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ABSTRACT 
In a geographically structured population, the interplay among gene migration, genetic drift  and 

natural selection  raises intriguing evolutionary problems, but the rigorous mathematical treatment is 
often very difficult. Therefore several approximate formulas were developed concerning the coales- 
cence process  of neutral genes and  the fixation process of selected mutations in an island model, and 
their accuracy was examined by computer simulation. When migration is limited, the coalescence (or 
divergence) time for sampled neutral genes can  be described by the convolution of exponential 
functions, as  in a panmictic population, but it is determined mainly by migration rate  and  the  number 
of demes from which the sample is taken. This time can  be  much longer than that in a panmictic 
population with the same number of breeding individuals. For a selected mutation, the spreading 
over the  entire population was formulated as a  birth  and  death process, in  which the fixation 
probability within a  deme plays a key role. With  limited amounts of migration, even advantageous 
mutations take a large number of generations to spread.  Furthermore, it is likely that these mutations 
which are temporarily fixed in some demes may be swamped out again by non-mutant immigrants 
from other demes unless  selection is strong  enough.  These results are potentially useful for testing 
quantitatively various hypotheses that have been proposed for the origin of modern human popula- 
tions. 

I N this paper I attempt  to provide  a  theoretical basis 
for  understanding  the origin of modern  humans 

(Homo sapiens). The study of human paleontology 
appears always to revolve around this enigma. Al- 
though  a variety of hypotheses have  been put  forward 
(e.g., see SMITH and SPENCER 1987; LEWIN 1988; 
MELLARS and STRINGER 1989), they have one  feature 
in common: based on fossil evidence the first  demon- 
strable  migration of Homo erectus from Africa to Eu- 
rope, Asia and Australia took place 1 .O- 1.5 million 
years ago.  What has been extensively debated is 
whether all living populations  had  a  recent  origin in 
the Late Pleistocene, some hundred thousand years 
ago, or whether  they evolved in many different re- 
gions from local archaic  populations  of H. erectus. 
There  are two extreme hypotheses, the candelabra 
and  the Noah’s Ark (HOWELLS 1976). The candelabra 
assumes no migration and parallel evolution of mod- 
ern H.  sapiens in several regional localities at  the same 
time. The Noah’s Ark, on  the  other  hand, assumes 
the complete  replacement of populations in the Old 
World by anatomically modern H .  sapiens from Af- 
rica. There can be many possibilities between the two 
extremes. One such is a modified version of the can- 
delabra, called the multiregional hypothesis (WOL- 
POFF, ZHI and THORNE 1987; WOLPOFF 1989), which 
allows continuous but presumably infrequent  gene 
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exchanges  between  different populations. In  short, 
the existing hypotheses for  the  origin of modern H. 
sapiens differ essentially in the role and  extent of 
migration which might  have  occurred during  the Mid- 
dle  and  Upper Pleistocene. The problem  thus  appears 
to be the  one  that can be quantified by population 
genetics. In  this  paper I shall derive several mathe- 
matical formulas which I believe are relevant to  the 
problem. 

The model of population structure used in this 
paper is WRIGHT’S (193 1) island model,  except  that 
the population consists of a  finite number of demes 
or colonies (MARUYAMA 1970a; CROW and MARU- 
YAMA 1971). In  the first part,  the ancestral  relation- 
ships of neutral  genes at a locus sampled from such a 
structured population is studied. The total coales- 
cence  time (or  the time to  an ancestral  gene  from 
which all in the sample are descended) is of particular 
interest in relation to intrapopulational  gene geneal- 
ogy inferred  from DNA sequences (e.g., CANN, 
STONEKING and WILSON 1987; SATTA and TAKAHATA 
1990; HORAI 1991; VIGILANT et al. 1991). Recently, 
the study of coalescence in a subdivided population 
was initiated (TAKAHATA 1988)  and  the general  math- 
ematical framework is now available (NOTOHARA 
1990). Yet, it appears very difficult to derive explicit 
solutions  except for some special cases. It is therefore 
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important  to  develop  appropriate  approximation 
methods. Such an  approach,  as  it  turns  out, leads to a 
simple but surprisingly accurate  description of the 
ancestry of neutral  genes in a structured population. 

In the second part,  the fixation process of a favor- 
able  mutation is studied.  Of interest is the probability 
that a new mutation  fixed in one  deme will spread 
through  the whole population and  the time this re- 
quires. For such genes to be  important in modern 
human  evolution, they must spread within a  reasona- 
bly short  time  period. Since the  human  population 
was to some extent  structured, it is worth investigating 
how rapidly fixation can take place in a  subdivided 
population.  Although  some  indirect  approaches to this 
problem was developed by SLATKIN  (1981) (see also 
LANDE  1979; SLATKIN 1976),  the  present  formulas 
seem to be in better  agreement with simulation results. 

COALESCENCE OF NEUTRAL GENES 

The population  considered here consists of L demes 
each of which has effective size N (WRIGHT 1931; 
MARUYAMA 1970a). There  are NL diploid individuals 
in total. The per  generation  migration  rate is denoted 
by m, and when emigration  occurs  from one  deme, 
the L - 1 remaining  demes receive immigrants equally 
likely. The average  fraction of immigrants in a recip- 
ient  deme  from  a  donor is  m/(L - 1) every generation. 
Assume that n, genes are sampled from  the  ith  deme, 
but n, may be 0 for  some  demes (no samples). The 
total  numbers of demes and genes sampled are r 
( r  < L)  and n = n,. In this section, two situations, 
low and high migration limits, are  treated separately. 

Generations are measured backward in time, and 
accordingly evolutionary  events are so described. 
Throughout this paper coalescence always refers  to 
an event at which a  pair of sampled genes  trace back 
to the most recent  common  ancestral  gene. 
Low migration limit: When  migration is limited, it 

is  most  likely that orthologous  genes within each deme 
coalesce to or are descended  from  a  common  ancestor 
within the  deme.  It follows that as  time goes back 
there must be  a  time (Tni) at which all genes sampled 
from  the  ith  deme are descended from a single ances- 
tral  gene  that  existed also in this deme (Figure  1). By 
definition, T,i = 0 if only one  gene is sampled from 
the  ith  deme (ni = l),  and immediately before T n i  

there was a single lineage. Denote by T, the maximum 
value of T,* among  the  sampled  demes. Then, T, 
generations  ago, there were r distinct lineages of all 
sampled genes, each of which is represented singly  in 
a deme. Such an ancestral lineage is called a  singleton 
and r specifies the previous coalescence. A key as- 
sumption is that T, is much shorter  than  the waiting 
time  for  a  migration to occur. In fact, the inequality 
4N << l /m must hold  for the low migration limit 
(4Nm << l),  since the expected coalescence time in an 
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FIGURE l.-Coalescence process in a  structured population with 
limited migration. Horizontal lines crossing thick lines (deme 
boundaries) indicate migration events. T,, is the maximum value  of 
coalescence times for n genes sampled from r (S L )  demes without 
any migration. Immediately before T,, there  are r (= 3) ancestral 
lineages for  the sample. In further tracing back their ancestors, 
migration is necessarily involved. I f  there  are j (2 c j C r )  genes 
singly represented in demes, two of them must come from the same 
deme in which they diverged. This waiting time T, is given approx- 
imately by Equation 2 with r = j .  When m (migration rate) is small, 
the waiting time for a coalescence within a  deme can be ignored. 

isolated deme is bounded by 4N (KINGMAN 1982)  and 
the mean waiting time for a  migration is I/m (TAKA- 
HATA 1988; NOTOHARA 1990): the coalescence and 
migration processes are decoupled. 

Once r singletons for  the ancestry of sampled genes 
are achieved, it takes a  long time for  them  to  change 
their  residing  demes by gene  migration and makes 
further coalescences possible. Denote by T, the wait- 
ing  time at which r singletons change  their  residence 
and a  pair  of r singletons came  from the same deme 
for  the  first  time  (Figure 1). If this happens, the 
coalescence of these two lineages is assured in that 
deme,  reducing  the  number of distinct ancestral line- 
ages by one.  Denote by K ,  the  number of migration 
events  during T,. generations. The value of K ,  is a 
random variable and  the probability of K ,  = k ( k  = 1, 
2, . . .) follows a  geometric  distribution 

P ( K ,  = k )  = (1 - u,)~-'u, (1) 

in which a, = ( r  - 1)/(L - 1). Since a, is the probability 
that a  pair of genes  come  from  the same deme by a 
single migration  event, K ,  is geometric with parameter 
a,. As mentioned,  the waiting time for migration of a 
gene is exponentially  distributed with mean l /m.  For 
r genes, the time  until the  kth  migration  occurs is 
gamma  distributed with mean l / r m  (COX 1962; 
FELLER 1970).  However, since not all migrations re- 
sult in a  pair of genes (a doublet), it is necessary to 
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Coalescence (4 singletons) 

(A different  doublet) (A triplet or two  doublets) 
FIGURE 2.-An  illustration of r gene lineages (center) indicated 

by g, two of which  reside in a  single deme (box) and the remaining 
r - 2 are  represented  singly  in different demes. The four possible 
events by coalescence  and  migration are shown  by arrows. In the 
text, P,,   P, ,  Pd and Po designate the probabilities of these events. 

take the expectation of  this  gamma distributed time 
with respect to  the distribution in Equation 1 .  This 
leads to  the probability  of T ,  = t being exponentially 
distributed with  mean ( L  - l ) / r ( r  - l)m, or 

To confirm that  the most  likely ancestral pattern is 
their coalescence once a pair of ancestral genes reside 
in a deme, it may  be instructive to evaluate the prob- 
abilities  of (a) coalescence before further migration, 
PC,  and of migration, without coalescence, that leads 
to (b) a different distribution of r singletons, P,, (c) a 
single  pair  in a different deme (a doublet), Pd, or (d) 
two doublets or one triplet, Po (Figure 2) .  The results 
in TAKAHATA (1  988) and NOTOHARA (1  990) (see  also 
TAKAHATA and SLATKIN 1990) show that 

in  which M = 2Nm. Case  (b) occurs when one of the 
two  genes  in the same deme migrates to  one of the 
unoccupied  demes L - 1 - ( r  - 2 )  before coalescing. 
This probability  becomes 

2(L - r + 1) rM 2(L - r + l)M P, = " 

r(L - 1)  1 + rM ( L  - 1)(1 + rM)' 
- 

In this  case the process starts over ( i e . ,  there  are again 
r singletons).  Case  (c) occurs when one of the two 
genes in the same deme migrates to form another pair 
with one of the r - 2 singletons or when one of the r 
- 2 singletons migrates to  an unoccupied deme. This 
probability is given by 

2(r  - 2 )  + ( r  - 2)(L - r + 1)  rM 
Pd = { r ( L  - 1 )  r(L - 1)  }G 

( r  - 2)(L - r + 3)M - - 
( L  - 1)(1 + rM) 

The last  possibility occurs when there is one deme in 
which three genes reside or when there are two  demes 
each of which contains two  genes. This probability 
becomes 

P o = {  ( r  - r(L 2)(r - 1)  - 3, + - 2 ) 1  rM T ( L  - 1)  1 + rM 

- ( r  - 2)2M - 
( L  - 1)(1 + rM)' 

Clearly, P,,  Pd, and Po are of the  order of M, and for 
them to be  much  smaller than 1 ,  rM << 1 ,  a sufficient 
condition for the low migration limit. Once again, the 
waiting  time for a sample of size n to include r - 1 
singletons is mainly determined by the slow migra- 
tion  process among the r singletons (ie., T,, << Tr) .  
Time Tr + T ,  is therefore approximated by T, in 
Equation 2. 

As time goes  back further in the past, the ancestral 
lineages are usually represented as  singletons  in the 
population. However,  occasional  migration  occurs to 
form a pair of  lineages  in a single deme. This coales- 
cence  time is very short (2N generations on average) 
relative to the time between  successive  migration 
events. By the same token, therefore,  the waiting  time 
for r - 2 singletons  since the first  establishment  of r 
- 1 singletons is given by Equation 2 with r replaced 
by r - 1 .  In this  way, the coalescence  process continues 
backward in time  until there remains only one com- 
mon ancestral lineage for the sample. Thus  the prob- 
ability  density of the total waiting  time (T  = z=2 T j )  
can  be approximated by the convolution of P(Tj  = t ) 
( j  = 2,  3 ,  . . ., r ) .  The explicit representation of  this 
probability  density was derived in TAKAHATA and NEI 
(1985), but in a different context. It is simpler  to use 
the Laplace transform (QT) of T and  the probability 
generating function ( Q K )  of the total number of mi- 
gration events ( K  = z=2 K,)  during  the whole  process. 
They  are 

r j ( j  - 1)m = n . .  
, = 2 ~ 0  - 1)m + ( L  - 1)z 

and 
m 

7 

&(z) = 2 P ( K  = k)z' = fl (j - 1)z 
(4) 

h= 1 ,=2 L - 1 - ( L  - j ) z  

in  which z stands for  a dummy variable relevant to 
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each  transformation. The mean and variance of T and 
K become 

E ( T )  = m ( 1  - t), 

and 
r-1 . 

E ( K )  = (L - 1) A, 
j=1 J 

r-1 , (6) 

V ( K )  = (L - 1)’ - E ( K ) .  
j=1 3 

In the above and subsequently, E (  ) and V (  ) stand  for 
mean and variance. 

It is clear that  the  number ( r )  of sampled demes is 
an  important  parameter  to  determine  the total coales- 
cence time T ,  i .e. ,  the total  length of ancestry (see also 
TAKAHATA 1988). For example, if a sample is taken 
from  a single deme (e.g., r = l),  the time to  the most 
recent  common  ancestor is so short  that E (  T )  is 
bounded by 4N generations, which is E ( T , } .  If,  on  the 
other  hand, a sample includes two different  demes 
( r  = 2), T can be very long,  depending  on  the  extent 
of gene  migration.  Note,  however, that  further in- 
creasing the  number of sampled demes  does not 
greatly increase T in an island model. The total  num- 
ber (L) of demes in the model also affects the above 
results, but T is very weakly dependent of L, if time is 
measured in units of 2NL or 4NL generations. This 
time  unit is convenient to see to what extent popula- 
tion  structure affects the coalescence process relative 
to that in a panmictic population with the same  num- 
ber of breeding individuals (NL). 

High migration limit: When  migration  occurs  fre- 
quently,  there must be  a number  of  gene migrations 
before sampled genes coalesce to a  common  ancestor. 
In this case, the  ancestral lineages are expected to be 
distributed at  random  over L demes even before  the 
first coalescence for  the sample occurs. Therefore  the 
distribution is obtained similarly as  for  the case where 
n “balls” are  thrown  at  random in L “cells.” What 
matters is how n such balls are distributed in L cells, 
because the  rate of the coalescence is in proportion  to 
H ,  = ni(ni - 1)/(4N) where ni is the  number of 
balls  in the  ith cell and n = n, as before. The value 
of H ,  is a  random variable, but  from  the above argu- 
ment,  the expectation can immediately be  computed 
from  the multinomial distribution of (n , ) .  That is (n  
- 1)/4NL, which, as expected,  provides  the same 
coalescent rate as in a panmictic population of  size 

NL. Since migration  occurs with rate n X m, the 
expected probability of coalescence is 

PC = 
n(n - 1) n - 1  - - 

n(n - 1) + 4NLnm TI, - 1 + 2LM 

while the probability of migration is 

2LM 
n - 1 + 2LM’ 

P , =  1 - P C =  

Define a random variable K ,  as the  number of 
migration  events  until the first coalescence takes place 
in a sample of size n. The probability of K ,  = k is then 
given by the geometric  distribution 

P { K ,  = k )  = PCP“,, (k = 0, 1 ,  . . .) (7) 
with the probability generating  function 

The first coalescence time T ,  can be approximated 
by the exponential  distribution with mean rate 
n(n - 1)/4NL, OT 

and  the Laplace transform is 

Since the same arguments can be applied  after  the 
first coalescence or to Ti and Ki (i = 2, 3, . . ., n - l ) ,  
the distributions of T = CYm2 T ,  and K = CY==:! Ki can be 
found in the same  manner as that for  the low migra- 
tion limit, but of importance  here is the coalescence 
process. 

Note in the above that it does  not  matter how the 
initial sample is taken  from the demes, and  the initial 
sample size n does  not  greatly  change  the  distributions 
of T and K .  These can be seen from  their means and 
variances, which are given by 

n--l 1 
, E ( K )  = 2LM T, ( 1 1 )  

i = l  

and 
n 1 

V ( T )  = (4NL)’ x 1 

1=2 (i(i - 1 ) y ’  
(12) 

n-l 1 
\ I  

V ( K )  = E ( K )  + (2LM)’ 7. 
Z = l  2 

There is no r dependence in Equations 1 1  and 12 in 
sharp contrast to  the low migration limit. 

Table 1 compares Equations 5 ,  6, 1 1  and 12 with 
simulation results, showing their  excellent  agreement 
for  the  range of 2M = 4Nm C 0.1 or a 10 (see also 



Spreading  Mutants  in  an  Island  Model 589 

TABLE 1 

Theoretical and simulation results on the mean and standard deviation of the coalescence time ( T )  and the  number of migration events 
( K )  in an island model of L demes 

~~~ ~ 

Case A Case B 

M = 2Nm T K T K 

0.0001 Sim 
~~ 

EXP 

EXP 

EXP 

EXP 

EXP 

EXP 

0.0005 Sim 

0.005 Sim 

0.05 Sim 

5 Sim 

10 Sim 

4773 f 2681 
4802 f 2638 

960 f 534 
960 f 528 

97 f 53 
96 f 53 

10 f 5.8 
9.6 f 5.3 

1.0 f 0.6 
1.0 f 0.5 

1.0 f 0.6 
1.0 f 0.5 

219 f 62 
220 f 61 

220 f 61 
2 2 0 f  61 

221 f 61 
220 f 61 

241 f 67 
220 f 61 

2523 f 713 
2234 f 636 

4803 f 1349 
4378 f 1270 

3901 k 2582 
3920 f 2626 

774 f 526 
784 f 525 

79 f 54 
78 f 53 

8.9 f 5.7 
7.8 f 5.3 

1.0 f 0.6 
1 .O f 0.5 

1 .O f 0.6 
1.0 f 0.5 

103 f 57 
102 f 57 

102 f 57 
102 f 57 

105 f 59 
102 f 57 

108 f 59 
102 f 57 

2330 f 710 
2234 f 636 

4589 f 1340 
4378 f 1270 

The  mean f standard  deviation  of T are  measured in units of 4NL generations  and similarly those of K are given in column K .  In both 
case A and B, L = 50 and n (the sample size) = 50. The  initial configuration is, however,  different:  there  are 50 singletons ( r  = 50) in case A 
while there  are only five such demes ( r  = 5), each  containing 10 sampled  genes in case B. Each simulation  result (Sim) is obtained by a 
method similar to  that  described in TAKAHATA (1988): the  number of  replicates is 5000. Theoretical  expectations (Exp) are based on 
Equations 5 and 6 for 4Nm 5 0.1 and  Equations 1 1 and 12 for 4Nm 2 10. 

Figure 3). Figure 3 further suggests that,  for  inter- 
mediate values of M ,  a simple interpolation  for  the 
mean coalescence time 

E ( T J  = rm + 4NL(l - i) (13) 
( r  - 1)(L - 1) 

or  

E ( T J  ( r  - 1)(L - 1) 1 
4NL 2rLM 

+ 1 - -  
n 

" - 

can  make  a  reasonably  accurate  prediction. The rele- 
vance  of  Equation 13 to  the global effective  popula- 
tion size (e.g., EWENS 1979) is discussed elsewhere. T o  
show effects of  a  limited  migration rate  on  the  total 
coalescence time,  a  histogram  of T is presented  in 
Figure 4, which was obtained by computer simulation. 
The  shape is similar to  that of the distribution  of 
fixation  time (see Figure 1 in KIMURA 1970), but  the 
time scale of the histogram is enlarged  greatly as 
expected  from  Equations 3 and 5 .  

SPREADING OF SELECTED  MUTATIONS 

Let us begin this section by recalling the  mean 
fixation  time (TS)  of an advantageous  mutation when 
it  appears singly in a  panmictic  population  of size N 
and it is subjected to genic selection with selection 
coefficient s. The approximate  formula  of E (  T,J is 
given by 

2 
E(T,)  = - log(2N) 

for large Ns (EWENS 1979; NEI 1987; TAKAHATA 
199 1 ; see also KIMURA and OHTA 1969). The variance 

S (14) 

of T, is 0 under  the  approximation which leads to 
Equation 14. The dependence  of E (  T,) on N is very 
weak, and  the process takes only some hundreds of 
generations if s is a few percent.  For simplicity, first 
assume that fixation in each deme occurs rapidly and 
almost  surely. Under this  assumption,  each deme is 
fixed most of the  time  for  either  mutant  or  non- 
mutant  genes, so that each deme can be  designated 
by qualifiers, mutant  and  non-mutant. Subsequently, 
the possibility that even  advantageous  mutations are 
lost by genetic  drift  and migration will be  taken into 
account. 

Approximation by a birth process: Of  interest is 
the probability that a mutant  gene already  fixed in 
one  deme  spreads  over  the  entire population and  the 
time  this  requires. The establishment  of  a  mutant 
gene in the first deme is a  different  problem.  In such 
a case, not only  migration and genetic  drift but also 
mutation plays an important  role.  For  instance,  the 
age of an advantageous allele in a  panmictic  popula- 
tion is exponentially  distributed with mean 1/8Nsu 
(TAKAHATA 1991) where v is the  per  generation mu- 
tation  rate  under  the infinitely many allele model of 
mutations  (KIMURA  and  CROW 1964) and Ns >> 1 is 
assumed.  When v is small, the  age of allele can of 
course  be  much  longer  than  the mean fixation  time 
in Equation 14. 

Now suppose that  at a given generation,  there  are 
i mutant  and L - i non-mutant  demes (i = 1 ,  2, . . ., 
L - 1). Under this  circumstance, each of the  mutant 
demes receives a  fraction of (L - i)m/(L - 1) non- 
mutant  immigrants while each of the  non-mutant 
demes receives a  fraction of im/(L - 1)  mutant immi- 
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FIGURE 3.-(A) Mean coalescence time E ( T )  of neutral genes 
sampled from r demes for a wide range of M = 2Nm. There  are L 
demes in the population. The ordinate is loglo [E(T)/(4NL)] ob- 
tained from Equation 5 and  the abscissa  is loglo M :  the sample size 
is 100, 10 from each of ten demes (i.e., A = 100  and r = 10). (B) 
Mean coalescence time E (  T )  for L = 50  and M ranging  from 0.1 to 
1 .O. The number of genes sampled from 5 demes is 50  (10 from 
each of five deme). The formula (5) (solid diamonds) underestimates 
the simulation result (connected open squares), but  more  accurate 
figures can be obtained from Equation 13. The number of replicates 
in the simulation is 5000. 

grants. It is assumed that mutant demes never return 
to nonmutant ones, and in fact this  assumption can be 
verified by an extremely small  value  of the extinction 
probability under  the condition specified later. Thus 
once a deme becomes mutant, it remains in  this state 
forever: the fixation  process  in  each deme is irrevers- 
ible so that  the whole  process  can be treated as a pure 
birth process (e.g., EWENS 1979). In contrast, a non- 
mutant deme receiving a small fraction of mutant 
immigrants does not necessarily  have a high probabil- 
ity of  fixing them. This is  so particularly when  migra- 
tion rate is small, and  the loss of mutant immigrants 
occurs rapidly. Hence, in addition to irreversibility, it 
is  assumed that  the chance of  build-up  of mutants 
solely due  to immigration is small.  When these as- 
sumptions are approximately met, the seemingly  com- 

2  4  6 8 10121416182022242628303234363840 
T/(#NL) 

FIGURE 4.-Computer-generated histogram of the total coales- 
cence time T in a finite island model of population structure ( L  = 
50, A, = 10 for  5 demes and 4Nm = 0.01). The number of replicates 
is 5000. The mean and standard deviation of T in this simulation 
are 79.4 and 54.3 in units of 4NL generations. Note that the abscissa 
is measured in units of 40NL generations. 

1 

Tune (or number of non-mutant demes) 

FIGURE 5.-Schematic representation of the fixation process in 
an island model with L demes. E(T,J ,  E(T,) ,  and E ( T )  = E::' E ( T , )  
are given by Equations 14, 15 and 17, respectively. The total 
fixation time T, is the sum of T and T,.  It should be noted that 
when selection is weak, T, may be significantly long so that Equation 
17 for the time T until the last non-mutant deme  starts to be fixed 
underestimates the value of T, = T + T,. 

plicated  process is greatly simplified  mathematically. 
Consider a particular deme consisting  of a fraction 

of im/(L - 1) mutant and 1 - im/(L - 1) non-mutant 
genes. The fixation probability ~ ( x )  of a mutant gene 
in this deme is denoted by ui when the initial frequency 
(x) is im/(L - l),  or ui = u(im/L - 1). Under the 
assumption  of no build-up  of immigrants, the proba- 
bility that this deme does not become entirely mutant 
for t generations is  given  by (1 - u,)'. There  are, 
however, L - i non-mutant demes altogether, so the 
probability that  none of them becomes mutant is (1 - 
u,)(L"i)t. Hence the probability that one or more non- 
mutant demes start  to become mutant after t genera- 
tions is given  by 

Gi( t )  = (1 - ui)(L-i)(t-l) - (1 - ui)(L-i) t .  (1 5 4  

Define a random variable Ti whose distribution is 
given by Gi( t )  (Figure 5) .  The Ti is the waiting  time 
until one or more non-mutant demes go to fixation 
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by mutant genes that emigrated from  the  i mutant 
demes. In the above treatment, time is discrete. In  a 
time-continuous approximation in  which  only one 
deme transition is allowed per unit-time with  small 
values  of ui , the corresponding formula for Ti becomes 
an exponential function 

Gi(t )  = (L - i)uiexp( - (L - i)uit). (15b) 

For simplicity, it is therefore assumed that formula 
(15a) gives  essentially the waiting time distribution 
that only one non-mutant deme goes to fixation. In 
short,  the model captured by Equations 15a and  15b 
is  as  follows.  When there are L - i non-mutant demes, 
one  and only one of them begins to be replaced (fixed) 
by mutant immigrants with the waiting time Ti.  This 
distribution is G,( t )  with  mean (1 - (1 - u,)~-’)-’. 
When  this happens, the  number of mutant demes 
after T, generations increases by one,  and  the process 
proceeds further.  Therefore starting at state i = 1, 
the process ends up at i = L - 1 at which the last non- 
mutant deme starts to become  fixed (Figure 5) .  The 
total time for  the completion of  this pure  birth process 
is designated by T = Efq1 Ti while the fixation time in 
the last non-mutant deme is T,. It is immaterial 
whether Ti > T, or Ti < T,. 

It is easy to compute the moments of the total 
fixation time (T, = T + T,) in the  entire population, 
since the distribution is given by the convolution of 
G;( t )  for  i = 1, 2, . . ., L - 1  and  the distribution of 
T,. Unfortunately, however, the distribution of T,  is 
unsolved so that only the distribution of T is examined 
below. The probability generating function ( R ( z ) )  of 
Tis given by the  product of generating function Ri(z)  
o f T i f o r i = 1 , 2  ,..., L - 1 , o r  

01 
z{ 1 - (1 - uJL-1) 

t= 1 1 - r(l  - u;)”-i 
Ri(%) = x Gi(t)Z‘ = 

(16) . ,  
L- 1 

i= 1 I=] 1 - r ( l  - 2L;)L-i‘ 
R ( r )  = n R&) = rL-l n L-1 1 - (1 - .$-i 

From Equation 16,  the mean and variance  of T be- 
come 

L- 1 

and 

As an example, consider the semidominant case 
4Nms’i where ui = - approximately (s’ = - see KIMURA L - 1  2’ 

S 

1962; MARUYAMA 1970b; CROW and KIMURA 1970). 
Then Equation 17 becomes E ( T )  = 
L - 1  - L-1 L z - L - 1  

2NmStL Z = 1  i 2Nms’L (0.5771 + log(L - 1)). 

This mean fixation time is of course much shorter 
than  that for neutral genes. Nonetheless,  it is clear 
that  for small  values  of m, it takes a large number of 
generations for an advantageous gene to become  fixed 
in the whole population. Table  2 shows the mean and 
variance  of T, approximated by Equations 17,  18, 

E(T,)  = - 7 log(m), and V(T,) = 0 in  comparisons of 

simulation results. 
When migration occurs frequently, the mean  fixa- 

tion time in a panmictic population should provide an 
accurate figure. For the initial frequency of  1/L and 
the case  of  semidominance, E(T,) = E (  T,) = 2/s’ 
log(L) approximately (Table 2). 

Approximation by a birth and  death  process: It 
may be necessary to  extend  the above  analysis to the 
case where selection is relatively weak so that fixation 
of mutant genes in a deme is not necessarily assured. 
That is, there is a possibility that  a deme once fixed 
by a mutant gene may be swamped out again by non- 
mutant immigrants from other demes. Such a process 
may  be approximated by a birth and death process, 
provided that  either “fixation” in one of the L - i 
non-mutant demes or “extinction” in one of the i 
mutant demes can happen in a generation. SLATKIN 
(1981) considered a similar  process under  a general 
setting of population structure. Noticing the equiva- 
lence  of the process to that in the haploid MORAN 
(1962) model, he used the formula of the mean  fixa- 
tion  time obtained by the diffusion approximation. 
The equivalence is based on the assumption that the 
initial frequency of a mutant gene in a non-mutant 
deme is always 1/2N, independent of m, L  and  the 
number of mutant demes (i). Unfortunately, however, 
this  assumption may  oversimplify the situation, be- 
cause the initial frequency of a mutant gene depends 
on these parameter values and affects the fixation 
process greatly. A more accurate expression for  the 
rate of  fixation  in the  L - i non-mutant demes  can  be 
written as 

2 
S 

(L - i)m)i [ { - .( im )r-] 
r ; = u  1 - ( L - 1  1 -  1 

L - 1  , 

since the first term on the right is the probability  of 
no change in the i mutant demes and  the second is 
the probability  of transition in the L - i non-mutant 
demes to  mutant. Likewise, the  rate of extinction in 
one of the i mutant demes  can  be  given by 

Thus  the transition that  either increases or decreases 
the  number of mutant demes by one occurs with a 
waiting time whose distribution is exponential with 
mean rate r, + q i .  

The ultimate fixation and extinction probabilities 
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TABLE 2 

Theoretical  (Exp)  and  simulation  (Sim)  results on the  mean  and  standard deviations of fixation time of semidominant  advantageous 
mutations 

m 

5 0.00001 0.0001 0.001 0.01 0.1 

0.1 Sim 54,300 5,754  876 300 218 
(k8.038) (+874) (+108) (215)  (+lo) 

EXP 5 1,740 5,544  841 308 192 
(+9,218) (+923) (+92) (f9) (+") 

0.05 Sim 109,200 1 1,450 1,629 549  419 
(+13,180) (21,910) (+ 194) (+36) (+27) 

EXP 103,400 1 1,040 1,629 534  285 
(f18,430) (+ 1,847) ( f l 8 5 )  (+ 18) (+") 

0.01 Sim 517,700 53,270 6,801 2,440 1,993 

EXP 451,900 47,960 7,237  2,337 1,039 

(+81,150) (29,022) (+ 1,028) (+335) (2262) 

(+82,650)  (+7,959) (+797)  (280) (+") 

s, selection coefficient; h, the degree of dominance, and  the per  generation  increment of mutant frequency x is given by sx(1 - x ) { h  + 
(1 - 2h)xl .  Equations 17 and 18 for h = 0.5 and the fixation probability .(x) = are used (2s' = s). N = 100 and L = 100. 

The simulation for each parameter set was carried out until the  number of fixed cases reaches 100. During such repeats that the value  of s 
was snecified as small as 0.01. there were 20. 17.  10. and 6 cases of extinction for m = 0.0001, 0.001, 0.01, and 0.1, respectively, while no 

1 - exp(- 4Ns'x) 
1 - exp(- 4Ns') 

extinction occurred for s = 0.05 and 0.1. 
, . ,  

The variance formula (1 8 )  cannot predict accurate figures. 

of  a  mutant  gene which is initially fixed in one of L 
demes  provide the condition  for the validity of Equa- 
tion 1 6 .  This computation is not as difficult as might 
be expected, since the  matrix in the present birth  and 
death process is a  continuant (i.e., tridiagonal) for 
which several useful formulas are available (e.g., 
EWENS 1979) .  Let Vi be the fixation probability in the 
entire population when there  are i demes  fixed by 
mutant  genes initially. Of main concern is the case of 
i = 1 ,  VI, since initially there is only one such deme in 
the present  model, but  the  formula of Vi for any i 
(1 S i C L - 1) is known. Define wk as wo = 1 and 

q1q2 * * * 4' for k > 0. wk = 
r1r2 . . . r k  

Then Vi becomes 
i- 1 

wk 

vi - h=O 
L-1 

2 wk 
h=O 

and  the extinction probability becomes 1 - Vi. For 
i = 1 ,  the formula  reduces to 

1 
VI = t-1. ( 1 9 )  

wk 
k=O 

1 - e-2sx 

1 -  In  the case of genic selection, u(x) = e-2s in which 

S = 2Ns so that  for small values of 2Si(L - i)m 

2Si(L - i)m 
( L  - 1)(1 - e-2s)' 

ri = 

and 

PSi(L - i)me-2s 
( L  - 1)(1 - e-2s)' q i  

The ratio of qi to ri is thus e-" approximately and w k  

becomes e-2sk.'Substituting this value of wk for Vi yields 
1 - e-2Si 

v, = -e"2sL, ( i =  1 ,  2, ..., L - 1) 

and  hence 
1 - e-2s 

v1 = 1 - e-2sL' (20) 

Equation 20 is the same as the fixation probability in 
a panmictic population of size L when a  mutant  gene 
is favored by 2s and  the initial frequency is 1/L. If S 
is small, V 1  approaches 1/L as for  a  neutral  mutation 
(KIMURA 1 9 6 2 ) .  Although  Equation 20 is independent 
of m, a  more  rigorous expression of Vi is not so simple 
and shows that it is actually an increasing function of 
m. It is intuitively clear that  for given values of N and 
s, the  more  migration, the higher the fixation proba- 
bility of a  favorable  mutant  gene. In any case, the 
formula  for V1 specifies the  extent of S in order  for 
Equation 1 6  to be valid. Comparison of simulation 
results shows that for a wide range of N m  values, 
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Equation 16 is sufficiently accurate if Ns P 5 (Table 
2). It is still accurate even if Ns is as  small as 1,  but if 
N m  < 1. Underestimates of V(T,)  are mostly due  to 
the assumption  of V(   T , )  = 0, where T is small relative 
to T,. 

Equation  20 or a more accurate expression  of VI 
may  also  be  used  as a criterion for Wright's three- 
phase shifting balance theory to work (WRIGHT 193 1; 
1932; 1988). Roughly  speaking,  unless  values of S for 
favorable genotypes are sufficiently large (e.g., S b 
lo), they are likely to be  lost by genetic drift  and 
migration before they go to fixation. Hence the  third 
phase  of WRIGHT'S theory appears to require  a fairly 
strong protection of  such  genotypes. This is particu- 
larly so when L is large and m is small. Under such 
protection, small amounts of immigration can  up- 
grade  the fitness of recipient demes against undesira- 
ble  effects  of recombination on favorable gene com- 
binations (CROW, ENGELS and DENNISTON 1990; 

Equations 16, 17 and  18 can  be  used  even  when 
there is dominance. Dominance  has  somewhat unex- 
pected effects on T .  When migration is frequent, E (  T ]  
for s = 0.1 and semidominant case ( h  = 0.5) is shorter 
than  that  for  either completely  recessive ( h  = 0) or 
dominant ( h  = 1) case. For instance, numerical and 
simulation results show that E ( T )  = 633, 218, and 
701 generations for h = 0,  0.5, and  1, respectively, 
when m = 0.1, N = 100  and L = 100. However,  as m 
decreases, this trend becomes more conspicuous; 
when m = 0.0001 (s = O.l), E ( T ]  = 20360 for h = 0, 
738 for h = 0.5 and  3383  for h = 1. The reason for 
this retardation effect of the  degree of dominance h 
is that selection is relatively  inefficient for  rare reces- 
sive mutations and for abundant dominant ones ( c j  
KIMURA 1980). 

Finally, it is useful to recall that  the mean and 
variance  of T and those conditioned on fixation  can 
be derived also from the  birth  and  death process.  For 
example, the mean sojourn time of the process at state 
j, starting at i, is given by 

CROW 1990). 

L- 1 
Vi =- wk for j = i +  1, ..., L -  1. 

wjrj k=j 

Therefore the mean time starting at state i is given by 
E ( T ; )  = Zj:,' E (  Tu] and  the variance by V (  T i ]  = 
2 E(Tg)E(T, )  - E ( T , ]  - E(Ti]*,  etc. (e.g., EWENS 
1979). 

DISCUSSION 

The above study for  the island  model provides an 
extreme case  with respect to effects  of population 
subdivision.  If a stepping-stone model (KIMLJRA 1953) 

is more appropriate, some  obvious  modifications are 
required,  but very  similar approaches can  be taken. 
One immediate consequence in such a highly struc- 
tured population is that  the number of demes becomes 
a more important parameter than in an island  model 
[see HALDANE (1 948); FISHER (1958); NAGYLAKI 
(1975, 1983); FELSENSTEIN (1975); SLATKIN and MA- 
RUYAMA (1975) and SLATKIN (1976) for studies on 
cline and isolation by distance]. This is intuitively  clear 
since, other things being equal, both coalescence and 
spreading times  must  become  much longer without 
long-range migrations. Notwithstanding such appar- 
ent differences in  models  of population structure,  the 
present treatment is sufficient  in the sence that if 
anything is unlikely  in an island  model,  it is more 
unlikely  in other highly structured populations. It is 
this  conservatism that makes study of an island  model 
valuable for testing various  hypotheses for the origin 
of modern human populations. 

In what  follows,  some  implications  of the formulas 
are discussed  with a special reference to  the human 
mitochondria (mt) DNA ancestry constructed by 
CANN, STONEKINC and WILSON (1987), HORAI (1 99 1) 
and VIGILANT et al. (1 99 1). For mtDNA, it is necessary 
to modify the theory because  of the differences in 
inheritance and ploidy. The modification  is,  however, 
straightforward by interpreting m as  female  migration 
rate  and by replacing 2N by Nf (the number of breed- 
ing females  in a generation). First, note that, when 
there is no migration (m = 0) as assumed  in the 
candelabra hypothesis,  Equations 3  and 5 cannot be 
used.  However, if genes are sampled from demes that 
have  long  been isolated, the genealogy  must  reflect 
the mode of  isolation. The exhaustive  sampling  of 
mtDNA from worldwide human populations failed to 
find such a shape as candelabra, and no pairs of gene 
lineages  have  lasted for one million  years.  Despite 
some uncertainty in the calibrated substitution rate in 
mtDNA, the deepest branch length appears to be  as 
short as 200,000 years (CANN, STONEKING and WIL- 
SON 1987; HORAI 1991 ; VIGILANT et ad. 199 1). There- 
fore  the mtDNA data are certainly  inconsistent  with 
the candelabra hypothesis. 

For the present model  of population structure to 
be able to account for such  mtDNA data, one of the 
following  two conditions must be met. The first is 
based on  the assumption  of N f m  < 1. In this  case, the 
ancestry of  mtDNA is  mainly determined by rare 
migration events. It is then necessary that Equation 3 
does not predict branch lengths longer than 200,000 
years, or IO4 generations if one generation amounts 
to 20  years. This requirement can  be  expressed 
roughly by NfL < L / m  < lo4. The second condition is 
derived for  the case  of N f m  > 1 in  which  intensity  of 
random genetic drift within demes is a main deter- 
minant of the length of ancestry. It is then necessary 
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that  drift is so strong (small N f )  as to be L/m < NfL < 
1 O4 (see  Equations 9, 10 and  1 1). Hence, in either 
case, the total number of breeding females ( N f L )  must 
be limited to N f L  < lo4 and migration cannot be 
particularly infrequent, or m / L  > It is interesting 
to note that KOCHER and WILSON (1991) estimated 
the value  of NfL as about 6,000 (see  also NEI and 
GRAUR 1984). If  this  were the case during  the Late 
Pleistocene, the mtDNA data become irrelevant 
either to the multiregional hypothesis or to the Noah’s 
Ark hypothesis (the  latter suggests  literally that mod- 
ern H.  sapiens was founded by a small number of 
individuals or experienced a severe bottleneck): the 
mtDNA  simply do not have  any  power to distinguish 
between them. But if NfL > lo4 turns  out  to be valid 
(KLEIN, GUTKNECHT and FISCHER 1990; TAKAHATA 
1990), then the mtDNA data require  a fairly severe 
bottleneck that took  place around 200,000 years ago. 
Such an abrupt bottleneck changes the shape of gene 
genealogy, and in  an extreme situation it  looks  like a 
star phylogeny rather than a random bifurcation tree. 
In any  case,  without more information about the size 
of the recent human population, it is inevitable to 
conclude that both the multiregional and Noah’s  Ark 
hypotheses are consistent  with the mtDNA data (6 
STRINGER 1990). Detailed examination of nuclear 
DNA  loci, including such extraordinary polymorphic 
loci  as  major  histocompatibility complex, should be 
very informative in  this respect (e.g., KLEIN, GUT- 
NECHT and FISCHER 1990; TAKAHATA 1990). 

Estimating the value  of Nfm or Nm is also an impor- 
tant task to understand the evolution of H.  sapiens. 
STONEKINC et al. (1 990) used the FST statistic  (meas- 
uring the genetic variation among different demes) 
and applied  it to  the New Guinea population. Their 
F.yT value was 0.3  1, leading to Nfm = 1.1 for  the model 
of island population. A very  similar estimate (Nm = 
2.3) was obtained by using protein polymorphisms 
(NEI and ROYCHOUDHURY 1982) under neutrality (KI- 
MURA 1968) and  the assumption that the sex ratio is 
one and migration is sexually  unbiased. These esti- 
mates  imply that  there has  been enough migration 
that the human population has been nearly  panmictic. 
One may therefore assert that this extent of gene flow 
is  inconsistent  with the multiregional hypothesis. A 
problem in  this argument is that FST equilibrates 
rather rapidly (NEI, CHAKRAVARTI and TATENO 1977; 
CROW and AOKI 1984; TAKAHATA and NEI 1984). 
When mutation rate is negligibly  small relative to 
migration rate, L is large and selection is absent, this 
can  be  shown from the explicit non-equilibrium solu- 
tion Of F S T ( t ) :  

with F S T ( 0 )  = 0 initially. From Nfm = 1.1 and NfL < 

1 04, it is clear that t = 1 O4 generations are sufficiently 
long for FsT to reach its equilibrium value. In other 
words, it is unlikely that FST of neutral genes  provides 
useful information about the population structure 
during  the Middle and Upper Pleistocene. Neverthe- 
less, the estimated value  of Nfm = 1.1 or Nm = 2.3 
suggests that racial differentiation, if it  actually 
occurred during  the Late Pleistocene  [see NEI and 
LIVSHITS (1 990) for review],  must  invoke  local  selec- 
tion which  could overcome the moderate level  of gene 
flow revealed by protein and mtDNA  polymorphisms. 
If on the  other hand mutant genes, that might  be 
responsible for  the evolution of H.  sapiens, were  fa- 
vored in  any deme, they  could spread over the  entire 
population with  high  probability  (see  Equation 20 and 
SLATKIN 1981). However, the required time depends 
strongly on the interplay among various  population 
parameters (Table  2),  and if the multiregional hypoth- 
esis  assumes a large number of  demes and Nm < 0.1, 
it is unreasonable to think that even  such  favorable 
mutations could spread over the  entire human  popu- 
lation during  the Pleistocene. 

Most  of  this  work is a result of  discussion  with MASATOSHI NEI 
and supported in part by his grants GM 20293 from the National 
Institutes of Health and BRS 9096248 from National Science 
Foundation. Thanks  are also due  to JAMES F.  CROW for useful 
comments on  an early version of this paper. 
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