Skip to main content
. 2025 May 3;15:15468. doi: 10.1038/s41598-025-99554-z

Table 3.

Comparison between STL and MTL in stroke prediction. MAND-LR, MAND-MLP, MAND-LSTM, and MAND-MHSA denote the MAND architecture integrated with logistic regression, multilayer perceptron (MLP), LSTM, and multi-head self-attention as ICD feature extraction modules, respectively. FM and DCN represent CTR-based approaches. BAC: balanced accuracy; FPR: false positive rate; FNR: false negative rate.

Backbone model STL/MTL Log loss AUC BAC Precision Recall F1 score FPR FNR
MAND-LR18 STL 0.2120 0.8585 0.6023 0.7794 0.2102 0.3311 0.0056 0.7898
MTL 0.2134 0.8586 0.6009 0.7857 0.2071 0.3279 0.0053 0.7929
MAND-MLP18 STL 0.2042 0.8626 0.6169 0.8939 0.2364 0.3739 0.0026 0.7636
MTL 0.2198 0.8467 0.5694 0.8637 0.1409 0.2422 0.0021 0.8591
MAND-LSTM18 STL 0.1974 0.8700 0.6460 0.8339 0.2977 0.4387 0.0057 0.7023
MTL 0.2050 0.8625 0.6286 0.8240 0.2626 0.3983 0.0054 0.7374
MAND-MHSA18 STL 0.2020 0.8703 0.6445 0.7540 0.2982 0.4274 0.0092 0.7018
MTL 0.2076 0.8643 0.6392 0.7367 0.2882 0.4143 0.0098 0.7118
FM19 STL 0.2619 0.8330 0.6226 0.5708 0.2642 0.3612 0.0190 0.7358
MTL 0.2288 0.8351 0.6216 0.6718 0.2551 0.3698 0.0119 0.7449
DCN22 STL 0.2013 0.8649 0.6336 0.8600 0.2715 0.4127 0.0043 0.7285
MTL 0.2040 0.8627 0.6288 0.8509 0.2620 0.4003 0.0044 0.7380

Bold font indicates the better performance values between STL and MTL.