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ABSTRACT 
The evolution  of short  repeated  sequences by replication  slippage  under  the  assumption of selective 

neutrality is modeled  using a linear  birth  and  death  process. The equilibrium  distribution,  the 
distribution of the  life  expectancy of a repeated  sequence  when the process starts  from two repeats, 
the age  distribution of repeats, the probability of obtaining two  genes with i and j copies  which 
diverged t generations  ago  and  the  conditional  variance of copy number given the  repeat  number is 
more than  one are computed. The distributions of life expectancy  and  age are shown to have  long 
tails. Also the statistic which estimates the  conditional  variance is shown to have a large  coefficient  of 
variation. Using  these  theoretical  results, we develop  an  approximate  test of our model and  analyze 
persistent  repeated  sequences  found in the  primate  @-globin  gene  region  and  Oenothera  chloroplast 
DNA which are polymorphic  within  species. We found  one sequence in Oenothera  chloroplast DNA 
which  does  not fit to our neutral  model. 

A wide variety of simple repetitive  sequences  occur 
frequently in eukaryotes (BLAISDELL 1983; 

TAUTZ, TRICK and DOVER 1986). The copy number 
of those repeated  sequences is known to vary (JONES 
and KAFATOS 1982; MOORE 1983).  For  short  repeated 
sequences, replication slippage (slipped-strand mis- 
pairing) rather  than unequal crossing over is consid- 
ered  to be  a  major  factor  influencing copy numbers 
(TAUTZ, TRICK and DOVER 1986; LEVINSON and GUT- 
MAN 1987). 

In contrast with unequal crossing over  between 
homologous chromosomes as analyzed by OHTA and 
KIMURA (1  98 l) ,  TAKAHATA (1981)  and STEPHAN 
(1986,  1987),  replication slippage is a process which 
does  not involve the homologous  chromosome. Thus, 
it is considered to be  a specific type of mutation 
process and can be  treated similarly as the stepwise 
mutation model of OHTA  and KIMURA (1  973). WALSH 
(1  987)  considered  a  population  genetic model which 
incorporates replication slippage as an evolutionary 
force. He  computed  the equilibrium  distribution and 
the  expected mean persistence time of repeats in terms 
of slippage events assuming either  no selection or 
selection that imposes a lower bound  on  the  number 
of repeats. 

Here, we model the evolution of short  repeated 
sequences by replication slippage using a  linear  birth 
and  death process to extend  the work of WALSH 
(1  987) assuming selective neutrality (KIMURA 1983, 
199 1) with regard  to  repeat  number. We compute  the 
equilibrium  distribution,  the  distribution of the  per- 
sistence time in terms of generations, the  age distri- 
bution of repeats  and  the probability of obtaining two 
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genes which diverged t generations ago  and contain i 
and j repeats, respectively. Using these  theoretical 
results, we analyze the persistent  repeated sequences 
found in the flanking  region of primate B-globin genes 
(SAVATIER et al., 1985)  and in the chloroplast DNA 
of Oenothera (WOLFSON, HICGINS and SEARS 1991). 
One sequence was found to be inconsistent with our 
neutral model. 

MODEL 

Replication slippage is a mechanism by which the 
number of short, tandemly repeated sequences in- 
creases or decreases when DNA is replicated [see 
LEVINSON and GUTMAN  (1987) for details]. Let i be 
the  number of repeats in a  repeated  sequence. We 
call the  region  containing the DNA sequence  a  gene 
and  ignore  recombination  therein. We do not know 
the exact shape of the function which relates the 
number of repeats to  the  rate of slippage at present. 
However, if the  number of repeats increases, the  rate 
of slippage is thought  to increase because the proba- 
bility  of mispairing increases. This was shown to be 
the case when bacteriophage T 4  DNA was used 
(STREISINGER and  OWEN 1985). Here,  for simplicity, 
we assume that only one  repeat is added or lost per 
generation and  denote these  rates by (i - l)ul  and 
(i - l)uq, respectively, when the  number of repeats is 
i(i 2 2). WALSH (1987) assumed rates of iul and iu2, 
respectively, but this makes little difference at equilib- 
rium as we show later. We denote  the  rate of increase 
from  one  repeat to two repeats by ‘u since the mecha- 
nism of increase is different  from  the  other cases. We 
assume that ‘u is very small compared  to u1 or up. If r 
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= uz/ul is  less than or equal to one, WALSH (1987) 
showed that the equilibrium  distribution  does  not 
exist. This is because the  number of repeats increases 
to infinity with a positive probability. We do not 
observe a very large number of repeats  except in 
specific regions of DNA  such  as satellite DNA. Also 
data  from  phage T 4  indicates that  the  rate of deletion 
is always larger  than  the  rate of addition (STREISINGER 
and OWEN 1985).  Thus, we assume that T is larger 
than  one in the following. Furthermore, we assume 
that  the  number of repeats  does  not affect the fitness 
of the  carrier. 

First, we consider the equilibrium  distribution, p , ( i ) ,  
of the  number of repeats.  Let  p(i,t)  be the probability 
that  the  number of repeats is i at  generation t. Consid- 
ering respective events which occur in one  generation, 
the transition  equations  for p(i , t)  are 

p ( l J  + 1) = (1 - v ) p ( l , t )  + U2P(2,t) 

p(2,t + 1) = [ I  - (u1 + ue)]p(P,t) 

i- vp(1,t) + 2@2p(3,t) (1) 
p(i,t + 1) = [ l  - (2 - l ) ( U l  + up)]p(i,t) 

+ (i - 2)u1p(i - 1,t) 

+ iupf(2 + 1J). ( i  3 3). 
When u1, up, v are small compared to  one,  the  p(i,t)'s 
approximately satisfy the differential  equations, - = -vp( 1 ,t) + Uzp(2,t) 
d ( 1 4  

dt 

+ (i - 2)u1p(i - 1,t) 

+ iupp(i + 1,t). (i 2 3). 
Letf(z,t)  be  the  generating  function of p(i,t)  defined 
as 

m 

f(z,t) = 2 P ( i , t ) P .  (3) 
i= 1 

From the above differential  equations, we can show 
that  the  generating  function f(z,t) satisfies a partial 
differential  equation 

" af(zJ) u,(z - r)(z - 1) - - af(zJ) - v(z - l)P(l  ,t) (4) at az 

where r = u2/uI. Letf,(z) be the equilibrium solution 
of this equation.  Then,f,(z) satisfies 

-u,(z - r)(z - 1) df,o = v(z - I)P*(l). (5) 
dz 

The solution which satisfiesf,( 1) = cE1 p , ( i )  = 1 is 

Using the relationshipf,(O) = p*(l), we can soIve for 
P * ( l ) ,  

By expanding the  right  hand side of (6) and matching 
coefficients, we obtain the equilibrium  distribution 
for i 3 2, 

Next we consider the dynamics of the  number of 
repeats in one lineage. Since we expect v << u1, up, we 
ignore v and investigate the time dependent behavior 
of the  number of repeats  starting  from io repeats at 
generation 0. We usually suppress io in the expression 
for ease of presentation when the initial condition is 
obvious from  the  context. Then (2) with v = 0 is 
approximated by a  differential  equation 

dpW) 
dt 
" - -(i - l)(Ul + Up)p(i,t) 

+ (i - 2)u1p(i - 1 ,t) + iupP(i + 1,t). 

where p(0,t) = 0. Since this is a  differential  equation 
for a linear  birth and  death process, we can solve this 
by a  standard  method  (Cox  and MILLER 1965;  IIZUKA 
1989). The generating  functionf(z,t) satisfies 

a f w  - u,(z - r)(z  - 1) a f o  = 0. (10) 
at m 

The solution which  satisfies the initial condition 
f(z,O) = z'0-l is 

(exp(st) - r)z - r(exp(st) - 1) 
(exp(st) - l )z  - ( r  exp(st) - 1) 

where s = ul(r - 1). By expanding  the  right-hand side 
with regard to z and matching coefficients, we obtain 
p(i,t), 

p(1,t) = a'o-l (1 2) 
(i- l)A(io- 1) 

p(i,t) = 
k= 1 2 - 1 - k  

. ato-k-lpkyi-l-k (i > 1) 

where 

r(exp(st) - 1) ( r  - l)'exp(st) 
r exp(st) - I = ( r  exp(st) - 1)' (14) 
exp(st) - 1 

r exp(st) - 1 * 

a =  

Y' 
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FIGURE 1 .-Density of life expectancy as a  function of ult. Life 
expectancy is the time required for the number of repeats to become 
one starting from two repeats. 

i A j denotes  the smaller of the  numbers i, j .  In the 
special case of io = 2,  the solution has a simple form 

p(1,t) = ff (15) 

p ( i , t )  = pyi-2. (i > 1) (16) 
By examining p(l,t), we can investigate the time 

required  for  the  repeated sequences to become a 
single copy sequence.  Let  T  be the time when the 
number of repeats becomes one  starting  from two 
repeats.  T is considered to be the life expectancy of 
the  repeated  sequence. Then 

Prob[T S t ]  = p (  1 ,t). (1 7) 
The density of T is obtained by taking  a  derivative of 
this function. We computed  the density of the life 
expectancy as a  function of scaled time ult as 

( r  - 1)*r exp[(r - l)ult] 
( r  exp[(r - l)ult] - ( 1  8) 

and plotted it for several values of r in Figure  1. The 
density function is  always monotone  decreasing. Also 
the life expectancy is longer  for smaller r since r = 
u2/u1 and  the deletion rate is smaller in this case. 

Another  quantity of interest is the  age distribution 
of the  repeat when we sample a  gene which has i 
repeats. Since a new repeated  sequence is created  at 
a  constant rate v and since the  number of repeats is 
initially two, the  age  distribution, q( i , t ) ,  becomes 

at equilibrium. The age  distribution of a  gene which 
now  has  six repeats is plotted  as  a  function of ult for 
various values of r in Figure 2. Although the peaks of 
the distributions are located near ult = 2, the tail of 
the distribution is very long, especially for small r. 

-r = 1.1 
- - r  = 1.3 
- - - r  = 1.5 

r = 2.0 " ~ ~ .  

0 2 4 6 8 1 0  

"1 

FIGURE  2.-Age distribution of a repeated sequence as a function 
of ult .  The  age distribution of a  repeated  sequence which now has 
six repeats is plotted  for various values of r .  

Thus, if r is small, the origin of the  repeats could be 
very old. 

Finally, we consider the evolution of two genes 
which have a  common  ancestor at time zero. We are 
interested in the probability, p(i , j , t ) ,  that  the  number 
of repeats, I and J ,  in the two genes which have a 
common ancestor t generations ago  are i and j ,  re- 
spectively. As an  approximation, we again assume that 
v is so small that creation of a new repeated  sequence 
occurs at most once  during  the time we consider. 
Then, if  we observe  more  than one  repeat in both 
genes, the  repeated sequences are not  created  after 
the common ancestor and  the common  ancestor  gene 
should have two or more  repeats. Thus, we can ignore 
v in the evolution of these two genes when we consider 
p ( i , j , t )  (i 2, j 3 2) and  the transition  equation  for 
p ( i ,  j , t )  is 

p ( i , j , t  + 1) = [ l  - (i  + j - 2)](u1 + up)p(i,j,t) 

+ (i - 2)UlP(i - I&) 

+ ( j  - 2)Ul@(i,j - 1,t) 

+ iu,p(i + 1,jJ) +ju$(i,j + 1,t). 

(20) 

Here, we assumed that u1 and u2 are small so that  at 
most one  event of change  occurs in the two genes in 
the same generation. With the initial condition 

p(i , j ,o) = p * ( i )  (i = j )  
= o  (i f j ) ,  

p( i , j , t )  is computed to be [see (A6) in the APPENDIX] 

where 

6. . = ( I  - l)!(-l)a+j-' 
( I  - i + l)!(I - j + l)!(i + j - I - 2)!* : J J  
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i V j denotes  the  larger of the  numbers i, j .  

defined as 
One summary  measure is the conditional  variance 

- - 
Prob[I k 2, J k 21 

The expectation which appears in the  numerator 
of the  right-hand  side is taken  over  the  event ( I  k 2, 
J a 2). From ( A 1  3) in the APPENDIX, 

E [ v I Z b 2 , J k 2  1 
(23) 
\ I  

- e -2sy  1 - (?-'sf) - - 
( r  - 1 )'Iog(l - e-2st/r)' 

The left-hand  side  converges to r/ (r  - 1)' as t ap- 
proaches infinity. Numerical values of the conditional 
variance as a  function of ult are shown for various 
values of r in Figure 3. For  large r ( r  = 2.0),  the 
conditional  variance is very small. This is because we 
observe I = 2, J = 2 in most of the cases when r is 
large.  For r = 1 . 1 ,  the conditional  variance increases 
linearly until about ult = 5. It  then starts to level off 
and  attains  the final value, 110, at  about ult = 20 
(data not shown). For smaller values of r ,  the  approach 
to  the final value is quicker. 

In a similar way,  we can compute  the variance, 
Var[(Z -J)'/' I I 2  2, J k 21 of the conditional  variance. 
It is expressed as 

-( 1 - e-2sf)(~(r,st)e2sfIog(l - e-2st/r) + (1  - e-'s1)) 

(r - 1)4e4s'[Iog( 1 - e-2sf/r)12 (24) 

where 
{(r,st)  = (r' + 10r + 1)  - 6(2r + l)e-"l + 6e-4st. 

As st  becomes large,  the variance  approaches (r3 + 
9r' + r ) / ( r  - 1)". The coefficient of variation of 
( I  - J)'/2 approaches [(r' + 9r + l)/r]'/' which is 
about 3.3 for 1 s r c 2. Thus  the coefficient of 
variation (the  ratio of the  standard deviation to  the 
mean)  for this statistic is very large. 

The above  formula is for genes whose common 
ancestor  existed t generations  ago.  Thus, it can be 
applied to two genes,  each  taken from  different spe- 
cies, whose divergence  time is known. Often two  genes 
are sampled from  the same species, so we  now consider 
this case. The time  until  a  common  ancestor is a 
random variable determined by the population  struc- 
ture. Assume that  the population size has been  a 
constant N and  that  the population is mating  ran- 
domly.  Let T be the time  until the common  ancestor. 
Then,  the distribution of T is exponential [see for 

0 0.5 1 1.5 2 2.5 3 3.5 4 

"1 

FIGURE 3.-The conditional  variance  given  that  two genes both 
have  more  than one repeat  when the two genes have a common 
ancestor t generations ago. 

example, TAJIMA (1 983)] 

Prob[T 6 t] = 1 - exp(-t/2N). ( 2 5 )  

Using this distribution, we can compute  the denomi- 
nator  and  the  numerator of Equation  22. The denom- 
inator is calculated using the  Taylor expansion  of the 
logarithm  function: 

Prob[Z 3 2, J k 21 

m 2N = c .  
I= ]  z(1 + 4Nsi)r" 

The numerator of Equation 22 is 

E[?, ( I  3 2, J 3 2) I 
4NvP*(l)s - - 

U I ( T  - 1)'(1 + 4N~)( l  + 8Ns)' 

Combining  (26) and (27), we obtain the conditional 
variance when genes are taken  from  a  population, 

4Ns - - 
m 1 

( r  - 1)'(1 + 4Ns)(l + 8Ns) 2 . 
1 

z ( 1  + 4Nsi)r' 

We can compute  the  denominator numerically by 
truncating  the sum since all the  terms  are positive. 
Unless T is very close to  one,  the convergence is fairly 
quick. The conditional  variance as a  function of 4Nul 
is shown for various values of r in Figure 4. Even for 
large 4Nul, the conditional  variance is small for r k 
1 . 3 .  In  these cases, the conditional  variance  does not 
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FIGURE 4.-The conditional variance given that two genes both 
have more than one repeat when the two genes are taken from a 
population of size N. 

give much  information on  4Nul when 4Nul is more 
than  one. For smaller values of r ,  the conditional 
variance increases as  4Nul increases, but it converges 
to a  constant when 4Nu1 becomes very large  (data not 
shown). 

STATISTICAL  TEST 

When  data  on variation within and between species 
is available, we can test the model by examining 
whether  the two types of data  can  be  explained by the 
same parameter  set or not. If we can  not  find such a 
parameter  set, we reject the null hypothesis that  the 
model is correct.  Here, we develop  an  approximate 
test for our model which examines  whether the vari- 
ation between species is smaller than  that  expected 
from  the variation within species. In  other words, this 
test examines  whether  some  force such as selection 
should  be invoked when we find  a  persistent  repeated 
sequence. 

Let Z and J be the  numbers of repeats in a  pair of 
genes which have a  common  ancestor t generations 
ago  (Figure  5).  Let K and L be  numbers of repeats in 
another pair of genes which have a  common  ancestor 
ct generations  ago. In  the present  context, Z and J 
come  from  the  same species and K and L come  from 
different species. Define a probability Q(i,k,m,n,ul, 
t ,r,c) as 

This is a probability that if we sample two pairs  of 
genes, the first  pair have different  number  of  repeats 
(difference is more  than m) and  the second pair have 
similar numbers  (difference is  less than or equal n) of 
repeats. If two pairs of genes are independent,  the 
right-hand side of the equation becomes 

Prob[(Z -11 > mlZ = 21 
X Prob[IK - LI c n l K  = k]. 

. ,  

t c & J L  

I J K L  

FIGURE 5.-The relationships of gene pairs. The two genes 
which have I and] repeats, respectively, have a common ancestor t 
generations ago. The two genes which have K and L repeats, 
respectively, have a common ancestor ct generations ago. 

These two terms can be  computed using Equations 
21 and 8, 

Prob[lZ - J I  > mlZ = i] 
i+m 

Prob[lK - LI d n l K  = k] 
k+n 

Note  that  these are functions of only i, k, m, n, ult ,  r,  
c and do not depend  on v. Thus, we write the proba- 
bility  in (29) as Q(i,k,m,n,ult,r,c) from now on. We 
search over  a  set of parameters u l t ,  r which  give rise 
to Q larger  than K (significance level) for a given set 
of data i, k, m, n. The factor c is estimated by using 
other  data such as  sequence  differences. If we can not 
find such a  parameter  set, we reject the null hypothesis 
that the  repeated sequences are evolving neutrally 
with the same parameter set u1 and r. Because we 
search  a set of parameters ult ,  r ,  this test is conserva- 
tive. 

We apply this test to persistent  repeated sequences 
found in the  5' flanking  region of the  primate p- 
globin genes (SAVATIER et al. 1985)  and in the chlo- 
roplast DNA of Oenothera (WOLFSON, HIGCINS and 
SEARS 199 1). 

SAVATIER et al. (1985)  sequenced  a 5500 base-pair 
fragment  including the  5' flanking  region of the p- 
globin gene in chimpanzee.  Comparing this sequence 
with the corresponding  sequence in human  (PONCZ et 
al. 1983), they found  four  repeated sequences (RSI- 
RS4) whose repeat  numbers vary between the two 
species. Three of them (RS1-RS3) are also found in 
macaque (SAVATIER et al. 1987a). Also for some se- 
quences,  data on variation within human  populations 
is available. Repeat  numbers of those  repeated se- 
quences are summarized in Table 1.  Among the  four 
sequences, we applied our test to RS2 and RS3 since 
they are  found in macaque and also because data  on 
variation within species are available for  them. The 
nucleotide diversity (NEI and TAJIMA 198 1) of  the 5' 



476 H. Tachida  and M. Iizuka 

TABLE 1 

Number of repeats of tandem  repeated  sequences  found in the 
5' flanking region of primate @-globin genes 

Repeat  Chimp."  Mac.b HumlC Hum2" Hum3"  Sequence 

RS 1 8 45 7 (TG)" 
RS2 10 12 16 17 (TG)- 
RS3 3  5 6  5 7 (ATTTT), 
RS4 12 None 7 11 8 (AT), 
Numbers of repeats in chimpanzee (Chimp.), macaque (Mac.) 

and human (Huml-3)  are shown. Blanks  in the table indicate 
missing data. Multiple samples are taken from human populations. 
Hum2 and Hum3 denote  different individuals from different  re- 
peated sequences. Naming of the  repeated sequences (RSl-RS4) is 
from SAVATIER et al. (1987b). 

" From SAVATIER et al. (1  985). 
From SAVATIER et al. (1 987a). 
From PONCZ et al. (1 983). 

flanking region of the  human ,&globin gene is 0.0035 
(computed  from the  data of the 1-kb region in 
CHEBLOUNE et ul. 1988). The corrected  proportion of 
differences in the  corresponding  region  between  hu- 
man and macaque is 0.046 (IG4 and  IG5 of SAVATIER 
et ul. 1987b).  Thus,  the factor c is estimated to  be  13. 
We randomly assigned Huml-Hum3 of RS3 or 
Huml-2 of  RS2 to 1, J ,  K in Figure 5 and  computed 
mu~~,~Q(i,ll,m,72,u~t,~,c) for various values of c and r 
using data of  RS2 and RS3. The data of  RS2  is  well 
explained by our model even if  we assume c to be 
more  than  100. However the probabilities for  the  data 
of RS3 are close to  0.05 as shown in Table 2. Consid- 
ering  that our test is conservative, we suspect that 
some force  might be operating  to  lengthen  the  per- 
sistence of the  repeated  sequence. 

WOLFSON, HIGGINS and SEARS  (1991)  sequenced  a 
region of Oenothera chloroplast DNA from  four plas- 
tomes. Plastomes are types of chloroplast found in 
related species of Oenothera.  They  found two 
stretches of adenosine  residues whose sizes change 
among plastomes in noncoding  regions. The data  are 
summarized in Table 3 with those  from Nicotiana. 
We estimated c to be 39 using the divergence of 
nucleotides in the coding  region  among  those chlo- 
roplasts shown in Figures  2 and 3 of WOLFSON, HIG- 
GINS and SEARS (1 99 1). We randomly assigned plas- 
tomes 11, IV and 111 to I ,  J and K (see Figure 5 )  and 
computed mux,ltf2(i,k,m,n,ult,r,c). The sequence of 
Nicotiana is assigned to be L. Though  repeat I is well 
explained by our model even with a c value of more 
than 100 (data  not  shown), the maximum probability 
is very  small for  repeat 11 as shown in Table 4.  Even 
when c is seven, the maximum probability is  less 
than 0.05. Thus, we reject the null hypothesis for 
repeat 11. 

DISCUSSION 

In our model, we assumed that  the  rate of replica- 
tion slippage is proportional  to  one less than  the 

TABLE 2 

The maxima of Q(i, k, m, n, u ~ t ,  r, c) for the  repeated  sequences 
in 5' region of primate  @-globin genes 

Factor(c) r =  1 . 1  r = 1 . 3  r =  1.5 r = 2 . 0  

(1) RS2 [max,,, Q(16, 16, 0, 4, ult ,  r ,  c)] 
10.0 0.482 0.462 0.437 0.387 
20.0 0.372 0.342 0.308 0.253 
50.0 0.245 0.203 0.169 0.125 

100.0 0.169 0.125 0.098 0.066 
(2) RS3 [max,,, Q(6, 5, 0,  0, w t ,  r ,  c)] 

10.0 0.076 0.078 0.078 0.076 
13.0 0.066 0.068 0.067 0.063 
20.0 0.053 0.052 0.050 0.041 
50.0 0.030 0.028 0.025 0.022 

For definitions of r ,  c, and Q(i, k ,  m, n, u i t ,  r ,  c), see the  text. 

TABLE 3 

Number of repeats in the  repeated  sequences  found in the 
chloroplast DNA of four  Oenothera  plastomes  and Nicotiana 

tabacum 

Plastome 

Repeat  Nicotiana I 11 I11 IV Sequence 

I 8 13 13 14  14 (A), 
I1 9 I 1  12 19 19 (A). 

Made from WOLFSON, HICCINS and SEARS (1991). Naming of 
the  repeated sequences (I, 11) is arbitrary  determined. 

TABLE 4 

The maxima of Q(12, 19, 6, 10, u,t, r, c) for  repeat I1 in 
chloroplast  DNA of Nicotiana and Oenothera 

Factor(<) r = l . l  r = 1 . 3  r = 1 . 5  r = 2 . 0  

7.0 0.043 0.012 0.005 0.001 
10.0 0.028 0.006 0.002 0.000 
20.0 0.010 0.001 0.000 0.000 
50.0 0.002 0.000 0.000 0.000 

For definitions of r ,  c, and Q(i, k, m, n, ult, r ,  c), see the text. 

number of repeats. We used this linear  function be- 
cause it is increasing and also it makes the calculation 
easier. There is not  much  information on the shape 
of this function at present. STREISINGER and  OWEN 
(1985)  observed  that the  rate of insertion or deletion 
increased 100-fold when the  number  of  repeats was 
increased from  four  to five in T 4  DNA. However, if 
such a  rapid increase of the slippage rate  occurs, we 
would not observe repeat  numbers of several or more 
in DNA sequences. Indeed, using Equations 8a  and 
8b of WALSH (1  987), we obtain 

P * ( i )  - &+I 

p , ( i  + 1) x, (33) 

where pi and X, are  the rates of decrease and increase, 
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respectively, of the  repeat  number when the  number 
of repeats is i. If p5 is a  hundred-fold of X 4  as in their 
data, we would observe p5/p4 < 1/100 and this is not 
the case (see Table 1). Therefore, we think that  the 
rate increases less rapidly than  the  rate of T 4  DNA in 
STREISINGER and OWEN (1 985) as the  repeat  number 
increases. WALSH (1 987) used another linear  function 
which is proportional to  the  number of repeats. Under 
his model, the  ratio of p , ( i )  to p * ( i  + 1) is 

whereas in our model it is 

P J i )  - ir 
p * ( i  + 1) i - 1’ 

(34) 

(35) 

We can see that  there is not  much  difference in the 
equilibrium  distribution, especially for  a  larger  num- 
ber of repeats  as  long  as we use a  linear  function  for 
the slippage rate.  Therefore,  the conclusion as to  the 
neutrality of the persistent  repeated  sequences  ana- 
lyzed above will not  be  changed if the shape of the 
function is linear. 

We found  one  repeated  sequence  (repeat 11) in the 
Oenothera chloroplast which is inconsistent with our 
model and  another (RS3) in the &globin gene  region 
which is suspected to reject our model. In  both cases, 
the changes in the  number of repeats are too small 
when we compare  the  repeat  numbers between  differ- 
ent species. Although there  are uncertainties about 
the estimation of c, our model is rejected  even if we 
assume c to  be seven for  repeat I1 of Oenothera 
chloroplast. Since our test is conservative, the se- 
quence seems to be evolving differently  from our 
model. Also the power of our test is  low since it utilizes 
only a few sequences. If we can devise tests which 
utilize more  sequences, the  data  on RS3 may become 
significant. 

We mention three possibilities for what caused re- 
jection of our model in repeat I1 and possibly  in RS3. 
One is that selection keeps the  repeat  number in a 
certain  range.  In this case, the  repeated  sequence has 
a biological function. It is noteworthy  that another 
repeated  sequence, RS4, in the  primate P-globin re- 
gion can bind  some erythroid-specific factor  modulat- 
ing @-globin gene expression (BERG et aE. 1989). A 
second possibility is that ui may change in the lineages 
of  two species. If the ui’s are  larger in the species in 
which data  on  the variation within species is available, 
we obtain such a pattern. A third possibility is the 
inadequacy of our slippage model.  For  example, if the 
repeat  number  changes  more  than  one  per  genera- 
tion, we may obtain  a pattern like that in repeat I1 of 
Oenothera without selection. In  addition  to  more 
data,  further theoretical  studies are necessary to in- 
vestigate these possibilities. 
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APPENDIX 

Computation of p( iJ , t ) :  Let f(x,y,t) be  the  gener- 
ating  function of p ( i ,  j , t )  defined as 

m m  

f(x,y,t) = p(i , j , t )xi- ly- l .  (AI) 
i=l j=1  

If we use the continuous  time  approximation as in the 
one  gene case, we can  derive  a  partial  differential 
equation satisfied by f(x,y,t) using (20), 

9- u,(x - r)(x - 1) df at 

- u1(y - r)(y - 1) - = 0. df 
ay 

If we take two genes  randomly, the common  ancestor 
is again a  random sample. Thus, if we assume that  the 
population is in the equilibrium  state at  generation 
zero, the distribution of the  repeat  number in the 
common  ancestor  gene is p, ( i ) .  Therefore,  the initial 
condition  for p ( i j , t )  is 

P ( i j , O )  f P*(i)  (i = j )  
= o  (i Zj). 

From  these, the initial condition  for f(x,y,t) is com- 
puted  to  be 

m 

f(x,y,O) = p*(i)X'"y"l 

= f*(XY) 

I= 1 (A4) 

wheref, is the  generating  function of the  one  gene 
case  in the equilibrium  state [see eq (S)]. The solution 
of (A2) which  satisfies this initial condition is 

( r  - x)(r - y)eZsf - r( I - x)(l - y)  
[(resf - 1) - (esf - 1) x] 

[(re" - 1) - (esf - l)y] 

We can compute p( i , j , t )  by expandingf(x,y,t) with 
respect to x and y and matching coefficients. The 
resulting expression for i b 2 and j 5 2 is 

[I - exp(-2st)]2"i-J+2[1 - exp(-2st)l'+j-i-2 
ri+j-'-'[r - exp(-2st)l' 

where 
( a  - 1)!(-1)+-l 6 .  . = 

I J . ~  ( 1  - i + 1)!(1 - j + I)!(i + j - I - 2)!* 

Conditional  variance: First we compute  the  de- 
nominator of (22) which can be  expressed as 

Prob[Z 3 2, J 3 21 = 1 - Prob[Z = 11 
('47) - Prob[J = 13 + Prob[Z = 1, J = 11. 

Noting  the following relationships 

f(x,y,t)lx=O,y=l = Prob[Z = 11 (AS) 

f(x,y,t)lx=O,y=O = Prob[Z = 1, J = 13 (A9) 

and using (A5), 

Prob[Z 5 2, J 2 21 = -- vp*(l)log( 1 - 7). (A10) 
U1 

Next we compute  the  numerator of (22). First, note 
that  the variance is represented by 

E [ u ,  (Z 3 2, J 3 211 
2 

m m  

= C, (2' - 29 + j2)p(i,j,t)/2. 
i=2 j-2 

Using derivatives of f(x,y,t), we can compute  the  right- 
hand side and we obtain 

- vp,(l)(e"' - l)(esf + 1) - 
ul ( r  - 1)ze4sr 

From  equations (A1 0) and (A1  2), the conditional var- 
iance is computed to be 

E [ V , Z 5 2 , J 5 2  1 


