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ABSTRACT 
Expressions  describing the accumulation of gene correlations within and among lineages and 

individuals of a population are derived. The model permits different migration rates by  males and 
females and accounts for various breeding tactics  within  lineages. The resultant equations  enable 
calculation of the probabilistic quantities for the fixation  indices, rates of loss of genetic variation, 
accumulation of inbreeding, and coefficients of relationship for  the population at any generation. All 
fixation  indices  were found to attain asymptotic  values  rapidly  despite the consistent loss of genetic 
variation and accumulation of inbreeding within the population. The time required to attain asymp- 
totic values,  however, was prolonged when gene flow among lineages was relatively low (<20%). The 
degree of genetic differentiation among breeding groups, inbreeding coefficients, and gene correla- 
tions  within  lineages  were found to  be  primarily  functions of breeding tactics  within groups rather 
than gene flow among groups. Thus,  the asymptotic  value of S. Wright’s  island  model is not 
appropriate for describing genetic differences among groups within  populations. An alternative 
solution is provided that under limited  conditions will reduce to the original island  model. The 
evolution  of  polygynous breeding tactics appears to be more favorable for promoting intragroup gene 
correlations than modification of migration rates. Inbreeding and variance  effective sizes are derived 
for populations that are structured by different migration and breeding tactics.  Processes that reduce 
the inbreeding effective  population size result in a concomitant increase  in  variance effective popula- 
tion  size. 

M IGRATION  and  breeding tactics are primary 
factors  governing the differentiation  of  gene 

frequencies  among,  and  distributions of genotypes 
within,  populations. Gene flow promulgated by dis- 
persing  individuals will serve to ameliorate  the  genetic 
divergence, via random loss of  genetic  variation, of 
populations.  Various  breeding tactics such  as polygyny 
and  inbreeding may affect  the  rates of loss of genetic 
variation and  alter  the  genotypic  proportions  from 
those  expected  with  panmixia.  Realization of the im- 
portance  of  migration  and  breeding  regimes  served 
as  the  impetus for the  derivation  of  the  fixation  indices 
(WRIGHT 1943, 195 1 ,  1969, 1978). These indices 
(often  referenced  as F statistics) describe  the propor- 
tion  of  genetic  variance  among  (sub)populations  (over- 
all differentiation; FST), inbreeding  relative  to  the 
population (Fls), and  inbreeding relative to the  total 
array  of  populations (FIT) .  Given the classical compo- 
nents  of  genetic  variation,  infinitely sized, randomly 
mating,  subpopulations which  freely  exchange breed- 
ing individuals should be characterized by FsT = Fls = 
FIT = 0. Deviations from  expected values not only 
provide  investigators with  estimates of  population  di- 
vergence,  but also  with  aspects nonrandom  mating 
within  populations. WRIGHT’S (1 95 1 ,  1969) introduc- 
tion of the island model  also  enabled  approximation 
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of  the  number of migrants  among  populations. 
T h e  utility of  the fixation  indices and island model 

for  describing  gene flow and breeding biology of 
populations is made obvious by their  extensive use  in 
the published  literature  and by the  attention  to proper 
interpretation and estimation of the coefficients 
(COCKERHAM 1973; ROTHMAN, SING and TEMPLETON 
1974;  NEI  1977 WRIGHT 1978; NEI and CHESSER 
1983; WEIR and COCKERHAM 1984; LONG 1986; WEIR 
1990). Initially, implementation  focused  on  the assess- 
ment  of geographically  separated  populations (EANES 
and KOHEN 1978; WRIGHT 1978; AVISE and FELLEY 
1979; RYMAN et al. 1980). More recently,  extensive 
analyses have  been  applied  to  intrapopulational scales, 
particularly for socially structured  populations 
(SCHWARTZ and ARMITAGE 1980; CHESSER, REUTER- 
WALL and RYMAN 1982; CHESSER 1983a, FOLTZ and 
HOOGLAND 1983; MCCULLOUGH and CHESSER 1987; 
MELNICK 1987). Interpretations of the  gene flow and 
breeding  structure  at  the  population level were usually 
extrapolated  from  those  for  geographically  separated 
populations. CHESSER (1  991), however,  demonstrated 
that substantial  differentiation  among social lineages 
and excess  heterozygosity  within  lineages may be ex- 
pected even  when males  disperse  randomly. Thus, 
lack of  gene flow was not  the sole factor  responsible 
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for genetic  differentiation  among  breeding  groups 
and  inbreeding avoidance was unnecessary to  promote 
substantial excess heterozygosity within lineages. 

CHESSER’S (1 991) models compared  the  expected 
gene  correlations  resultant  from  complete  female phil- 
opatry with random male migration and  random mi- 
gration by both sexes for a  range of  polygyny values. 
He found  that  although  the  population may be  con- 
stantly loosing genetic variation the fixation indices 
attain steady state values. The greatest  differentiation 
among  and highest excess heterozygosity within 
breeding  groups was found when a single male mated 
with all philopatric females within a lineage. Although 
female philopatry, male-biased migration, and po- 
lygyny are common tactics in mammals (GREENWOOD 
1980), such conditions are certainly not  ubiquitous 
for any taxon. 

Although CHESSER’S (1991) models showed that 
traditional  predictions of demic models may not  be 
extended  to  intrapopulational  structures, they have 
limited applicability to  the variety of migration  and 
breeding schemes that exist in natural  populations. 
The purpose of this paper is to expand  previous 
models to include  migration  rates among lineages for 
either sex as well as permit  different  breeding tactics 
for  the  determination of gene  correlations and fixa- 
tion indices. I will examine the efficacy  of WRIGHT’S 
(1 95 1) island model as it  pertains to intrapopulational 
structure  and provide  predictive models for  differen- 
tiation of gene  frequencies and genotypic distribu- 
tions. 

INTRAPOPULATIONAL  STRUCTURE 

CHESSER (1 99 1) was careful to differentiate  between 
social and demic structures. Demes have  been classi- 
cally considered as panmictically breeding  units  that 
are relatively isolated from  other demes (MAYR 1963; 
DOBZHANSKY 1970; HARTL 1980; SHIELDS 1987). So- 
cial lineages, on the  other  hand,  represent  areas of a 
single population  wherein  related individuals may re- 
main philopatric and/or within which mate choice 
may not be independent.  Philopatry is usually prac- 
ticed by only one sex, typically females for mammals 
and males  in bird species (GREENWOOD 1980). The 
nonindependence of mate choice within lineages is 
the probability that pairs of females have mated with 
the same male. The number of unordered pairs of 
females within a lineage is (n2 - n)/2 and  the  proba- 
bility that females have selected the same male with 
which to  breed is (CHESSER 1991) 

+ [b,’ - b,]  [b‘ - bi] 
m m 

i= 1 - - dJ = +[n2 - n] 
i= 1 

(1) n2 - n 
where m represents  the  number of breeding males per 
lineage, bi is the average number of females bred by 
the  ith male, and n is the  number of breeding females 

per lineage. The variable 6, therefore, represents  the 
proportion of females that  share  the same sire, and its 
value may range  from  zero  (independent  mate choice 
when a = m and b, = n/m) to  one (all females within a 
lineage  mate with the same male). 

The delineation of lineages within populations by 
the above  criteria was unambiguous in CHESSER’S 
(1 99 1) models because females were considered to be 
philopatric. As will become clear below, however, 
when migration  rates for  both sexes and noninde- 
pendence of mate choice are allowed to vary, the 
distinction between lineage and demic structures be- 
comes difficult. Thus,  the models derived will permit 
the investigation of a  continuous  distribution of line- 
age  integrity. 

Gene  correlations, or coancestry (COCKERHAM 
1967,  1969,  1973),  for  parents  and offspring within 
and  among lineages will be  represented by the follow- 
ing variables: 9 = coancestry of parents of different 
lineages; a = coancestry of random offspring of dif- 
ferent lineages; = coancestry of parents in the same 
lineage; 8 = coancestry of random  offspring in the 
same  lineage; and F = coancestry of genes within 
random individuals (inbreeding). The  fixation indices 
are  determined as 

where the subscript L,  S and I reference lineages, 
(sub)populations, and individuals respectively (CHES- 
SER 1991; 6 COCKERHAM 1973).  These subscripts 
were chosen to distinguish the fixation indices from 
those of higher hierarchical levels involving an  array 
of populations (COCKERHAM 1973; WRIGHT 1978). 
Thus, FLS will represent  the  proportion  of  the genetic 
variance found  among lineages within the population, 
F I L  is the correlation of genes within individuals rela- 
tive to those within lineages, and FlS denotes  the 
correlation of genes within individuals relative to 
those within the population. Also, 1 - a is the  pro- 
portion of the original  genetic variation that still re- 
mains in the  population, whereas 1 - B is the  propor- 
tion of the original  variance  remaining within line- 
ages. Obviously, any of the coancestry variables may 
change  through  generations ( t )  as inbreeding  and loss 
of genetic variation accrue.  It is necessary, therefore, 
to derive  the  expected  transitions of the  gene  corre- 
lations over  time (CHESSER 1991). In so doing, it will 
be assumed that male and female  progeny are pro- 
duced in equal proportions,  generations  are non- 
overlapping, and  that migration (if any)  transpires 
prior  to mating. 

TRANSITION MODELS OF GENE 
CORRELATIONS 

Consider  a single population  comprising s lineages. 
Any migration shall be assumed to be  random with 
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respect to lineages; such an assumption is not unreal- 
istic as we are not  concerned with geographically 
separated  populations (CHESSER 1983a). Male and fe- 
male migration  rates will be represented by d, and d,, 
respectively. For ease of presentation,  and  to maintain 
conformity of expressions with CHESSER (1  99 l ) ,  I will 
assign y = l/s. The probability that matings  occur 
between individuals from  the  same lineage is 

( 1  - d/)( 1 - dm) + ( 1  - dm)$, 

+ (1 - d,)Jdrn + ydrndf (3) 

which is reduced  to 

1 - ( 1  - y)(d, + d, - dm+). (4) 

The transitions of gene  correlations within and  among 
lineages are similar to those  presented by CHESSER 
(1 99 1)  and  are presented in APPENDIX I .  The expres- 
sions (A.  l-A. 14) presented are equal to those of CHES- 
SER ( 1  99 1)  if there is no female  migration (d, = 0) and 
all males disperse (dm = 1) .  They also equal the expres- 
sions for  complete  migration by both sexes (dm = d, = 
1; CHESSER 1991). Thus,  the  equations describe the 
transitions of gene  correlations for variable migration 
rates by either or both sexes. 

A transition  matrix ( T )  for the coancestry within 
and among lineages can now be  presented.  Only  four 
of the original variables, namely CY,  F ,  B,, and dm,, are 
necessary to  determine  the  gene  correlations  for  the 
fixation indices. The state of these variables at gen- 
eration t is represented by the column  vector St = {af ,  
Fl ,  Bmmf, Omp}. Initial values of all gene  correlations (So)  
were zero. Using expressions (A. 1, A.6,  A.lO) and 
(A. 14) and defining A = (dm + d, - dmdf), and B = 
( 1  - x)(&( 1 - 4) + d,), the transition  matrix for these 
variables is 

T =  I 2(1 - y ) A + B  

0 

4 - 
I 4 8 

(Figure 1). The asymptotic value of the FU was in- 
versely proportional  to  the  migration  rate (of either 
sex) and  the  number of breeding males per lineage. 
The FIL values were always negative indicating excess 
heterozygosity within lineages even when substantial 
inbreeding coefficients were  accruing. Values of the 
Fls were largely dependent  on  the  rate of migration, 
with  low rates  promoting  high levels of inbreeding. 
The time  required  to  attain  the  asymptote was usually 
rapid,  but was inversely related  to  the  migration  rate 
of both sexes. 

To provide  a  relative  comparison of the  importance 
of migration and  breeding tactics on  the  apportion- 
ment of genetic variation within populations  the 
asymptotic fixation indices were determined  for  a 
range of values for 4, dm, and df. For simplification of 
the relationships into  three dimensions, I assigned dm 
= d,. Three-dimensional wire diagrams  (Figure 2, A- 
C) where  constructed to  demonstrate  the relationships 
of breeding  and migration tactics on  the fixation 
indices. Figure 2A shows that  nonindependence of 
breeding males (4) is much more  important to  the 
resultant FLs than was the migration rate (gene flow), 
unless migration  rates were very low (<0.2). Influence 
of migration rate  on  the Fls was relatively more  pro- 
nounced  (Figure 2B) but  breeding tactics still were of 
greater importance. Migration rate had almost no 
influence at all on  the asymptotic values for the FIL 
(Figure 2C). The results were similar when compari- 
sons were  made for male-only and female-only migra- 
tion. 

APPROXIMATION OF ASYMPTOTIC  VALUES 

The disproportional  influence of breeding tactics 
rather  than migration on  the ultimate FLS values doc- 

4 2 I 

4 2 I 
I 2n(l - y)A + (n - l)B +(n - 1 )  + 2 (n - 1)(2 - 4 - B) 1 - (1  - y)A 

4n  8n  4n 2 J 
A column  vector, C = {0 ,  0, 4 / 8 ,  [$(n - 1) + 2] /8n) ,  ument  that WRIGHT’S (1951) island model is not  ap- 
must  be  included such that  the transition of the vari- plicable to models of intrapopulational  differentiation. 
able  states becomes St+, = TS, + C. The fixation indices Close scrutiny of the asymptotic value for  the island 
for any  generation  can  be  derived  from the variables model 
as in equation 2 where B is the average coancestry 
within lineages, and 6’ = (e,,, + 6,)/2. Fl = 

As shown in CHESSER ( 1  991) all fixation indices 
rapidly  approach asymptotic values despite the con- (d = migration rate by both sexes; N = population 
stant loss of genetic variation within the population size) shows that  Wright  did  not  intend for the island 

(1  - d)* 
2N - [2N - 1](1 - d)’ (6)  
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FIGURE 1 .-Fixation indices and  gene correlations resultant from different migration rates of males (dm) and females (d,) and noninde- 

pendence of male mates (4): 1 - a is the proportion of the initial genetic variation remaining in the population and 1 - 0 is  that remaining 
within lineages; F,~,, is the proportion of the  gene diversity at any generation that is found  among  lineages, F,., is the correlation of genes 
within individuals (inbreeding), and F,,. is the correlation of  genes within individuals relative to those available within lineages. All graphs 
were generated from matrix iterations using five females per lineage and by a total of 20 lineages in the population. 

model to account  for  a variety of breeding tactics. In 
fact,  a  large  number of panmictically breeding  popu- 
lations was assumed. Equation 6 is actually a model of 
inbreeding  and  does  not  account  for  other  sources of 
gene  correlations. Because Fls = 0, due  to panmixia 
within populations, the FST is equal to  the FIT .  Clearly, 
such assumptions will not suffice for depicting  intra- 
populational  structure.  Figure 3 demonstrates  that 
the FLS is not  a simple function of migration rate  and 
that a  particular  migration value can generate a vari- 
ety of FLs values depending  on  the  breeding tactics 
within lineages. 

Derivations of exact analytical expressions for  the 
equilibrium values from  the  transition  matrix are  not 
feasible. CHESSER (1 99 1) approximated  the asymptotic 
values for the fixation indices by assuming that equi- 
librial values were immediately attained  prior  to  the 
accumulation of inbreeding ( F )  or  intergroup  corre- 
lation (a). Whereas his approximations  were very ac- 
curate, they do not apply when migration  rates  for 
males are less than unity. When  emigration  rates are 
less than  one,  the assumption that initial inbreeding 
coefficients are negligible is not applicable. In  fact, in 

the  extreme scenario  where there is no dispersal from 
the native lineage, asymptotic inbreeding coefficients 
will not  be  attained until F = 1 .  Therefore,  the asymp- 
totic value for  inbreeding within lineages must be 
derived prior  to derivation of intralineal coancestry. 

From expression (A.l )  it can be seen that accumu- 
lation of inbreeding is a  function of the coancestry 
among male and female  progeny within lineages ( 0 , )  
and  the  intergroup coancestry (a). Using expressions 
(A. 1) and (A. 14), the accumulation of inbreeding can 
be  approximated by the  first-order  difference  equa- 
tion 

This expression incorporates variables which account 
for  a  finite  number of lineages (y  = l/s), differential 
migration by  males and females (dm and d,), and  for 
nonindependent  mate choice by females within line- 
ages (4). When there  are  an infinite  number of line- 
ages (y  = 0), males and females migrate equally (dm = 
df), and  independent  mate choice (4 = 0), Equation 7 
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FIGURE 2.-Three-dimensional wire diagrams depicting the relationship of migration rates,  nonindependence of male mates (I$; PHI), and 
the asymptotic fixation indices. All graphs were generated  for five females per lineage and a total of  20 lineages in the population. 

is identical to  the  unreduced  form of WRIGHT’S (195 1 ,  
p. 331) island model (note  that 2n = N ) .  Although 
PROUT ( 1  98 1 )  derived  the island models accounting 
for sex-biased migration, his expressions did  not in- 
clude deviations from  random  mating  and  finite  pop- 
ulation size. The solution to  the difference  equation 
is determined  as 

.. 
Ft = (l-(l-y)(d,+d/-d,d/))(4(n-1)+2) 

8n-[8~~-4(n- 1)-2][1-(1 -y)(d,+df-d,d,)] 
(8) 

where  the  “hat”  refers  to  the asymptotic value. With 
the stipulations made  above, it can be seen that  expres- 
sions (6) and (8) would be  identical. In reality, because 
there  are a  finite number of lineages within a  popu- 
lation, the  inbreeding coefficient is never  truly asymp- 
totic and will continue  to  accrue  until  complete ( F  = 
1).  Genetic variation within the population is being 
lost due  to  the  correlation  among individuals from 
different lineages (a). Equation 8 is the value of the 

inbreeding coefficient relative to  the genetic variation 
that still remains within the population, and it is this 
value that is attained at equilibrium. CHESSER (1  99 1)  
described this relationship and  determined  that  the 
asymptotic value satisfies the expression F = 1 - A F /  
Aa. The asymptotic values described  herein shall 
therefore  refer  to “asymptotic relative to  the genetic 
variation that remains” or in COCKERHAM’S (1973) 
terms  “relative to  the most distantly related  genes.” 

Asymptotic values of coancestry within lineages (0)  
can only be  attained  after  the asymptotic inbreeding 
coefficient is attained. The asymptotic value for coan- 
cestry among like-sexed progeny (e,, = 0,) is deter- 
mined by 

which  is, after a few generations, resolved as 
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FIGIJRE 3.-The relationship of migration rate  and the differ- 
cnriation among lineages within populations ( F L S )  for  a  range of 
I>reeding tactics [4 = 0 (left) to 1 (right)]. The graph was generated 
using  five females per lineage and a total of 20 lineages in the 
population. 

1 4 
Om, = 4 + 24 + 2(1 - x)(dm(l - 4) + df)‘ (1 0)  

Assuming, for  the  moment,  that F = 0,  from  expres- 
sion (A. 13) 

n - l 1  1 
8,f = - om, + -. 

n 4n 

With  the  inbreeding  accumulation expressions (1 0)  
and (1 1) are modified to become 

s,, = imm(l - P )  + P 

imf = im& - P) + P 
and (1 2) 

(e .g . ,  WRIGHT 1952; JACQUARD 1974, p. 223). The 
average coancestry within lineages is, therefore, ap- 
proximated by 

Asymptotic inbreeding is now incremented to  the 
subsequent  generation (because equilibrium coances- 
t ry  values occur  subsequent to  that of F )  to become 

P = (1 - (1 - ?)(dm + df - d,df))i,f (1 4) 

and  the correlation of genes among lineages becomes 

The approximate fixation indices are determined 
from expression (2) using the asymptotic values de- 
rived above. The approximations do  not  represent 
exact solutions to the matrix  iterations but were always 
accurate  to within 5 X Again, WRIGHT’S (1951) 
island model, now for  intrapopulational  inbreeding, 

is subsumed in Equation 8 for  the FIs rather  than  the 
FLs. Unfortunately,  no simplifying assumptions can 
be  applied to estimate the  number of migrating indi- 
viduals among  groups as did WRIGHT when he  derived 
his familiar approximation F 1/[4Nd + 11. 

DISCUSSION 

Solutions to  the  transitions of gene  correlations 
within structured populations  document  that the ap- 
portionment of extant  genetic variation within and 
among lineages, within individuals relative to  their 
lineage, and within individuals relative to  the popula- 
tion  attain steady state values despite the progressive 
loss  of gene diversity. The attainment of asymptotic 
fixation indices apply to any regular genealogy of 
breeding  and migration scenarios and  are  not specific 
to  the cases of female  philopatry and complete male 
migration models described by CHESSER (1 99 1). Thus, 
the fixation indices are  not measures of the  total  gene 
correlations  accumulated since the initial generations, 
but  rather can be  expressed as rate functions (CHESSER 
1991);  at  equilibrium  these  functions are (a, # at+,) 

AF 
Aff * 

PIS = 1 - - 

WRIGHT (1951,  1969)  determined  that  the island 
model described the equilibrium FST when loss  of gene 
diversity within a  population was equally countered 
by supplementation of genetic variation via gene flow. 
Wright however assumed an  infinite  number of pop- 
ulations, and genetic variation was not lost. Expression 
16  demonstrates  that within structured populations 
the increases of gene  correlations within lineages be- 
come  proportional  to  the loss  of gene diversity from 
the population  (for the FLs). Thus, a  counterbalance 
of drift  and  gene flow  may not  be  the sole factors 
determining  differentiation  among  groups. COCKER- 
HAM (1973) also showed that maintenance of initial 
genetic variance (a = 0) was not necessary for the 
determination of the ultimate fixation indices among 
populations. 

The magnitude of the asymptotic values attained is 
a  function of the  breeding tactics within lineages and 
the migration rate  for each sex. Breeding tactics (non- 
independence of female  mate choice; 4) was of much 
greater  importance  to  the  differentiation  among lin- 
eages (FLS) than was migration rate of either or both 
sexes except when migration  rates were very  low 
(<0.2). A particular  migration rate  for males or fe- 
males or both can result in a variety of FU values 
depending  on  the  mating schemes within lineages. A 
similar, yet  less pronounced,  difference of effects was 
evident for the  inbreeding coefficient (FIS). The F I L ,  
however, was relatively unaffected by gene flow when 
compared to the FLS and FIs and as such is a rather 
robust  indicator of breeding tactics. 
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The effects of male-biased and female-biased migra- 
tion are somewhat asymmetrical in their  influence on 
the differentiation among lineages. Male-biased  mi- 
gration always resulted in higher FLS values than 
did female  predominated  movement  for  a  particular 
breeding tactic (4). However, if one sex exhibited 
complete  migration, then  the  rate of migration by the 
alternate sex made relatively little impact on  the  re- 
sultant fixation indices for  progeny.  However,  the 
coancestry of parents is more positively influenced by 
female  philopatry  than that  for  the progeny (CHESSER 
1991). Thus,  the evolution of altruism  (HAMILTON 
1964a,b) may be  promoted  among  adults to a greater 
extent  than  among progeny by female  philopatry. 

CHESSER (1991) concluded that polygyny and phil- 
opatry probably evolved in concert with one  another 
in order  to  promote  greater coancestry among lineage 
members. Female philopatry (d f  = 0) with random 
selection of male mates by each female (+ = 0) will 
not  promote  intragroup  gene correlations beyond that 
of panmixia if male migration is random.  Inbreeding 
within the  group, however,  could  generate similar 
gene correlations to those for  the conditions of polygy- 
ny and  random male movement. Altruism within 
groups is a  function of the coefficient of relationship 
(HAMILTON 1964a,b; CHESSER and  RYMAN 1986) 

28 rxy = - 
1 + F  

(WRIGHT 1922). Using this expression and equations 
(8) and (10-1 3) the migration rate of progeny  sired 
by different males (+ = 0) necessary to result in the 
same asymptotic rxu as that with complete male poly- 
gyny (+ = 1 )  and  random migration (dm = 1)  can be 
approximated  for  female  philopatric systems. For in- 
dependent  (random) male selection (noting  that + = 
0, d f =  0) 

firandom) = 1 - ( 1  - y)dm 
4n - (4n - 1)(1 - ( 1  - y)dm) ( 1  8) 

and  the coefficient of  relationship is reduced to 

,.(random) = dm(  1 - y) - 2 
XY 2d,(l - 2n - y  + 2ny) - 2 '  (2 1)  

Likewise, for  complete polygyny (+ = 1)  and  random 
male movement (dm = l), 

F(Po'YgY"Y) = Y (22) 

and 

By setting 

and solving for d m ,  the migration rate  for randomly 
mating males from  their native lineage that is neces- 
sary to  produce  the same relationship within lineages 
as that  for  complete polygyny with random male 
movement is determined as 

If the  number of lineages in the population is suffi- 
ciently large such that y = 0, then  the male migration 
rate necessary for equivalence of rxy is approximately 

8n - 1 1 
8n2 + 4n - 1 n 

dm = " 
N 

and  the  resultant asymptotic inbreeding coefficient 
within lineages would be 

$random) 2 n - 1  " N 1 
10n - 2  5 

Clearly, substantial inbreeding  (about 20%) would be 
necessary for  independent  mate choice to  produce 
relationships with lineages equal to  that acquired by 
polygyny and  random male movement.  Inbreeding of 
this magnitude would probably  not  be  advantageous 
for maintaining fitnesses of progeny (CHESSER and 
RYMAN 1986; NOBLE, CHESSER and RYDER 1990). 
The rate of attainment of asymptotic relationship 
values is also much  more  rapid with polygyny than  for 
inbreeding scenarios. Thus, it appears  that evolution 
may favor the development of different  breeding tac- 
tics rather  than limited migration by both sexes for 
enhancing  intragroup  gene correlations. 

The loss of genetic variation within the population 
(a) and  the loss within individuals ( F )  are predictable 
from  the models (see Figure 1).  In  the models of 
female  philopatry and  random migration by both 
sexes (CHESSER 1991) these values were very similar. 
For models involving variable migration and  breeding 
tactics, the values may differ appreciably. The rates 
of change  for  these two variables are functions of the 
variance effective population size (Nm)  and  inbreeding 
effective size (Nq) ,  respectively (CROW and KIMURA 
1970). Because inbreeding progresses as 

the  inbreeding effective size can be  approximated 
from expression (7) as 

Nej = 4n 
(+(n - 1 )  + 2)[1 - ( 1  - J )  ( d m  + d f -  dmd/)]' 
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Male  Migration 
Male Migration -- 4 y  

FIGURE 4.-Three-dimensional wire diagrams depicting the influence of migration rates by males (dm) and females (d,) on  the  inbreeding 
and variance effective sizes (Nfland N,, respectively). The graphs were generated using  five females per lineage, 20 lineages in the population, 
mnd complete male  polygyny (6 = 1 .0). 

By a similar procedure,  the variance effective popu- 
lation size can be  approximated as 

N ,  = 4n 
y(Nn - 1) + 2)(dm + df - dmdf)* (32) 

When  migration by males, females, or both is com- 
plete  then  the variance and  inbreeding effective sizes 
will be approximately  equal.  However, as migration 
rates are decreased, the Ng will be  reduced with a 
concomitant increase in N ,  (Figure 4). Contrasting 
effects of migration on  inbreeding  and genetic vari- 
ance have been previously recognized  CROW and KI- 
MURA 1970; CHESSER,  SMITH and BRISBIN 1980; 
CHESSER 1983b)  but  formulas  for  approximating ef- 
fective sizes for such scenarios have  not  been previ- 
ously presented.  Whereas  previous  approximations of 
effective population sizes have focused on single pop- 
ulations and sex ratios of breeding individuals, the 
relative isolation of groups by incomplete  migration 
has not been addressed. The expressions above  pro- 
vide estimates of effective sizes for  an  array of poten- 
tially interacting  population  units.  Breeding tactics, as 
measured by the  nonindependence of female  mate 
choice (4), also affect changes in both  Nfland N,, but 
increasing polygyny serves to decrease  both  measures 
in an  equal  manner  (Figure 4). Obviously, if there  are 
an infinite number of lineages (y  = 0 ) ,  then 

N ,  = 
4n 

Nej = 
b$(n - 1) + 2)(1 - dm)(l - df) (33) 

The asymptotic values of the fixation indices appear 
to be robust in regard  to periodic  perturbations  as 
they quickly return  to  their previous values. Because 
the fixation indices are based on  gene  correlations the 
gene  frequencies for  the hypothetical loci involved 
are inconsequential; this, of course, would not  be  the 
case in estimating the values empirically. The time 
required  for  attainment of the equilibrium indices, 

however, is altered by some rate limiting functions. 
As  is seen in Figure 1, inbreeding  promulgated by 
incomplete  migration by both sexes will require  a 
longer  period of time  for the asymptotic fixation 
indices to be  reached. This is because the asymptotic 
inbreeding must be achieved before  the  other coan- 
cestry values will become asymptotic. Hence,  inbreed- 
ing affects both  the  time  required  to  attain  an equilib- 
rium  and  the ultimate value for  the  equilibrium. 
Other  rate limiting functions may not affect the values 
of the fixation indices. In  the models presented the 
population was initiated with s lineages and  the num- 
ber of lineages remained  constant. The number of 
lineages, however, can be used as a variable rather 
than  a  parameter. Assume the population was initiated 
with only a single lineage and  permitted  to  add new 
lineages in a logistic fashion to a maximum number 
of lineages (smax). If X is the intrinsic growth  rate of 
the population,  then the  number  of lineages in the 
population will progress as 

St+l  = X 
Smax - st 

(34) 
smax - 1. 

When this function  for  population  growth was imple- 
mented in the numerical  iterations  for the models it 
was found  that it had  no effect on  the asymptotic 
fixation indices previously described  (Figure 5); it did 
however  extend the time necessary to attain the 
asymptotic values. The choice of the logistic growth 
model was arbitrary  and served only as an example. 
Regardless of the  mode of population  growth, the 
population  must  approach  a  stable size before  the 
equilibria1 genetic  distributions  can  be manifested. 
Slower growth  rates  result in increased times for 
asymptotic  fixation  indices to  be  reached. Even 
though  the  population may loose considerable 
amounts of genetic  variation by small numbers of 
founding individuals and slow growth  rates (CHESSER, 
WILLIS and MATHEWS 1991),  the  gene diversity re- 
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FIGURE 5,"Fixation indices and  gene correlations resultant from 
logistic population growth from one to 30 (smaX) lineages. The graph 
was generated using five females per lineage,  complete polygyny 
within lineages (4 = 1 .O), complete  female philopatry (d l  = 0) ,  and 
random male migration (dm = 1 ) .  The intrinsic growth rate (X) of 
the population was 0.1. 

maining will ultimately  be distributed solely  in accord- 
ance to  the migration and breeding tactics. 

It is interesting to note  that  the predictions for the 
apportionment of gene diversity provided by the 
models herein cannot be reconciled  with  hypothesized 
breeding structure  for some  species.  Positive  values 
for levels analogous to  the F I L  (usually reported as FIS 
but within populations) have been found in  many 
studies (CHESSER 1983a; HAMILTON, CHESSER and 
BEST 1987; MCCULLOUGH and CHESSER 1987). In- 
spection  of  expression (2) clearly will show that such 
values are possible  only  when  coancestry  within the 
lineage is  less than the average inbreeding coefficient 
for individuals.  Because the coancestry  within the 
lineage represents the potential inbreeding coefficient 
that would result in the subsequent generation should 
lineage  members interbreed,  a positive FIL could  only 
transpire if the inbreeding coefficient  would  be poten- 
tially decreasing. A simple explanation of overdisper- 
sion will not suffice  because both the coancestry and 
inbreeding coefficient  would approach a,  and  the F I L  

would approach zero.  Some extended period of  in- 
breeding within  lineages  followed by an episode of 
dispersal  would result in  positive  values  of F I L  at least 
for adults because F would be high and  the coancestry 
subsequent to migration would be low (a). Such a 
scenario, however,  would not apply to  the resultant 
progeny and sampling a population at  the  appropriate 
time to evidence  this pattern would be serendipitous. 
It is more likely that  the breeding groups were not 
correctly defined (CHESSER 199 1). Inadvertent inclu- 
sion of individuals from several breeding groups into 
a defined unit will serve to decrease the estimated 
coancestry  within  lineages. In  order  for this procedure 
to create positive Frr. values,  however, inbreeding must 
be greater than a, indicative  of incomplete dispersal 
from the native groups. Thus, correct delineation of 
breeding groups is necessary for accurate approxi- 

mation of breeding structure.  It is not known to what 
extent such problems have  played  in  analysis of social 
structures. 

CHFSSER (1 983a) and FOLTZ and HOOCLAND (1 983) 
reported very different fixation  indices  within  popu- 
lations  of the black-tailed prairie dog. Although there 
has  been considerable speculation regarding the dis- 
parity  of reported values ($ RALLS, HARVEY and 
LYLES 1987), investigators have  failed to notice that 
the studies  were performed on very different scales 
and by very different methods. CHESSER (1 983a) re- 
ported traditional (WRIGHT 1978; NEI 1977) fixation 
indices among regions  (in New Mexico), among pop- 
ulations  within regions, within and among wards  of a 
single population, and among coteries (breeding units) 
of a population. FOLTZ and HOOGLAND (1983) only 
reported  the FST between  two populations (10 km 
apart)  and FIs within a single population. FOLTZ and 
HOOCLAND (1983, p. 274) also  instigated interative 
procedures to remove the bias  of  sibling  clusters (RAS- 
MUSSEN 1979) in producing excess  heterozygosity. 
However, they  failed to account for  the potential 
genetic relationship among breeding females  within 
coteries as a similar  bias. CHESSER'S positive  estimates 
of FIs (reported as F I T )  within a population would 
indicate considerable inbreeding. Positive  values for 
F I L  (reported as FIS)  may indicate inaccurate delinea- 
tion of breeding groups, as  discussed above. FOLTZ 
and HOWLAND found negative values for the F,s but 
their fixation indices  were not significantly different 
from zero (random mate selection).  Estimates  of FU 
and F I L  are not possible from their data. Thus, CHES- 
SER'S results are inconsistent  with  those that should 
result given the hypothesized  female philopatry and 
male  polygyny (HOOGLAND 1977) but probably suffer 
from inaccurate identification of breeding groups. 
FOLTZ and HOOCLAND did not attempt to identify 
breeding groups and  therefore their data are not 
useful  in determination of breeding structure; how- 
ever, their data do not provide any  evidence for 
outbreeding or incest  avoidance. 

The models presented permit precise examination 
of the probabilistic results for accumulation of gene 
correlations for  a continuum of population structures 
manifested by various migration and breeding tactics. 
The intent of the models is to derive the various gene 
correlations from known or hypothesized  behaviors 
of organisms  in natural environments. Inference of 
such  behaviors from empirical data may prove diffi- 
cult unless  sampling  regimes are carefully and accu- 
rately designed. The models document the impor- 
tance of breeding and migration tactics on  the appor- 
tionment of gene diversity  within populations and 
provide a mechanism for examining the evolution  of 
complex behaviors. 

I thank K. B. WILLIS and N. E. MATHEWS for their valuable 
discussions during  the  development of this manuscript. This work 
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APPENDIX I: TRANSITION  EQUATIONS  FOR 
GENE  CORRELATIONS 

Symbol definitions are  provided in the  text.  The  transition 
of  inbreeding  from  one  generation  to  the  next is 

F,+I = ymq, = [ 1 - (1 - y)(dm + d~ - dmd~) ]emh 
+ (1 - y)(dm + df  - dmdf)at. (A.1) 

T h e  average  coancestry  between  random pairs  of offspring 
born  in  different lineages  in generation t + 1 is 

at+ = + [pmm., + pm,., +(p/m., +U$.,I ('4.2) 
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where suffixes m and f refer to male and female parents and 
asterisks indicate individuals from different lineages. The genes 
of any  given  male are correlated to n - 1 males from the same 
lineage by Om,, and  to n(s - 1) males  by at. Assigning x = 
(n - I)/(ns - 1) and because offspring become the parents 
within the same generation, t ,  

Vmm., = ~ d d t n m ,  + (1 - xdm)~ .  (A.3) 

The genes of a female are correlated to n males  by  &,,and to 
n(s - 1) males  by a; therefore, 

Vmf., = u%., = y(dm + df - dmdf)&/, ('4.4) 
+ (1 - y(dm + df - dmd/))at. 

The coancestry  of female parents from different lineages is 
similar to expression A.3 because 08 = Om, 

Vg., = ~d,8 , , ,~ ,  + (1 - xdf)a,. (A.5) 

Finally, combining Equations A.3-A.5, 

at+1 = 4 x(d, + gd + y ( d m  + df - 4 4 )  
mmt 2 'h 

( A 4  
4 - 2y(dm + df - d,df) - X(& + d f )  

4 
+ at. 

The coancestry among male offspring born within  lineages is 

8mm,+, = i [Ymm, + 2~mh + YO;]. ('4.7) 

The gene correlation of  male parents within  lineages is 

Y m n ,  = - '(' + F t )  + ( 1  - 4)( 1 - (1 - ~ ) d , , , ) 8 ~ ~ ,  2 ('4.8) + (1 - x)d,(l - 4)af. 

The value of T,,,, has already been defined in expression A.l  
(m,,,, = Ft+l). The coancestry among female parents within 
lineages is determined as 

70; = (1 - (1 - x)4)8mn, + (1 - x ) d ~ t .  (A.9) 

Combining expressions, 

Correlations of genes among male and female progeny within 
lineages will be determined assuming that  there are n litters of 
equal numbers of  male and female offspring. The frequency of 
full  siblings  within a lineage is l/n, and their contribution to 
the coancestry within  lineages is 

(A. 1 1) 

The remainder of the offspring within a lineage likewise con- 
tribute 

(A. 12) 

Summing, the coancestry of male and female progeny within 
lineages is 

which,  when expanded becomes 

+ 1 - (1 - y)(dm + d, - d,d,) 
2 6, 

+ 2 n(l -y)(d,+d,-d,df)+(n- 1)(1 -x)(d,,,(l - 4 ) + d f )  
4n at. 


