Table 3.
Comparison between STL and MTL in stroke prediction. MAND-LR, MAND-MLP, MAND-LSTM, and MAND-MHSA denote the MAND architecture integrated with logistic regression, multilayer perceptron (MLP), LSTM, and multi-head self-attention as ICD feature extraction modules, respectively. FM and DCN represent CTR-based approaches. BAC: balanced accuracy; FPR: false positive rate; FNR: false negative rate.
| Backbone model | STL/MTL | Log loss | AUC | BAC | Precision | Recall | F1 score | FPR | FNR |
|---|---|---|---|---|---|---|---|---|---|
| MAND-LR18 | STL | 0.2120 | 0.8585 | 0.6023 | 0.7794 | 0.2102 | 0.3311 | 0.0056 | 0.7898 |
| MTL | 0.2134 | 0.8586 | 0.6009 | 0.7857 | 0.2071 | 0.3279 | 0.0053 | 0.7929 | |
| MAND-MLP18 | STL | 0.2042 | 0.8626 | 0.6169 | 0.8939 | 0.2364 | 0.3739 | 0.0026 | 0.7636 |
| MTL | 0.2198 | 0.8467 | 0.5694 | 0.8637 | 0.1409 | 0.2422 | 0.0021 | 0.8591 | |
| MAND-LSTM18 | STL | 0.1974 | 0.8700 | 0.6460 | 0.8339 | 0.2977 | 0.4387 | 0.0057 | 0.7023 |
| MTL | 0.2050 | 0.8625 | 0.6286 | 0.8240 | 0.2626 | 0.3983 | 0.0054 | 0.7374 | |
| MAND-MHSA18 | STL | 0.2020 | 0.8703 | 0.6445 | 0.7540 | 0.2982 | 0.4274 | 0.0092 | 0.7018 |
| MTL | 0.2076 | 0.8643 | 0.6392 | 0.7367 | 0.2882 | 0.4143 | 0.0098 | 0.7118 | |
| FM19 | STL | 0.2619 | 0.8330 | 0.6226 | 0.5708 | 0.2642 | 0.3612 | 0.0190 | 0.7358 |
| MTL | 0.2288 | 0.8351 | 0.6216 | 0.6718 | 0.2551 | 0.3698 | 0.0119 | 0.7449 | |
| DCN22 | STL | 0.2013 | 0.8649 | 0.6336 | 0.8600 | 0.2715 | 0.4127 | 0.0043 | 0.7285 |
| MTL | 0.2040 | 0.8627 | 0.6288 | 0.8509 | 0.2620 | 0.4003 | 0.0044 | 0.7380 |
Bold font indicates the better performance values between STL and MTL.