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Letters to the Editor 

Gene  Trees,  Species  Trees  and  the  Segregation of Ancestral  Alleles 

WU (1991) has recently calculated a  probability, 
denoted by 1 - P(T) ,  which he describes as the prob- 
ability of obtaining  incorrect phylogenetic informa- 
tion  for three species due  to segregation of ancient 
polymorphism. T o  obtain P(T), he considers three 
species with the relationship shown in Figure 1 and 
supposes that  one  sequence is obtained  from each 
species. I will designate the  three sequences by s l ,  s2 
and s3. P(T), as calculated by WU, is actually the 
probability that  either a or y occurs, given that  one 
of the events, a,  y ,  PI or P2 occurs. These  four events 
are defined as follows: 

a: 

PI :  

P‘L: 

The event that s l  and s2 are descendants of allele 
Ai and s3 is a  descendant of A-,, where Ai is an 
allele that was segregating in the ancestral pop- 
ulation at  node 1 of the species tree in Figure 1, 
and where A-i is any other allele. 
The event  that s l  and s 2  are  both descendants 
of a  mutant  that  arose  between  node 1 and  node 
2 of the species tree. 
The event  that s l  and s3 are descendants of allele 
A, and s2 is a  descendant of A+. 
The event  that s2 and s3 are descendants of allele 
Ai and s l  is a  descendent of A,;. 

Note  that a and y are not mutually exclusive, so it is 
possible for  both a and y to  occur in the history of 
the sequences s l  , s2 and s3. However, if the mutation 
rate is small, then  the probability that  both a and y 
occur is negligible, in  which case, P(T), which WU 
describes as the probability of correct phylogenetic 
information is 

P(T) = W )  + P(Y) 
P W  + P(Y) + P(Pl) + P(P2)’ 

WU calculates each of the probabilities on  the  right 
hand side under a  Wright-Fisher  neutral model and 
finds,  for small mutation  rates  that 

P ( T )  x 
l + T  

1 + T + 2e-T’ 

where T is measured in units of 2N generations, N 
being  the diploid population size. Equation 1 is the 
main result of the first part of  WU’S paper. I claim 
that this conditional probability is not  appropriate  for 
the  interpretation of any experimental  observations 
because the  events, a, y ,  or P 2 ,  considered by WU, 
do not  correspond in an  appropriate way to any ob- 
servable  pattern in data. It will be shown below, for 
example,  that  the  events a, o1 and &, can  produce 
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data  that is indistinguishable from  data  resulting  from 
events other  than a, y ,  PI or P 2 .  Therefore, knowing 
the conditional  probability, P(T), is not useful for 
assessing the probability of particular  patterns in data. 

First, it is important  to  note  that  there  are two very 
distinct situations, which must be distinguished in 
analyzing this problem: situation 1, in  which one does 
not distinguish derived and ancestral states of the 
sampled genes, and situation 2,  in  which one does 
distinguish derived  and ancestral states of the sampled 
genes. Clearly, in situation 2 more  patterns  are dis- 
cernible  than in situation 1, and so these two situations 
must be  treated separately. 

If one has sequences from only three species, one is 
typically  in situation 1, being  unable  to  determine  the 
ancestral  state of the genes. Thus,  for example, if s l  
and s3 are alike in  missing a  contiguous set of 20 bp 
relative to s2, one  cannot tell if, on  the  one  hand, 
there was a  deletion which occurred in a common 
ancestor of s l  and s3, or  on  the  other  hand,  an 
insertion  occurred in the lineage leading to s2. (I am 
ignoring the possibility of the same insertion or dele- 
tion occurring twice or an  exact reversal of an  earlier 
insertion or deletion.) If it was an insertion that oc- 
curred in the lineage leading to s2, this insertion  could 
have occurred  quite  recently,  at  the  time  indicated by 
the filled square in Figure 1, or much farther in the 
past, at  the  open square.  Note  that in situation 1, with 
low mutation rate,  there  are only three likely patterns 
other  than all three sequences alike, namely, s l  and 
s2 alike with s3 different, s l  and s3 alike with s2 
different,  and s2 and s3 alike with sl different.  These 
three  patterns will be  designated (12)3, (1 3)2 and 
(23)1, respectively. Other  patterns  require  more  than 
one mutation which are very unlikely  with  low muta- 
tion  rates. 

Can an investigator in situation 1 use P ( T )  to assess 
the probability of pattern (1  2)3, or  one of the  other 
two patterns,  under  the assumption that  the species 
tree is the  one shown in Figure l ?  The answer is no. 
When a or y occurs,  then  pattern (1 2)3 will necessarily 
result. An example is shown in Figure 1, where if a 
mutation  occurs at  the  open circle, pattern (12)3 will 
be  produced.  However,  the  pattern (12)3 can arise 
without a or 7 occurring. An example is when a 
mutation  occurs at  the point  indicated by the closed 
circle, in  which  case none of the events, CY, 7 ,  PI or P2 
has occurred. An investigator in situation 1, cannot 
distinguish between  a  mutation at  the  open circle and 
a  mutation at  the closed circle. Therefore,  to  interpret 



510 R. R. Hudson 

SP 1 sp2  s p 3  
FIGURE 1.-A species tree with an example gene tree. The 

species tree is shown by the bold dashed lines, with the speciation 
events indicated by the 1 and 2. The sampled genes from the species 
are indicated as sl and s2 and s3. The  gene tree is drawn with 
smaller solid and "dot-dash" lines. Mutations that occur on the  dot- 
dash line result in shared derived states in two sequences. The 
squares and circles represent mutations discussed in the text. 

data in situation 1 ,  one needs the probability  of (1 2)3 
or perhaps the probability  of (12)3 given that  either 
(12)3, (1 3)2 or (23)l has occurred,  rather than the 
probability of a or y or the conditional probability, 
P(T). In order  to compare these probabilities, I now 
calculate the probability  of (12)3 and  the  other two 
patterns under a Wright-Fisher neutral infinite-allele 
model  with low mutation rate. 

Under the infinite-allele  model, the probability of 
pattern (12)3 for the gene tree of Figure 1 is the 
probability  of at least one mutation on the branch cd 
and no mutations on the rest of the gene tree.  (In  the 
following, a branch of a gene tree will be referred to 
by the pair  of letters which  label the ends of the 
branch in Figure 1 .  The length of branch ij, measured 
in  units  of 2N generations will be denoted by L(i j ) . )  
Thus, the probability of pattern (1 2)3 given the gene 
tree in Figure 1 is 

P((12)3 I gene tree 1 )  = ( 1  - 
e-(M/2)(L(ac) + L ( d c )  + L(bd))  (2) 

M = y L(cd),  

where M is 4Nu, and u is the neutral mutation rate 
for  the genetic region sequenced. The approximation 
is for M small.  For other gene trees and  other patterns, 
similar  expressions  hold.  For example, the probability 
of (23)l given the gene tree of Figure 1 ,  is approxi- 
mately (M/2) times the sum  of the lengths of branches 
ae and de. The unconditional probabilities  of the 
patterns can  be obtained by taking the expectation 
over all  possible gene trees and branch lengths. All 
branch lengths are distributed approximately expo- 
nentially,  assuming N is large (KINGMAN 1982), which 
makes the calculation of the unconditional probabili- 

ties straightforward. For M sufficiently  small, the un- 
conditional probabilities  of the  three patterns are: 

P((23)l) = P((13)2) = M - (Tz + 1)  
2 (3) 

and 

P((12)3) 2 (Tz + 2T + 1). 
M 

From (3) and (4), the probability  of (12)3 conditional 
on one of the  three patterns, (12)3,  (23)1,  (13)2 oc- 
curring is given approximately by 

These equations show,  what is intuitively clear, that 
the probability  of pattern ( 1  2)3 depends on T2 as  well 
as T. It is also  intuitively  clear that when T2 is large 
compared to T, then all three patterns must  be about 
equally  likely,  even if T is much larger than 2N gen- 
erations. Equation 5 bears  this out, since the right 
hand side is approximately '/s when Tz is large com- 
pared to T. These results are very different from WU'S 
results.  Equations 2-5 rely on the assumption that M, 
and MT and MT2 are all  small,  which may be appro- 
priate for large insertion/deletion events.  However, 
for nucleotide substitutions it is probably  necessary to 
consider a finite-allele  model and incorporate the 
possibility  of  multiple  hits. 

Summarizing, in situation 1, the conditional distri- 
bution of  observable patterns is very different from 
the conditional probability obtained by WU.  WU'S 
conditional probability  would not be appropriate for 
interpreting patterns observed  in  situation 1 .  

Now I consider situation 2. If one has data from 
three species  plus an outgroup species, and if one can 
assume that mutations are unique and irreversible, 
then one is  in situation 2, i.e., the ancestral state of 
genes  can  be determined. In this  case there  are 6 
possible patterns produced by a single mutation on 
the gene tree. Three of the possible patterns have  two 
of the sequences sharing a derived state and the third 
sequence retaining the ancestral state. The other 
three patterns have one sequence  with a derived state 
and the  other two retain the ancestral state. Subscripts 
a and d will be  used to designate ancestral and derived 
states of the sequences.  For example, (13)d2, will be 
used to designate that s l  and s3 share a derived state 
with s2 retaining the ancestral state. (13),2d will de- 
note  the case where s l  and s3 retain the ancestral 
state and s2 is derived. 

Can an investigator in situation 2, use  Equation 1 ,  
to assess the probability  of pattern (12)d3,, or any of 
the  other five  possible patterns, under the assumption 
that the species tree is the one shown  in Figure l ?  
Again the answer is no. The probability of a plus the 
probability  of y does not equal the probability of 
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( 1  2)d3,. While the  pattern ( 1  2)d3, implies that a or y 
has occurred,  and y necessarily results in ( 1  2)d3,, it is 
not  true  that a necessarily produces pattern (12)d3,. 
Therefore  the probability of a plus the probability of 
7 is greater  than  the probability of ( l2)d3, .  T o  see 
that a does  not necessarily produce  pattern ( 1  2)d3,, 
consider the  gene  tree of Figure 1 .  If a  mutation 
occurred at  the  open circle, then a has occurred,  but 
the resulting pattern is ( 1  2),3d not ( 1  2)d3,. Notice that 
the pattern (12),3d, which can  be  produced by a,  can 
also be  produced by events other  than a, y, PI or P2,  

for example, when a  mutation  occurs at  the solid circle 
of  the  gene  tree in Figure 1 .  

Notice that when two of the  three sequences share 
a derived  state, the topology of the  gene genealogy is 
unambiguously determined. If the species tree is the 
tree shown in Figure 1 ,  and  one observes ( 1  3)d2, or 
(23 )d l ,  then it is necessarily true that  the  gene ge- 
nealogy is incongruent with the species tree,  and  an 
ancestral polymorphism in the population at  node 1 
is necessarily involved. So, if an investigator observes 
shared derived  states in two of the sequences,  then  a 
useful quantity  for assessing the probability that  the 
gene  tree (which is now established) has the same 
topology as the species tree is the following conditional 
probability: 

P((12)d3a) R =  
P((23)d1,)  + P((13)dZa) + P((12)d%)' 

One can calculate the conditional probability, R, 
under  the same infinite-allele model considered  above 
for situation 1 ,  however it is more  informative to 
analyze an infinite-site model. In this model, only one 
mutation  can  occur  at  any  particular site, but  more 
than  one mutation can occur in the whole region 
sequenced. The mutation rate  at individual sites is 
infinitesimal, but M ,  the mutation  parameter  for  the 
entire region  sequenced, is not necessarily small. For 
M small, the results will converge to what would be 
obtained  under  an infinite-allele model with small 
mutation  parameter.  For  nucleotide  substitutions  the 
mutation  rate  per site may not  be sufficiently small, 
in which  case one should  consider  a many-site model 
with each site being  modeled as a four-allele locus. 
However, for large  insertion/deletion  events the infi- 
nite-site model may be sufficiently accurate. We are, 
in essence, assuming that  an insertion/deletion at a 
particular site only happens  once on the  gene geneal- 
ogy and  that  once  an insertion/deletion  occurs, sub- 
sequent  insertion/deletions do not completely obscure 
the earlier  event. 

For the infinite-site model,  I will use ( 2 3 ) d l ,  to 
denote that case where one or more sites in the region 
sequenced show the  pattern (23)d1,.  Similarly, R de- 
notes  the probability that s 2  and s3 share  a  derived 
state  and sl  retains the ancestral  state, at  one or more 
sites, conditional on any pair of sequences  sharing  a 

derived  state at  one  or  more sites. R ,  defined in this 
way,  may be  a useful quantity  for assessing the likeli- 
hood of various species trees when one has sequences 
which exhibit  shared  derived  states, and  for this rea- 
son I will obtain an expression for it below. However, 
one could presumably make more  informed assess- 
ments of the likelihood of different species trees by 
considering the  number  of sites in the  data which 
show pattern (23)d1,, as well as the  number of sites 
that show each of the  other possible patterns. This 
problem will not  be  pursued  here. 

T o  obtain R ,  I begin by calculating the probability 
of (23)d 1 , .  This  pattern can only arise if the gene tree 
is like the  gene  tree shown in Figure 1 and if one or 
more  mutations  occur on branch de of that  tree. That 
is, the most recent  common  ancestor of sl  and s2 
must have occurred  before  node 1 .  This occurs with 
probability e-T. In  addition,  the topology of the  gene 
tree must be such that s2 and s3 are  the most recently 
diverged  pair of sequences. This occurs with proba- 
bility %, conditional on  the most recent  common 
ancestor of s 1 and s2 occurring  before  node 1 .  Given 
these first two conditions,  the probability of at least 
one mutation on  the  branch de is M / ( 2  + M ) ,  which 
follows from  the fact that  the  duration of branch de is 
exponentially  distributed with mean 1 ,  in units of 2N 
generations. Thus, 

The probability of ( 1  2)d3, is slightly more complicated 
since the mutations which lead to the  shared  derived 
state of sl  and s2 can  occur  either  before or after 
node 1 .  Taking these possibilities into  account,  one 
finds 

P((12)d3,)  = 1 - e-T + - - 
( 2  +") (7) 

+ 4(e-T - e--MT/2 ) 
( 2  - M)(2  + M ) '  

Using (6) and (7), the conditional  probability, R ,  now 
written as R(T,M) ,  to indicate its dependence  on T 
and M ,  is found to be: 

R ( T ,   M ) =  1 -- 2e-T 
3 (8) 

M ( 2 - M )  
a ( ( 2  + M ) ( 2  - M )  - 4e"T/2 + 2Me-T 

The limit  of R ( T , M )  as M tends to zero, gives the 
small M approximation: 

R(T,O+) = 1 - - 'rT (T. - +! e-T)*  (') 

Equation 9 can also be obtained by Wu's approach 
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FIGURE 2.-The probability that the gene  tree is congruent with 

the species tree, as a  function of T ,  the time between  node 1 and 
node  2 in Figure 1. The unconditional probability is from Equation 
10, the conditional probability from Equation 9 ,  and Wu’s result is 
Equation 1 .  

of considering alleles at particular  frequencies at  node 
1. To  do this, it is helpful to consider a’, pi and pi 
instead of a, (31 and p2. a’ is the  event  that s l  and s2 
are descendants of the same derived allele present at 
node 1 and s3 is a  descendant of an ancestral allele. 
Similarly, (3; and (3; are defined like p1 and p2 except 
that  the ancestral and derived states are specified as 
for a’. The conditional probability of a’ or y given 
a’, 7, (3; or P; is the same as my R .  Wu’s Equations 1 
and 2 can be modified to calculate the probability of 
& and a’, when mutation  rates are low, by multiplying 
the right  hand side of these equations by ( 1  - p ) .  With 
low mutation  rates, 1 - p is the probability that  the 
allele at frequency p is a  derived allele. This follows 
from results of WATTERSON and GUESS (1977) on  the 
ages of alleles. Following through with  WW’S analysis, 
but  with the modified versions of his Equations 1 and 
2, leads to Equation 9, above. 

Equations 8 and 9, which give the probability of 
gene  tree  and species tree  congruence conditional on 
two of the  three sequences sharing  a  derived  state, 
should  be  compared to  the unconditional probability 
of gene  tree  and species tree  congruence 

2e-T 
P(congruentgenetree) = 1 - - 3 ’  (10) 

(HUDSON 1983; NEI 1986). Equations 1 ,  9 and 10 are 
plotted in Figure 2. Note  that  for M large  there will 
always be at least one mutation  producing  a  shared 
derived  state in the sampled sequences, so the condi- 
tional probability, R(T,M) ,  should  approach the un- 
conditional probability given by (1  0). This is indeed 
the case, since the expression in curly brackets on  the 
right  hand side of (8) approaches  one as M goes to 
infinity. Notice that  the expression in curly brackets 

on  the  right  hand side of (9) is always  less than  one 
for T > 0, and thus, for M small, the conditional 
probability of congruence is always greater  than  the 
unconditional probability of congruence (see Figure 
2). Using (9), it is found  that,  conditional on finding 
two of the sequences with a  share  derived  state,  the 
probability of the  gene  tree  and  the species tree being 
congruent is greater  than 0.95 for T > 1.9. This 
contrasts with Wu’s result  that T must be greater  than 
2.4 for 95% confidence in congruence of gene  tree 
and species tree.  From  equation (lo),  the uncondi- 
tional probability that  the  gene  tree is congruent with 
the species tree is greater  than 0.95 for T > 2.6. 

Can we consider Wu’s result  for small M to be an 
approximation  for  equation (9)? In  Figure 2 one can 
compare Wu’s result with the conditional probability 
and  the unconditional probability. This  figure shows 
that  the  unconditional probability of congruence is 
closer to  the  conditional probability than is WU’S result 
for  a substantial range of T values, suggesting that 
Wu’s result  should  not  be  considered as an approxi- 
mation  to this conditional probability. 

In conclusion, Wu’s result is not  appropriate  for  the 
interpretation of data in either situation 1 or situation 
2. If mutation  rates  per site are sufficiently small, then 
Equation 5 should  be used in situation 1 and Equation 
8 or 9 in situation 2. It  should  be  noted  that my 
criticisms apply primarily to  the first half  of  WU’S 
paper which deals with a single locus. The second half 
of the  paper which considers multiple loci  is essentially 
independent of the first part of the  paper.  However, 
the maximum likelihood estimates of T which appear 
in the second half of the  paper do depend  on  the first 
half of the  paper  and are  therefore incorrect. 
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