Table 3.
Accuracy of different TinyML models and their software tools.
Model | Software tool | Accuracy | |
---|---|---|---|
ProtoNN | EdgeML | 93.58% | |
CNN+GRU | CMIS-NN | 85.4% | |
TCN | NEMO/DORY | 93.8% | |
TCN | TFLite+GAPFlow | 94.0% | |
TCN | TFlite | 94.0% | |
TCN | CUBEAI+TFLite | 94.0% | |
RF | NA | 94.5% | |
Bonsal | EdgeML | 94.2% | |
DNN | Gestures dataset | TFLite | 99% |
DNN | Mnist dataset | TFLite | 99% |
SVM, logistic regression, decision tree, random forest |
Gestures dataset | TFLite | 95% |
SVM, logistic regression, decision tree, random forest |
Mnist dataset | TFLite | 90.3% |
CNN-LSTM-DNN | NA | 93.5% |