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ABSTRACT 
In determining  genetic map  distances it is necessary to infer  crossover  frequencies  from the ratios 

of recombinant  and  parental  progeny. To do this accurately, in intervals  where  multiple  crossovers 
may occur, a mathematical  model of chiasma interference must be  assumed  when  mapping in 
organisms  displaying  such interference. In Saccharomyces cerevisae the model most frequently used is 
that of R. W. Barratt. An alternative to this  model is presented.  This new model is implemented  using 
a microcomputer  and  standard  numerical  methods. It is demonstrated to fit ranked  tetrad  data  from 
Saccharomyces  more closely than the Barratt model  and thus generates  more  accurate estimates of 
map distances when used with two-point  data. A computer program  implementing the model  has 
been  developed  for use in  calculating map distances from tetrad  data in Saccharomyces. 

G ENETIC  interference,  as  observed in Drosophila 
by MULLER in 1916, is a  reduction in the  prob- 

ability of occurrence of a crossover in one region 
associated with a crossover in an  adjacent  region. 
When calculating map distances in organisms display- 
ing  interference  the  reduction in probability of mul- 
tiple crossovers must be  taken  into  account if the 
number of crossovers in an interval is to  be  inferred 
from  the  ratios of recombinant  and parental  progeny. 
Models of interference  can  be  tested  directly in orga- 
nisms in  which the absolute number of crossovers in 
any  one meiosis can be  determined.  In  the ascomy- 
cetes all four  products of an individual meiosis can be 
analyzed, and in those ascomycetes with suitable  ge- 
netic  markers,  regions can be multiply marked  at small 
enough distances that  the probability of more  than 
two crossovers occurring  between any two markers is 
very low. The tetrad  rank is the  number of crossovers 
between  the  outermost  markers, which is determined 
by summing the crossovers in the smaller intervals 
between the  outer markers. Models that fit the  ranked 
tetrad  data can be used to calculate map distances in 
other crosses in the same organism in  which the num- 
ber of crossovers must be  inferred. 

In Saccharomyces ranked  tetrad  data can be used 
to test models of interference.  However, most data 
are from two-point crosses in which the two markers 
defining  the  interval are separated by a  distance of 
sufficient length  that  multiple crossovers occur,  and 
the  number of crossovers in the  recombinant  progeny 
can  not  be  determined  directly.  Genetic  map distances 
are calculated in tetrad organisms  as follows: 

Genetic  map distances are measured in centimor- 
gans (cM) and  are defined as 100 times the frequency 

( k m c t i c ~  129: 597-602 (October. 1991) 

of crossovers per  chromatid. The map  distance, x, is 

where r is the  number of crossovers and p(r )  is the 
probability of r .  If exchanges  occurred  independently, 
the  number of crossovers in an interval would follow 
a Poisson distribution. 

If only zero, one  or two crossovers occur in an interval 
the  map distance can be calculated using PERKINS' 
(1 949) equation. 

x = ~ [  T + 6 N  ] cM. 
2 P + N + T  

P, N and T are  the  numbers of parental  ditype,  non- 
parental  ditype,  and  tetratype  tetrads, respectively. 
PERKINS' equation is derived by assuming that  the 
probability of double crossovers, p ( 2 ) ,  is four times 
the frequency of nonparental  ditype  tetrads  and  the 
probability of single crossovers, ~ ( l ) ,  is the frequency 
of tetratype  tetrads minus twice the frequency of 
nonparental  ditype  tetrads. The relationship between 
the  number of crossovers and  the ratios of tetrad 
types is derived by excluding  sister-chromatid ex- 
changes  from the crossover total and by assuming that 
the distribution of crossovers between the  four  chro- 
matids is random  and  independent of previous cross- 
overs ( i e . ,  no chromatid  interference).  Table 3 is a 
list of the ratios of P, N and T tetrads  resulting  from 
zero through  four crossovers. PERKINS'  equation can 
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be used to determine  map distances accurately if there 
are  no  more  than two crossovers in an interval.  When 
this is not  the case, PERKINS’ equation  underestimates 
map distance (for discussion  of this, see SNOW  1979a; 
MORTIMER and SCHILD 1981 ; MA and MORTIMER 
1983). 

In Saccharomyces, fewer  tetrads of rank  greater 
than  one  are observed  than would be expected if the 
number of crossovers were random. Because the 
crossovers are  not  independent, it is necessary to 
assume a mathematical model of interference  that 
reduces  the expected  numbers of multiple crossovers. 
One model of interference is the BARRATT model 
(BARRATT et al. 1954) which has been  implemented 
by SNOW (1 979a). The BARRATT model reduces the 
Poisson terms used to predict tetrad rank by k“’ for 
r greater  than  one. 

p(0)  = e-2X11 (4) 

S is a normalization factor: 

It is assumed here  that  the  rank  zero  term is unaf- 
fected and it is thus  excluded  from the renormaliza- 
tion.  Interference is expressed in the  term k ,  which 
varies from  zero (absolute interference)  to  greater 
than  one  (negative  interference) and equals one if the 
data do not display interference. The term x0 is the 
map distance that would be  expected if there were no 
interference. The actual map  distance, x, is deter- 
mined from x0 and k using Equation 1, which simplifies 
to (SNOW 1979b): 

SNOW (1 979a) used the maximum likelihood method 
and numerical methods  described by MATHER (1  957) 
to determine  map distance and k values from  ranked 
tetrad data and  from two-point data in the fungi 
Saccharomyces and  Neurospora. The algorithms he 
produced  are those currently used for  mapping in 
Saccharomyces. However, as SNOW pointed out,  the 
BARRATT model does  not  generate  a  good fit to 
ranked  tetrad  data  from Saccharomyces. For the 
ranked  tetrad  data analyzed in this paper (see Table 
l), the  BARRATT model typically predicts  a greater 
frequency of rank one  and rank four  tetrads  and a 
lower frequency of rank two tetrads  than  observed. 
Because  of this, the  BARRATT model does  not  provide 
a good overall fit to  the  data  from Saccharomyces. In 
this paper we propose  a  mathematical model of  inter- 
ference  that provides a  good fit to  the  ranked  tetrad 
data  from Saccharomyces. 

The model was implemented on  an Apple Macin- 

tosh IIcx  computer using the C language  compiler, 
THINK C, from  Symantec  Corporation. This work 
has been  incorporated  into  the user-friendly tetrad 
analysis program  from MORTIMER et al. 1989  that 
incorporates  the work of SNOW  (1979a).  This  program 
will run  on Macintosh computers  and is available on 
a 3Yz-inch diskette on  request. 

MODEL AND DISCUSSION 

The model  proposed here, like BARRATT’S, is a 
mathematical model to be used  in constructing linkage 
maps. In this model the  number of crossovers in a 
genetic  interval in a single meiosis is calculated in a 
manner  analogous to a binomial distribution. Since 
tetrads with a high number of crossovers in an interval 
are  rare,  the model mathematically limits the maxi- 
mum number of crossovers that can occur in an  inter- 
val. For example, even in an interval  spanning most 
of the  length of the  right  arm of chromosome ZZZ 
(approximately 90 cM), we do not observe significant 
numbers of tetrads with more  than  four crossovers 
(KING and MORTIMER 1990). Based on this observa- 
tion the model limits the  number of crossovers that 
can occur in an interval to  four. 

T o  formulate  the model,  an  event is defined  as  a 
potential crossover and  the  event is a success  if it 
results in a crossover. Each  successful event  reduces 
by a  factor k the probability of other events being 
successful. If the probability of an event being suc- 
cessful  if no  other events are successful is p ,  and we 
“pull  events out of a  hat”  the probability of no suc- 
cessful events in four tries is (1 - P ) ~ .  If any one 
of the  four  events is successful, the probability of 
the  other events  being successful is set to k p .  Thus, 
the probability of one success and  three failures is 
p (1 - kp)3 .  When  the probabilities are derived in this 
manner they must then  be multiplied by the  number 
of combinations that can generate  the specified result. 
The probabilities and  number of combinations of each 
possible outcome are shown in Table 2. The equations 
shown in Table 2 are  then normalized by multiplying 
each term by S, where: 
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TABLE 1 

Comparison of interference models 

599 

Hybrid and chromosome 

4579  X2961 
I l l  

5571 
VI11 VI11 

4 3 x x  M522 & M537 
VI I1 

r Observed King Barratt Observed King Barratt Observed King Barratt Observed King Barratt Observed King Barratt 

0 53  60  53  333 336 333  128  128  128  449  449  449 158  158 158 
1 254 235 291  1406 1393  1438  753 754  772  598 600 601  600 599 637 
2 291 305 245 367  379  304 188 187  152 54  53 48 272 271  206 
3 156 157 137 14  15  43  5  5 20 0 1  3 21 25 44 
4 30 27 58 3 0 5 0 0  2 0 0  0 2 0  8 
x- = 3.34 29.5 3.61 34.1 0.01 22.2 1.03  3.76 2.77 63.4 

P =  0.47 f 0.01  0.33 f 0.01 0.36 k 0.01 0.18 f 0.01  0.34 f 0.01 
k =  0.96 f 0.02 0.40 f 0.02 0.34 f 0.02 0.29 k 0.03 0.29 f 0.02 
x (cM) = 90.8 f 2.0 51.7 k 0.7 53.2 * 1.0 32.1 f 0.9 57.7 k 1.3 

Comparison of interference models. The genetic intervals for  the crosses are: 4579, leu2-MAT-thr4-MAL2 (S. FOGEL, personal 
communication); X2961, cen8-petl-arg4-thrl-CUPl (MORTIMER and FOCEL 1974); 5571, cen8-petl-arg4-thrl-CUPl (S. FOGEL, personal 
communication); 43XX, cenG-his2-SUP6-met10, 43XX denotes data compiled from hybrids 4339,  4351,  4350,  4334,  4338 and 4352 (S. 
FOGEL, personal communication); M522, lys2-tyrl-petll-durl-met8; M537, lys2-tyrl-pet1 I-dur2 (COOPER, LAM,  and TLJROSCY 1980). The 
p, k and x values  listed are from the model presented in this paper. From the x' analysis it is evident that  the model presented in this paper 
provides a  better fit to ranked tetrad  data from Saccharomyces than the BARRATT model. 

For ranked  tetrad  data  the  above  equations  can  be 
directly fitted to the  data.  For two-point data  the 
probabilities determined by equations  eight through 
twelve must be multiplied by the fraction of tetrads 
of  a specific rank that  contribute  to  a  particular class 
(listed in Table 3) .  Using Table 3 the  predicted  fre- 
quencies of parental (mp), nonparental  ditype ( m ~ )  and 
tetratype (mT) tetrads  are: 

mp = S [ (  1 - p)4 + 3p(kp)( 1 - k2p)'/2 

+ 4P(kP)(k2P)(l - k 3 N 8  (1 3 )  

+ 3 p ( k p ) ( k 2 ~ ) ( k 3 p ~ / 1 6 1  

+ 4p(~p)(k2P)(l - k3P) /8  (1 4) 

+ 3P(~P) (~ 'P) (k3P) /1  61 

mN = S[3p(kp)( 1 - k2@)'/2 

mT = S[4p( 1 - k j ~ ) ~  

+ 3p(kP)(l - k'p)' + 3fi(kP)(k2@)(l - k 3 p )  ( 1 5 )  

+ ~ P ( ~ P ) ( ~ ~ P ) ( ~ ~ P P ) / ~ I .  
Equations 13 through 15 are  then fitted to  the two- 
point  data. 

For  ranked  tetrad  data,  solutions were found by 
maximizing the log likelihood expression: 

L = aoln(m0) + alln(ml) + azln(mz) (16)  
+ adn(m3) + a41n(m4), 

where ao, al,  u2, a3, a4 are  the  number of observed 
tetrads of rank  zero through  four  and mo through m4 
are  the  predicted frequencies of tetrads of the  corre- 
sponding  rank. The values of p and k that maximized 
this  function are  then  found using POWELL'S method 
as outlined in and using the  code  from PRESS et al. 

TABLE 2 

Derivation of the tetrad  rank probability distribution 
~~ ~ ~~ 

No. of No. of 
crossovers Probability combinations 

0 (1  - P)' 1 
1 P(1 - kPY 4 
2 P(kP)(l - k'PY 6 
3 P(kP)(k'P)(l - k3P) 4 
4 P(kP)(k2P)(k3P) 1 

The tetrad rank probability distribution is derived by multiplying 
the probability of a particular outcome (0, 1, 2, 3 or 4 crossovers) 
by the number of combinations that can result in the outcome. The 
probability of a potential crossover resulting in an actual crossover 
is p, and k is an  interference term used to reduce the probability of 
multiple crossovers. 

TABLE 3 

Expected fractions from  tetrad types 
~~ 

r 

Tetrad 0 1 2 3 4 

P 1 0 'A '/s 
N 0 0 '/4 '/s 

K ti 

T 
V I  ti 

0 1 ?h ?4 Y U  

The expected fraction of tetrads of P ,  N and T resulting from r 
crossovers (calculated according to HALDANE  193 1). As an example 
% of  all the rank two tetrads  (tetrads with a double crossover) will 
be parental ditype ( P ) ,  'A nonparental ditype ( N )  and Yz will be 
tetratype (T) .  

1989. The log likelihood method used is described in 
MATHER (1 957) and in SNOW (1  979a). The log likeli- 
hood expression is used because it is at its maximum 
value when the frequencies of predicted  tetrad types 
are equal to  the frequencies  observed. Map distance 
is calculated directly, using equation  one. 

For two-point data  the log likelihood expression to 
be maximized is: 
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L = upln(mp) + uNln(mN) + uTln(mT), (1 7) 

where up is the observed number of parentals, uN is 
the  number of nonparental  ditypes  and UT is the 
observed  number of tetratypes. mp, mN and mT are  the 
frequencies  predicted by equations  thirteen through 
fifteen. Solutions are found using the same methods 
and code as that used for  the  ranked  tetrad  data. Map 
distance is calculated according to equation  one. This 
is done by using the p and k values from  the maximi- 
zation to determine  the m, values from  equations  eight 
through twelve and setting ~ ( r )  equal to m,. 

The standard error in map distance is determined 
by propagation of errors, using the  standard  errors in 
p and k. The standard  errors in p and k, up and Ck, are 
determined by assuming the log likelihood expressions 
are Gaussian around  the solution. Setting M to be the 
total  number of tetrads,  the  standard  errors  are given 
by: 

The approximation, ai E Mmi,  is  valid when a solution 
has been found  that  predicts  tetrad types matching 
those  observed.  For  ranked tetrad  data j = 4. For two- 
point  data j = 2 and j = 0, 1,  and 2 refer  to P, N and 
T. Equations eighteen and nineteen are  the formulas 
for variance determined by MATHER (1  957).  Graphi- 
cal  analysis was carried  out  on  the  ranked  tetrad  data 
to verify that  the maximized functions are approxi- 
mately Gaussian near  the numerically determined so- 
lutions. 

Table 1 is a comparison of the BARRATT model of 
interference to  the model presented in this paper  for 
several sets of ranked  tetrad  data.  It is apparent  from 
Table 1 that this model provides  a better fit to  the 
data  than  the BARRATT model and, based on x2 analy- 
sis, differs insignificantly from  observation.  For dis- 
tances greater  than  the  length of the studied  interval 
on chromosome ZZZ (approximately 90 cM) the maxi- 
mum  number of events allowed may need  to  be in- 
creased to five or more,  however two-point crosses 
rarely  extend  over such long intervals. The  data  in 
Table 1 were analyzed allowing up  to five crossovers 
along  an interval. This did not result in significant 
changes. We also compared  the  map distances calcu- 
lated  according to  our model to  the  map distances 
calculated according to SNOW (19’79a). Figure  1 is a 
graph of all the two-point data  from  the  1980 version 
of  the genetic map of Saccharomyces (MORTIMER and 
SCHILD 1980) with two or more  nonparental  ditype 
tetrads  and  more  than  one  hundred  total  tetrads. 
From this graph it is evident  that our model predicts 

O.I t . *  

0.7 
0 10 20 10 40 50 60 70 IO 90 100 110 

map dismce (CM) 

FIGURE 1 .-Comparison  of the map distance calculated using the 
BARRATT model of interference to the map distance calculated 
using the model presented in this paper. The graph is derived from 
all the two-point data from the 1980 version  of the genetic map of 
Saccharomyces (MORTIMER and SCHILD 1980) with  two or more 
nonparental ditype tetrads and more than one  hundred total 
tetrads. The ratio of map distances is the map distance calculated 
according to our model divided by the map distance calculated 
according to SNOW (1979a). The horizontal axis is the map distance 
according to our model. For distances greater than approximately 
30 cM, our model predicts shorter map distances, and since our  
model produces a better fit to  the ranked tetrad data it results in 
more  accurate estimates of map distance. The  three points in the 
upper right hand corner of the graph came from two-point data 
with negative interference and had uncertainties of 0.4,0.6 and 0.7 
(typical uncertainties for the  remainder of the  data are 0.05 to 0.2). 

shorter map  lengths,  particularly  above 60 cM, than 
the BARRATT model. 

To further test the model, the  data in Table 1 were 
translated  into two-point data (P, Nand T type tetrads) 
to give two-point data with known map distances. 
Table 4 displays the results of calculating the  map 
distance from this data using PERKINS’ equation,  the 
BARRATT model, and  the model we present  here. I t  is 
evident that  at 30 cM or less, all three methods accu- 
rately calculate distance, but  at longer distances PER- 
KINS’ equation  underestimates distance and  the BAR- 
RATT model overestimates distance. Our model pro- 
vides the most accurate  estimate of distance of the 
methods  tested. 

In Drosophila (CHARLES 1938)  and Saccharomyces 
(MORTIMER and FOCEL 1974)  interference is typically 
strong  over  short intervals and decreases with increas- 
ing distance. However, SNOW (1 979a)  did  not  detect 
a  correlation  between  map distance and  interference 
in the  data  he analyzed. The analysis  of the  data used 
for Figure  1  resulted in significant positive correlation 
coefficients for  both  the BARRATT model and  the 
model  presented  here  (correlation coefficients of 
0.260  and  0.267, respectively, sample size = 137).  In 
the BARRATT model of interference  and  the model we 
present,  interference is stronger  over  short distances 
than it is over  longer distances. 

Typically the  computer  program  written calculates 
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TABLE 4 

Comparison of methods used in calculating map  distances  from  two-point  data 

60 1 

Method 

Hybrid 

4579  X2961  5571 4 3 x x  M522 & M537 

151:98:535 
P:N:T 

427:94:1602 
P:N:T 

176:48:851 
P N T  

463:14:625 
P : N T  

229:71:753 
P : N T  

90.8 k 2.0  51.7 f 0.7  53.2 f 1.0 32.1 f 0.9  57.7 f 1.3 
Map distance determined from 

ranked tetrad  data: x = 

I’ERKINS’ equation: x = 
~ A R R A T T  estimate: x = 
KING estimate: x = 

71.6 51 .O 52.9 32.1 56.0 
108.1 f 15.5 53.4 f 1.8 55.3 f 2.4 32.4 f 1.3 62.6 f 3.9 
83.8 -t 7.6 51.5 f 1 . 1  53.4 f 1.6 32.2 f 1.0 57.7 k 2.3 

The actual map distances were determined from the ranked  tetrad  data in Table 1 .  The number of P ,  N and T tetrads predicted by the 
ranked  tetrad data were determined using the ratios of tetrad types from Table 3. 

map distances and  interference values. However, in 
two-point crosses in  which all the  parameters of the 
model cannot  be determined,  the  program  determines 
the maximum probable values of the  parameters. The 
first such case is when there  are only parental  ditype 
tetrads.  In this case the  program calculates the  map 
distance at which the probability of observing only 
parental  ditype  tetrads would be five percent. The 
calculation is based on  the binomial distribution in 
which the  number of successful trials is zero,  the 
number of trials is P (the  number of parental  type 
tetrads)  and  the probability of  a  trial  being successful 
is 24100, where x is the map  distance. The probability 
of the  outcome (only parentals) is b ,  which is set to 
0.05. x is then given by: 

100  100 
2  2 

Xm,, = - [ 1 - # p ) / P ]  = - [ l  - b”‘] cM. (20) 

The  other special case considered is when there  are 
both  parental and  tetratype  tetrads  but  no  nonparen- 
tal type tetrads. The map  distance is given by PERKINS’ 
equation  (Equation 3), which simplifies to: 

After calculating the  map distance the  program cal- 
culates the maximum value of interference. Again the 
binomial distribution is used in which the  number of 
trials is the  number of tetratypes, and  the probability 
of success is  2Kr/400 (the probability of a second 
crossover given an initial crossover being 2kx/100, 
where x is the  map  distance, and only one  fourth of 
the  double crossovers producing  a  nonparental  ditype 
tetrad). 

200  200 k,,,, = - [ 1 - e 4 b f ’ 7 j  = - [ 1 - b”7. (22) 
X X 

Two issues that  researchers involved in the use of 
mapping  functions must be  aware  of are  the  ordering 
of genes and  the combining of heterogeneous  data. 

This model can improve calculations of map distance 
but it is not a  substitute for multipoint crosses. A gene 
of unknown location must still be  mapped against two 
linked genes of known position and  orientation. When 
combining or comparing  map distances from  multiple 
crosses it is important  to  be  aware of the significant 
variation that can  arise due  to differences in genetic 
backgrounds of the strains involved. In Saccharomy- 
ces the recombination rate between two identical 
markers in different  genetic  backgrounds can vary up 
to 50% (MORTIMER and SCHILD 1980). 

CONCLUSION 

To accurately calculate map distances between ge- 
netic  markers,  separated by distances such that mul- 
tiple crossovers occur, it is necessary to have a  math- 
ematical model that can fit the known crossover fre- 
quencies in the organism  being  studied. The model 
of interference  presented in this paper fits ranked 
tetrad  data  from Saccharomyces better  than  the BAR- 
RATT model of interference. Because this model fits 
the  ranked  tetrad  data it is a  more  appropriate model 
to use in constructing linkage maps from two-point 
data in Saccharomyces. This model may also prove 
useful in other  tetrad organisms displaying chiasma 
interference. 
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