Skip to main content
. 2025 May 2;15:15460. doi: 10.1038/s41598-025-98816-0

Table 2.

BAS and related improvement strategies.

Improvement approach Specific improvement strategies Pros and cons Related algorithms
Parameter adjustment Adjusts step size, beetle spacing, introduces beetle populations.

Pros: Enhances global/local search.

Cons: High complexity, sensitive to parameters.

VSBAS, BSAS, BASL, etc.
Adaptive mechanisms Uses inertia weights, elite selection, fallback mechanisms.

Pros: Fast convergence, robust.

Cons: Complexity, local optima risk.

BAS-ADAM, WSBAS, EBAS, ENBAS, FBAS, etc.
Hybrid heuristics Combines PSO, ABC, FPA, GA, ACO, etc. for global/local search.

Pros: Combines strengths, versatile.

Cons: High complexity, tuning needed.

BSO, BAS-PSO, BAPSO, MBAS, BAS-ABC, etc.
Deep learning Optimizes neural networks (BP, CNN, ELM) with BAS.

Pros: Improves training speed/accuracy.

Cons: High complexity, resource-heavy.

BASNNC, BASZNN, BAS-CNN, etc.