rate  and  the  population size, 4Nu, is 
small compared  to  one,  the  population is mostly mon- 
omorphic.  Let p ,  be  the probability  of the  population 
being  monomorphic with the allele i. T o  compute  the 
equilibrium  distribution,  consider  a case where all uj’s 
can  be  expressed by rationals n, /d ,  where n’s and d’s 
are  integers.  This case corresponds to the E t l  n,,,d,n, 
allele  case with equal  mutation  rates  among  them. 
There  are n,,&zj alleles with selection  coefficient st. 
Therefore,  from  the  equation  just  above  Equation 7 
of ZENG, TACHIDA and  COCKERHAM (198Y), 

pr= k 
u,exp(4Ns,) 

c u,exp(4l\is,) ,= I 

Since  real  numbers  can  be  approximated by rationals 
at  any  degree  of  accuracy,  the  above  equation  holds 
for  any set of ut’s. Now consider  the case where  the 
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effect of mutation  on selection coefficient is distrib- 
uted with f ( s ) .  This distribution can be  approximated 
by the  finite allele case  with unequal  mutation  rates. 
Divide the s axis with intervals of length ds. Then,  the 
equilibrium probability of the  population  being mon- 
omorphic with the alleles whose selection coefficients 
are between s and s + ds is proportional to f(s)ds 
exp(4Ns) from (Al) .  Therefore,  the equilibrium  den- 
sity P(s)  is computed to be 

Next we consider the transient  state. We continue 
to assume that 4Nu << 1 .  If we take l / u  generations 
as a unit time, the time  required  for  one allele to be 
fixed in the  population is very short  under this con- 
dition since even for  a  neutral  mutant,  the  average 
time  for fixation is 4Nu which is assumed to be small 
compared to one. We approximate this process by 
regarding each fixation of a new allele as instanta- 
neous. Then  the process becomes a jump process in 
which transition  occurs  among  monomorphic states. 
Let p ( s ,  t )  be  the probability density of the population 
being monomorphic  for an allele with selection coef- 
ficient s at time t. Since the fixation probability of a 
gene with selection coefficient r appearing in a popu- 
lation otherwise monomorphic  for  an allele with  selec- 
tion coefficient s is approximately (KIMURA 1962) 

2(r - s) 

1 - exp[-W(r - s)]' 

when 1 r - s I << 1 and  2Nu.(r)dr new mutations whose 
selection coefficients are between r and r + dr occur 
every generation, 

P(s ,  t + 4 
= ( 1  - 'LNu)P(s, t )  

Dividing both sides by u and letting u * 0, we obtain 

a  differential  equation, 

dP(s7 tf 
dt 

2(r - s) 
- l I  1 - exp[-4N(r - s)] 

We could not solve this equation analytically. How- 
ever two observations  can  be  made  from this expres- 
sion. First, the equilibrium solution (A2) satisfies the 
steady state  form of (A4). Secondly, the equation  does 
not have u as a  parameter if we use l / u  generations 
as  a unit time. Thus,  the  rate of the process is propor- 
tional to u if we measure  time in generation so long 
as 4Nu is much smaller than  one. 

When 4Nu << 1, the  number of substitutions in t 
generations can be computed using an  approximate 
simulation method (suggested by one of the review- 
ers).  In this case, the  populstion is mostly mono- 
morphic and we can define  the selection coefficient, 
S k ,  of the  monomorphic allele when the Kth mutation 
occurs. Define h(x,  y)  = 2(x - y)/( l  - exp[-4N(x - 
y)]). Then by regarding  the fixation of an allele as 
instantaneous,  the transition of S h  is described by 

Sk+l = ZkX(h(Zn, Sa)) -k Sk(1 - X(h(Zk, Sk))) (A5) 

where Z k  (the selection coefficient of the kth mutation) 
and x( P )  are independent  random variables, Z h  having 
a  normal  distribution with mean 0 and a* and x ( P )  
being  an  indicator  random variable such that 

X ( P )  = { I with probability P 
0 otherwise. 

With this representation,  the  sequence IS,) can be 
easily simulated. The expected number, E[K(t)], of 
substitutions in t generations can be written as 

E[K(t ) ]  = E[h(Zl ,  SI) + ~ ( Z B ,  S z )  
+ . . . + h(Z~ , t ) ,  ~ ' A W ) ) ] ,  (A61 

where N(t) has a Poisson distribution with mean 2Nut. 
The expected  number of advantageous substitutions 
can be calculated in a similar way with h replaced by 
h,(x,  y) = h(x ,  y)Z(x, y) where I is an indicator function 
such that 

1 x - y > 1/2N 


