Rat Gene Mapping Using PCR-Analyzed Microsatellites

Tadao Serikawa,* Takashi Kuramoto,* Pascale Hilbert,^{†‡} Masayuki Mori,* Junzo Yamada,* Christopher J. Dubay,[†] Klaus Lindpainter,[§] Detlev Ganten,[§] Jean-Louis Guénet,** G. Mark Lathrop[†] and Jacques S. Beckmann[†]

*Institute of Laboratory Animals, Faculty of Medicine, Kyoto University, Kyoto 606, Japan, [†]Centre d'Etude du Polymorphisme Humain, 75010 Paris, France, [‡]IRIBNH, Campus Erasme, Brussels 1070, Belgium, [§]German Institute for High Blood Pressure and Department of Pharmacology, University of Heiderberg, D-6900 Heiderberg, Germany, and **Institut Pasteur de Paris, 75724 Paris Cedex 15, France

> Manuscript received February 6, 1992 Accepted for publication March 20, 1992

ABSTRACT

One hundred and seventy-four rat loci which contain short tandem repeat sequences were extracted from the GenBank or EMBL data bases and used to define primers for amplification by the polymerase chain reaction (PCR) of the microsatellite regions, creating PCR-formatted sequence-tagged microsatellite sites (STMSs). One hundred and thirty-four STMSs for 118 loci, including 6 randomly cloned STMSs, were characterized: (i) PCR-analyzed loci were assigned to specific chromosomes using a panel of rat × mouse somatic cell hybrid clones. (ii) Length variation of the STMSs among 8 inbred rat strains could be visualized at 85 of 107 loci examined (79.4%). (iii) A genetic map, integrating biochemical, coat color, mutant and restriction fragment length polymorphism loci, was constructed based on the segregation of 125 polymorphic markers in seven rat backcrosses and in two F_2 crosses. Twenty four linkage groups were identified, all of which were assigned to a defined chromosome. As a reflection of the bias for coding sequences in the public data bases, the STMSs described herein are often associated with genes. Hence, the genetic map we report coincides with a gene map. The corresponding map locations of the homologous mouse and human genes are also listed for comparative mapping purposes.

THE construction of a detailed rat genetic map is important to exploit the potential of the rat as an experimental animal (GILL et al. 1989). Until now, progress in rat gene mapping has relied largely on the use of somatic cell-hybrid clone panels (YOSHIDA 1978, SZPIRER et al. 1984; YASUE, SERIKAWA and YAMADA 1991; YASUE et al. 1992), and precise chromosomal localizations have been determined by in situ hybridization (KANO, MAEDA and SUGIYAMA 1976; MORI et al. 1989; TAKAHASHI et al. 1986; ZHANG et al. 1988). In contrast, linkage information has been very limited. A large collection of informative genetic markers has not been available for linkage analysis and mapping until recently. Consequently, only 13 linkage groups were known today in the rat, of which only 6 have been assigned to a specific chromosome (LEVAN et al. 1991; HEDRICH 1990).

A new class of polymorphic markers, broadly referred to as microsatellites, has recently been applied to human and mouse genetic studies. These sequence tagged microsatellite sites (STMSs) consist of simple, tandemly repeated mono- to tetranucleotide sequence motifs flanked by unique sequences, that serve as primers for polymerase chain reaction (PCR) amplification. Variability at these sites is mostly due to a variation in the number of repeat units in the motif. As a result of the very small size differences (as few as a single nucleotide base pair), visualization of the length polymorphism can often be achieved on 4% agarose gels. Although for smaller size differences resolution may require electrophoretic separation of allelic fragments on denaturing sequencing gels.

STMSs found in human, mouse and cattle have been shown to be highly polymorphic and randomly distributed throughout the genomes (HAMADA and KAKUNAGA 1982; HEARNE *et al.* 1991; LITT and LUTY 1989; LOVE *et al.* 1990; MONTAGUTELLI, SERIKAWA and GuÉNET 1991; MOYZIS *et al.* 1989; TAUTZ 1989; WEBER 1990; WEBER and MAY 1989). There are numerous STMSs in the eukaryote genome; for the $(dT-dG)_n\Delta(dC-dA)_n$ motif alone it is estimated that the number of these sequences in the mammalian genome exceeds 10^5 copies per haploid genome (HAMADA, PETRINO and KAKUNAGA 1982).

A search within the public data bases of human sequences for the presence of microsatellite motifs yielded some 368 potentially polymorphic loci (WIL-LIAMSON *et al.* 1992; see also LOVE *et al.* 1990, for a similar approach in mouse). Thus, in view of the increasingly growing number of published rat DNA sequences (STOLC 1990), we expected to find many potential rat STMSs. Here we report the results of our search, which led to the identification of 174 distinct rat loci, most of which are in protein coding genes (or in their flanking sequences). Primers for PCR amplification were chosen to define each of these as STMSs (PCR-formatting). These were characterized for their potential variability among different rat strains and used to construct a genetic map of the rat.

MATERIALS AND METHODS

Screening of rat microsatellite loci and design of primer sequences: GenBank (version 63) and EMBL (version 22+) were screened for rat sequences which contain microsatellites, following the same procedure as described in BECK-MANN and WEBER (1992). Searches were performed using the FIND protocol of the "Genetics Computer Group Sequence Analyses Software Package" of the University of Wisconsin, version 6.1 (DEVEREUX, HAEBERLI and SMITHIES 1984) for all simple tandemly repeated rat sequences, having a repeat unit of 4 bases or less, with total length for the uninterrupted stretch of repeats of at least 20 base pairs (WEBER 1990).

Independent entries from different non-overlapping parts of the same gene were clustered as a single "locus." All redundant synonymous entries were removed. In several instances, upstream and downstream sequence comparisons had to be performed to ascertain identity. Satellite DNA (e.g., RATSIMPA) and artefactual microsatellites (such as mRNA poly(A) tails or those resulting from tailing or cloning experiments) were also eliminated. Moreover, members of large multigene families such as the MHC, rDNA and immunoglobulin gene families were combined into a single entry. (These loci are included even though they are unlikely to yield an easily interpretable locus-specific polymorphism.) This yielded 174 "unique" loci (excluding thus repetitive DNA and large multigene families), each containing at least one microsatellite.

Random cloned STMSs were derived from a rat total genomic library, by screening for AC dinucleotide repeats, and sequencing of positive clones to determine PCR primers.

Primers 16-26 nucleotides long were selected using the "OLIGO" computer program (RYCHLIK and RHOADS 1989) and were custom synthesized by GENSET (France).

PCR and gel electrophoresis: PCR was performed using a standard tube type PCR apparatus (DNA thermocyler PJ1000, Perkin-Elmer Cetus) and microtiter plate type PCR apparatus (LEP PREM III, Techne or MJ research programmable thermal cycler). The reaction volume was 25μ l. Final concentrations were: 10 mM Tris-HCl, pH 8.4; 50 mM KCl; 0.1% Tween 20; 125μ M dATP, dCTP, dGTP, dTTP each. MgCl₂ concentration was adjusted to 1–3 mM according to a preliminary titration (LOVE *et al.* 1990). One hundred nanograms of genomic DNA and 0.6 units of Taq DNA polymerase (Promega) were used. Programming of temperature and time cycles was as follows: 3 min at 94°, 35 cycles of 1 min at 94°, 1 min at 50°, 55° or 60° and 30 sec at 72°, followed by a final elongation step of 3 min at 72°. PCR products were usually resolved on 4% agarose gel electrophoresis (NuSieve 3:1 agarose, FMC bioproduct) and stained by ethidium bromide.

In the analyses of the F_2 cross, in cases where polymorphism could not be detected on agarose gels, radioactively labeled PCR amplification products were separated by electrophoresis on standard denaturing sequencing gels, a method enabling the visualization of small size differences. Polymorphism was visualized after autoradiography.

Length polymorphisms and genetic linkage study: The rat inbred strains ACI/N, BN/N, F344/N, IS/Kyo, SHR/

Kyo, TM/Kyo, WTC/Kyo, ZI/Kyo were raised at the Institute of Laboratory Animals at Kyoto University. The progeny from seven backcross matings (ACI × WTC) × WTC, (ACI × F344) × F344, (BN × WTC) × WTC, (SHR × WTC) × WTC, (SHR × BN) × BN, (ZI × BN) × ZI and (TM × ZI) × ZI were obtained from the same facility. The F_2 animals from SHRSP and WKY are the same as those described in HILBERT *et al.* (1991). High molecular weight DNAs were prepared from liver or spleens from all 10 inbred rat strains (including the parental strains of the F_2 progeny), and backcross and F_2 progeny, following standard protocols. All DNA samples were dialyzed and stored in a 10 mM Tris-HCl, 0.1 mM EDTA buffer (pH 8.0).

Table 1 lists 134 PCR-formatted markers corresponding to 118 loci, which were used for chromosomal assignment using somatic cell hybrid clones and/or linkage analyses. Twenty nine allelic forms of 16 biochemical loci, 9 restriction fragment length polymorphism (RFLP) loci, three coat color loci and one mutant locus (Table 2) were also typed in the seven backcross sets. Three loci AGT, REN and SCN2A were typed with both RFLPs and STMSs. The segregation patterns in the backcross progeny of the microsatellite loci and other markers were first analyzed with "GENE-LINK" (MONTAGUTELLI 1990). More detailed two point and multipoint analyses were subsequently performed using the "LINKAGE" and "GMS" programs (LATHROP and LALOUEL 1984; LATHROP et al. 1988) with genotypes from all nine crosses. The GMS programs permits testing of a large number of alternative orders, including all permutations of four adjacent loci and higher order permutations involving closely linked groups of loci, during map construction. Anchor markers were chosen based on the criterion that the relative placement of these loci was unchanged within 100:1 odds of the best supported order.

Chromosomal assignment of genes: In this study, 18 rat × mouse somatic cell hybrid clones, segregating all individual rat chromosomes were used. The clones were developed by fusing Sp2/O-Ag14 myeloma of BALB/c mice origin with lymphocytes of a male ACI/N rat. The panel of segregation of rat chromosomes and assignment of biochemical genes using the clones has already been reported (YASUE, SERIKAWA and YAMADA 1991). DNA samples were prepared from all somatic cell hybrid clones and from the parental Sp2/O-Ag14 myeloma cells. The rat-specific amplification products for the microsatellite regions were examined in each hybrid clone, and compared to the known segregation pattern of individual rat chromosomes in this panel. In this manner, it was possible to assign most microsatellites to a particular chromosome according to the most concordant segregation pattern.

RESULTS

Development of rat microsatellites: One hundred and seventy-four "unique" loci, each of which contains at least 20 uninterrupted bases of a repeat of monoto tetranucleotides were extracted from the GenBank and EMBL data bases. Of 364 STMSs, 196 (53.8%) were dinucleotides repeats, 42 were tri- and 91 were tetranucleotide repeats (11.5% and 25.0%, respectively; for a more detailed description of the results of this search, see BECKMANN and WEBER 1992).

Table 1 lists locus names and mnemonics for these sequences and locus symbols. The latter were designated following the mouse (HILLYARD *et al.* 1991;

-	
щ	
B	
◄	
F	

sets
primer
134
the
and
mes
noso
hron
toc
gned
assi
loci
g rat
ining
onta
iteo
atell
Cros
i mi
htee
l eig
and
dred
hun
One

						PCR primer	1	1
Locus symbol	Chr	Locus name	Reference	Mneomonic	Name	Sequences ^a	Repeat sequences	Size (bp) ^b
A2M	4	α2-Macroglobulin, liver	1, 2	RATA2MAC	R76	TCACGTGTGTTCTCCAGGATCC	(AG)30	189
A2UG	Ś	a-2U globulin	z	M24108	R44	ATGTTCCCTGATGTCCCTTC AAACCATCCCACCTGAAAC	(GTG)12	226
				M24109	R67	ACAGAATCCAGCCTCATG	(GTG)3, (GTG)5, (GTC)4_(GTG)5	220
ABP	10	Androgen-binding protein	1, 3	RATABPG	R56	CGCTGGGGGGGGGGGGGGGGGGG	(GT)22	95
ACE	10	Angiotensin I converting enzyme	1	MMACED	Mace	AGGUIIGGAUGUGUGUIIG ATTACCATAGAGGGGGGGGGGGAGATC	ND	QN
ACPH	8	Acyl-peptide hydrolase	Z	X14915	R90	CAGACTTTTCACCAATTTTGACAGC CCAATGCTTGTGACAATATCC	(GA)22	159
ACRM	17	Acetylcholine receptor, m3 muscarinic	1	RATACHRMC	R103	CATTTCTGAAACGTTGTTTTCCTC AGGAAATTAAGAGAAGTTGGGACT TATCCTCTTTTCCCAACTTA	(AC)18	121
ADRAIB	10	Adrenergic receptor, a-1B	z	RATADRA1B	R92	CCTCGTCGTCTCTCCTCTCCT	(CTC)7	121
ADRB2	18	Adrenergic receptor, β -2	1	RATADBC	R30	TAGGTTTTTAAGCTGCAAGTGAG CTCTACAACCAAAGTGAG	(AG)10	110
AEP	10	Anion exchange protein (kidney band 3)	z	RATBAND3A	R126	TCGTATTCCTAGGTACTTCCTCCT ACTAGGTCTAGGACCTTTAGTAGAT	(TTCA)8	107
AFP	14	a-Fetoprotein	1, 4, 5	RATAFPGA	R42	CCAATGAGTAGGGATGAGAGG AGATTGCAAGGGAAAGG	(AG)28, (AG)32, (ACAG)5	455
					R43	AGCATAGCAGTGCATTCGTG AAGCATAGCAGTGCATTCGTG	(GT)23	151
AGT	61	Angiotensinogen	9	RATANGAI	R60	TATGTAACTCAACGCCAGCC	(T)28	78
ALB	14	Serum albumin	1, 5, 7, 8	RATALBZA	R40	TTTTCGTAGTAACGGAAGCC TAATCTCACGGAAGCC	(TTA)14	135
AMPP	4	Amplicon, Py-induced	Z	RATAMPL	R105	CCCTCTAAGGTCAGCAAGGT	(TC)27	149
APOC3	80	Apolipoprotein C-III	Z	RATAPOA02	R102	GATTTGAAGCGATTGTCCAT	(GT)27	130
AR	X	Androgen receptor	Z	RATANDREC	R47	GLCLAUCI COUCAUAUCAU GCACCATGCAGCATCTTCTTCAG	(AGC)11	106
ASGR	10	Asialoglycoprotein receptor	1	RATRHLI	R 10	CIGCIGCCTTTTTAGACCTG CCCAGCCTTTTTAGACCTG	(GT)19	158
BSIS	I	Brain specific identifier sequence	z	RATRSIDC	R 151	CACCOTTCCCACTTTATA CACCCATTCCCACTTTATA GTTACCAATTCCTCA-	(CATA)6	142
CALM3	I	Calmodulin III	z	RATCAMIII	R94	GCTCACTTGCTTCCTTCTACC	(CCCT)9	159
CAT	س ا	Catalase, liver	I	RATCATL	R29	GCAACAACAGAAAAAO I GGAA CTTATGTTACCTCACAGGCCTGG GGCTGGGCCATCTTTATAATC	(AC)15, (AC)11, (CA)24	253
CBPI	x	Calcium binding protein, intestinal, vitamin D dependent	z	RATCALBIV	R80	CTGAGCTACAGCCACAATCC TGAGCAGGATGTAAAGTGAATAAG	(AC)21, (AG)21	110

Rat Gene Mapping Using STMS

nued
•3
പ്പ
Ţ
_
Э
B
P
F

						PCR primer	ſ	ċ
Locus symbol	Chr	Locus name	Reference	Mneomonic Nar	ne	Sequences ^a	Kepeat sequences	otze (bp)
				RATCALBD9	R96	GAGCTACAGCCACCAATCCAA	(AC)25, (AG)23,	211
CEAR	I	Carcinoembryonic antigen related protein	Z	RATCGM4AA	R100	TTGTAGGGCTGAAAACACTAAAG	(ACC)17 (ACC)17	192
		(CGM4)			000	GTGAACTGTGGGGTTGACAATAAT	96(LU)	001
CKB	9	Creatine kinase, brain	1	KALUNDK	K 99	CTAGGTGAAGTGACAGGCCA	07/10)	120
					R232	TCTCACCGTCAATACCTTACTAATA	(AG)7, (AG)5,	171
CPA	4	Carboxupentidase A2	z	M23718	R 31	TGCTTTGCTTCTCAATCTGC	(AG)20 (CTT)6. (CTTT)5.	201
	-					GTGACACTGGCTTGATTAGTCC	(CCTT)7,	
							(CCTT)6	
CPB	7	Carboxypeptidase B	1	RATCARBO8	R132	GGTGCTAGTAGACAATAAGATA- GAT	(ATAG)13	145
						TTCATGAGTTTTCACTGTTTGC		
CRYG	0	γ -Crystaline	1, 9, 10	RATCRYG	R27	CTTCACAAGAAGCATACACCTG ACCACAATTTAACATCCTCCTC	(AC)18	170
					R28	CCCAGAATATGTATTTTTTCAAGC	(TTC)20	321
CSPM02	11	Cell surface protein (MRC OX-2)	1	RATMRCOX2	R107	CACTTTGAGGCCATTCTGAA	(TC)39	186
	l					CCTTCTCTTGTGAAAAAAAAGTC		
CSNA	14	α-Casein	1	RATCASAG1	R101	ACTTGATTACACACACAAACACAGA	(AC)23	126
CTRR	01	Chumotrunsin R	Z	RATCTRPB	R135	CAGTGACCCCCCACTGTT	(ATTT)	118
			i			GTGTGTCATAAGAGAGCTA-		
	-	C L D160L/2	=	D A TCVAED A	D 97	VALUE VCCAACACACATAACACAA		OK
UTPBE	1	Cytocurome raduule	11	VICTINIAN	1CN	CAATACACOUSI CACAGAAC	c(IDVD)	C e
CYPE	I	Cytochrome P450e	1, 11	RATCY45E1	R136	AGGAAAGCATATAGAACACGC	(CA)19	81
			2			TTTACTTACTAGGGCATGGGAT		011
DBPCEP	1	DNA binding protein C/ep	Z	KAIUEBF	K 90	CGGTACTCGTTGCTGTTCTT	(000)	211
ELAI	7	Elastase 1	Z	RATELAII	R116	ACCGTGTTTACCTATCTATGCACTC	(GT)24	115
		- - -	•			GCAAGTTGTCCCCTGACC		i
EN02	4	Enolase 2	-	KA I EN3	KIY	AAGAAAUUI IGGGIUCAGG TCAACAGGGGGCAGTAAGAAG	(AAAC)0	1/1
					R20	AACCTCCTTCTCCCTCACC	(GT)21	120
		:	:			CCCCTGTCATCCTGCTTTAG		
FABPI	4	Fatty acid binding protein, liver	Z	RATFABPLG	R122	TCCTTGATGATTTCTCATTGTG TTATGCCTCACATGTGTGAGAC	(GT)24] 44
FGA	2	Fibrinogen, α	12	RATFBA5E	R123	CGTGTGGAAATACTTACAAGCA	(TTTA)10	116
FCC	~	Fibrinogen ~	12	RATFIBG2	RI	CIGCAGACIGATTIGCICATAA CAGCAACGACAAAAATGTCC	(GT)21	136
	1	- (Q	ſ			ATCTCCCCAACTGTCAAATG		
				RATFBG5E	R14	CAGTAAGTGCTCTTCAGAAGCC TCTACTCTCTCCCACAAAACC	(GA)32	138
FST	2	Follistatin	z	RATFOL1	R2	CCAGAGCCTTCACTTACACG	(CA)34	170

					R239	CCTCCTCCAGGCCTTCA	(AC)34	182
GCK	14	Glucokinase	z	RATGLUKA	R130	GAGGAACATCCACT LCACTCC AAACAGATTGTGGTAACGTGGTA	(GT)16	111
НЭ	01	Growth hormone	1, 13	RATGHGP	R3	CGTTTTATAGCCAAGTICATT ATGCGAGGGAACAAGTCTTC	(GT)31	157
GJAI	18	Cap junction protein, heart (connexin 43)	Z	RATCONN	R98	CACATGTTTACTTTCTCAAGCATTTG CACATGTTTACTTTCTAAGCATTTG	(AG)7, (AG)5,	148
GLUTB	2	Glucose transporter, brain	14	RATGTG3	R25	CTTAGGTCAGCTGGTCGCTAG	(AC)21	128
GRL	18	Glucocorticoid receptor	1, 15	RATGCR	R36	GATTTCTCGAAAGGCTCCAC	(AGC)19	125
HEOXG	61	Heme oxygenase	I	RATHOXA	R117	GACAGTGAAACGGCTTTGG CCACCACTTGGCTTCTAT	(TCC)8	161
HHITTS	17	Testis-specific histone, H1t and H4t	Z	RATH1TH4T	R115	CAGAGTGAAGACATCCAGGG CATGGTTGATCAATGTAAGTTCA	(AC)27	159
НР	61	Haptoglobin	Z	RATHPA3	R114	GGGGAAGACTCTTGGTAGTAAAG GTACAGGAACACTGCCCTTG	(GT)28	156
HTRIA	2	5-Hydroxytryptamine-1a receptor	Z	RAT5HT1A	R125	AATCAAGTGCAAGTTCTGCC AATCAAGTGCAAGTTCTGCC	(AGG)5, (AGG)3	165
IGFI	7	Insulin-like growth factor I	z	RATGFILI	R129	GCCAGCTGGTATTATTTGGA CACCAGCTGGTATTATTTGGA	(AC)10, (AC)15	203
IGF2	I	Insulin-like growth factor II	z	RATRIGF	R152	TACCCACACGTACATGCACA CAATCTCCTTCCAATGCACA	(AC)21	137
IGFBBP	14	Insulin-like growth factor-binding protein	I	RATIGFBP3	R113	CAGCAGCTGGCTATACCTTG CAGCAGCTGGCTATACCTTG CACAAATCTCTCAAACCTTG	(AG)21	154
IGHE	9	(105-107.5) Ig heavy chain, epsilon	1, 16, 17	RATIGCA	R54	GTTGTTCTTCCATCTAGC	(CA)23	105
					R63	TTAAGACT1GG1GGCCUGAG CTTCCCTACCTTCTACAACACTAAG	(CA)22	147
11.6	4	Interleukin 6	18	RATILG6	R88	TAAACCAAAGAGCATGATGAAG AAGTGCTTTTTGGCTGAATG	(GT)26	120
INHA	6	Inhibin. œ-subunit	z	RATINHBABI	R 112	TATGCATCTTAGCTGGGCTG GCATTCTGTCCTCGTGACAA	(TG)28	123
QN	ŝ	Isovaleryl-CoA dehvdrogenase	61	RATISCOAD	R53	AAGCATACAACCCACCACAC GAAGCCTAAAATTCGGTCC	(A)20	133
						AGGGCGCAGACACTGTTAC		
KAL	I	Kallikrein, renal	I	RATKALA	K 33	TCACTCICATTAACTAGGAATGC ACTGTTGGGTAACAAAGTTATGG	(C1)32	124
KCPVD	4	K ⁺ channel protein, voltage dependent	Z	RATCKIA	R17	AACCAAGCATTCTTTCTAGCTG AGGTCAGCGTTATCACTTACATC	(AAAC)5	125
LALBA	~	lpha-Lactalbumin	Z	RATALAC	R77	CCAGCACTTAACCACTGAGC	(GT)25	179
LCA	13	Leukocyte common antigen	15	RATLCAG2	R52	UGUATAAGTAAGUAGAULUTGTG TACAGAGGCAAGCTCCAGGAC TETTTCTAATCCATAGGAAGTCC	(AAAC)8	171
LSN LSN	7	Leukosianin	1	RATLEUKOS	R119		(GATG)7	118
MBPA	16	Leukostanur-relateu Mannose-binding protein (serum) A		RATMABPA2	R108	ACCTACACGGACACATGGTG	(AC)23	123
MDH2	12	Malate dehydrogenase, mitochondrial	Z	RATMDHR	R120	GCGAGGACTTTGTGAGAGAAC	(CAG)7	92
MTIPA	<u> </u>	Metallothionein-1 pseudogene a	Z	RATMTIPA	R231	TCTAATCGAATCTGATCTGATGCCC GGGCTCTATAGATGGAGGGCTTT- TAT	(AAAT)5	155

Continued	
TABLE 1-	

						PCR primer	"	č
Locus symbol	Chr	Locus name	Reference	Mneomonic Nan	ц	Sequences ^a	kepeat sequences	bp) ^b
MTIPB	7	Metallothionein-1 pseudogene b	Z	RATMT1PB	R106	GGTCTCTATGGGTACCTGCA	(AC)22	132
MYC	7	c-myc Oncogene	20, 21	RATMYC	R51	GGGAGTAAAAGAGTGCATTCC TACCCCAATCTCAACCAC	(AC)26	127
					R75	CTAGTCCGACCAGCGTCAC	(AC)26	155
MYCS	X	s-mvc Protein	Z	RATMYCS	R160	GTACCCCAATCCTGAACCAC TGGGGAAGTTTGGTTCTTTTG	(AC)16	111
	:		. .		J A	CTATGCAGTTTTCTCAGAAGCTAA		
MYHSE	10	Myosin heavy chain, embryonic skeletal muscle	1	KALMHCG	Кb	ICATUTGGTGGGGGGCAUATAAU GATGAACCAGGACATGGAAG	(A.I.C)12	150
WYLCIV	8	Myosin light chain, alkari, cardiac	Z	RATMLCV1	R109	CTTTACCTGTCTGAGGCTGG	(TG)21	123
C IAM	-	ventricles Mvosin licht chain muscle 9		RATMVL2G	R161	GACAGAGGCCACTGCTCA GACATGGTGAGTGAAGACCC	(AC)99	104
	4		ı			TGAGGCTATCCTGAGCTAACTC		
NGFI	18	Nerve growth factor-induced gene	Z	RATNGFIA	R18	CAGTTCCTCGGTGCTGC TGAGGATTGAAGCGCTG	(AGC)9	128
NGFR	10	Nerve growth factor receptor, fast	1	RATNGFRR	R7	ACCCCACAATCCAACACTATAC GCAGGATCTAGTCTCAGCCC	(AC)23	127
NPY	4	Neuropeptide Y	z	RATNPYI	R 12	AGGGAGTGGCAGCATTTAG	(GA)28, (AAAT)7	135
				RATNPY2	R1 3	GAGATAGTTCAGAAGAAACUCATG TCAGAAAAATTTAA-	(AC)14. (AG)11.	162
						ATTGTATCTGTG	(GA)12, (AG)25	
	9		-	0123014	95C	CCATATGCAAGTGTGGGGTATC		711
OLF	97	Protein oir-a (oiractory specific G)	-	01/07W	nnu	A T CACACACTGTGTGTATAAAACC	(JVC)	111
P9KA	0	Protein 9Ka	Z	RATP9KA	R8	GATGAGATTCTGGTACGGAG	(GT)40, (ATCT)16	211
	•		ç			TTTTCAGTTTTCATTCTTGTGC		901
PBPC2	-1	Prostatic binding protein, C2	77	KATPBPG	N 50	ICTGACCATACT ICTACT TICC AATTTCTGCCTCTTTTTCTCAG	(AUGA)12	961
PCK	£	Phosphoenolpyruvate carboxykinase	I	RATPECG6	R 45	CTTCACGTTAGCTGTAGCAGTTAG	(TGCG)5	194
					R57	CAAAGGTTTTAAATACATTGGAGA AGCTAAAGTGCACAGAAAACATAC	(TGCG)5	127
						AATACATTGGAGACAATGAGACAG		
PERF	7	Peripherin	Z	RATPER	R159	AGCCTCAATCTGCCTAGCTC TGACTCTTGACAATGGCACA	(GT)19	133
PFKFB	X	6-Phosphofructo-2-kinase/fructo-2-kinase/	1, 23	RATPKFBP1	R 87	AGTTCTTTTGCTTCAGGGCT	(TG)28	139
PFLG	7	frucotose-2,6-bisphosphate Profilagrin	z	RATFILAG	R 124	AGGGCTGTGGGTGGTGCTAC GAAACCGAGGACGAGTCC	(AGC)7	186
i i		D				ATCCTGTTCATGGCGAGC		
PKATA	%	Perokimak 3-keto acryl-CoA thiolase A	1	RATPKATA2	R46	GGTATGAGATCAATGCTGCC GGTGCATTTGGACATTTGTAG	(AC)20	131
PKC	I	Protein kinase C type I	1	RATPKCI	R158	AGAACCCTTCACTGCTCACC	(AC)26	147
PKCS	11	Protein F1 (substrate of protein kinase C)	z	RATFIPROT	R 121	TTACAGTTGCTGCTAACTGCC	(AGGG)5	137
	•					CCCTCTCCACCTCTTTTCTG		
PKL	0	Pyruvate kinase, L-type	24	RATPKLG	R34	CCTTTCTATGAGGATGTTCCC CACCCCAGTACAGAGGAG	(AC)20	133

T. Serikawa et al.

					R35	GTGGGATATTTTAACCTGCAGAG	(GT)24	174
					R48	CGTTTCCCTTTCTATGAGG	(CT)13	159
					R49	AAGGCTGGACACCACACAC TTCTTCCTCAGAGTTGTGGG	(GT)24	150
PLANH	12	Plasminogen activator inhibitor	z	M24067	R137	GGGATCTTGCCAAGGTGA	(GA)34, (AG)5	196
PND	Ŀ	Pronatriodilatin (atrial natriuretic factor)	Z	RATANF	R39	TCCACAACCTTGATGTATTGGA	(GT)27	160
					R59	GTTGAGGGCCATAGTGTGAC TGTCACCAGTTCCTTGCG	(GT)27	193
РРҮ	01	Pancreatic polynentide	Z	M27450	R65	TGGAGGCAGGCATGTTG CACACTGACCAGGCCTAGG	(GT)22, (AG)24	153
PRI	17	Prolaction	1 13	RATPRISDI	R23	TGTCAGCTCAGCTGCTTTG TGTGAACTTGTGTGCGCTGTG	(TG)15	134
	; ;			ватры	DIG	CCCACATACACATTCTTACACATAC	(TC)95	189
LALA	N	rrotacun receptor	Z	VALFALA		AAGCATGAAGCAAGTTGGAG		
PRPS2	X	Phosphoribosylpyrophosphate synthetase	Z	X16555	R91	GTTTTCCCGCTTCACCAG ACAACCACAAAACCCACCC	(AGC)4, (AGC)13	159
					R236	CCTTCCCTAGATCCTGCT	(AGC)4, (AGC)13	237
ЬТНLН	4	Parathyroid hormone-like peptide	25	RATPLPAI	R153	GGGAACCAGTTACACACAC GGGAACCAGTTACACACAC	(AC)24	93
PTP	ŝ	Protein-tyrosine-phosphatase	z	RATPTPXA	R156	AATACTTACTCAGCAGGGGGG	(CT)24	129
RBP2	~ 0	Retinol-binding protein II, cellular	Z	RATCRBP21	R97	CGTTTACTTCCTGAGCT	(GT)24	126
REN	13	Renin	1, 26	RATRENAA	R256	GAICAUAAAAGUUUIAIGGUIAI AAGAAAACACTGTCCTCCACTG CCCTATCCTACTATCATTA	(CT)26, (AC)27	199
						GAGA		
RPL35P	17	Ribosomal protein L35a-related pseudogene	Z	RATL35AP4	R 118	AAGTGCTTCTGTACATGCAGC	(AAC)10, (AAC)5	118
SCN2A	ŝ	Sodium channel II, α	1, 2	RATSCPIIR	R69	TTCAGGTATGATTGGGGGAAC	(CT)29	123
SECR	I	Secretin	Z	RATSECR	R 84	ACCATGGAGCCTCTACTGC	(CTG)7	132
Tahs	I	Steroid hydroxylase, hepatic	Z	RATCYP2A1	R 81	GICCCGICCCGGIGICII CGGGTTCTCTAATACTGGTTAAA	(CA)14, [AA(CA)6]	200
SMST	11	Somatostatin	5	RATSOM141	R22	CAAACTAGCTGTCCAAAGACAAG TTTCCAGGTGCCAAATGTAG	4, (CA)6, (CA)6 (GT)25, (TGTC)6	156
900	*	Citherana D recentor	1 97	D A TSPR	215	TATATTGTGACAAAAGAAAGGCAC ATCTCCAACAAGGTCCTGC	(CT)93	116
ын	4	substance r receptor	1, 21	N I CI NI	CIV.	GACGTTATCCATTTTGGGG	(11)73	011
SVS2P	ŝ	Seminal vesicle secretion II protein	1	RATSVPIIA	R142	ATGTGTGGATTACTCACCAAGTG CCACCAATTGAACAGAAAGG	(CCTT)12	127
SYB2	10	Synaptobrevin 2 (vesicle-associated mem-	1	RATVAMPB	R144		(GA)24	101
TAT	61	oratie protein, v AMF-2) Tyrosine aminotransferase	24	X16379	R 89	AGUCARTOCACTORIA	(CTTT)18	324
TGFA	4	Transforming growth factor, α	Z	RATTGFAA	R148	GCTGGAGGAGGAGGAGCAAC	(AC)6, (AC)12	113
THYI	80	Thymus cell antigen-1	Z	RATTHYIG	R149	AAGTTACAGCTAGAGGGGGGGGGG TTGCAAGAAAACCCT TCTACCACCTTCAATTTCCATC	(AC)15, (TC)35	227

Rat Gene Mapping Using STMS

- 5
- B
- 7
- 42
- 8
0
٢Ъ
ب
_
H
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
<
പ

Size	(dq)	220	156	125	224	300	152	185	147	111		169	123	102	118	104	163	
Denest	sequences	(AG)12, (GA)4, (GA)5, (TTG)7	(AC)13, (AC)14	(AC)46	(TG)12	(AC)20, (AC)24	(AG)27	(TG)27	(AAAG)12	(GT)37		(GA)10	(CT)27	(CA)17	(CA)19	(CA)10-20	(CA)21	
PCR primer	Sequences ^a	AATCACTGGATGCTGGAAGA AGGGAGCAGCAACTACTAAAGATACA	AGCAAGTAGACCACCCACAC TAACCTTCTGCCAAACACTCA	AGGAAATGGGTTTCAGTTCC CAGGATTCTGTGGCAATCTG	GAGACTTCTGTGTGCGTGCATGTTTG AGGAGTGAGGAAGGAAGGAAGA	TCCCCACGATGTTAACTGAG AGTCTCCCAATCGTTTCACC	AGACCAAGACCACAACTCCA GGTACTGGGTGATGGGTTTC	ACCTAAGGCTCTGTCTCAAA	GTGGAAAGCCTTCTGTTCAA	AGAATTCAATAATAACAGTCCCACT TGCCCGTCTCTGTTACTCAT	CAAGAACCCTGAGGCAATAA	TTGGTGGTGCTGCATCTATTG CTTAAGGCAATATAGGAAACTAC	TTCGGACTCAGTCTTGATTTGG GCCTTCCTAGAATACTTGGT	GAAATCTGAGTCGGGATGGTAG	CAGCAAACTGCCAGTCAGTG GGACTCTGGTCTCCGATTTC GCGATTCGGTTGAGTTCTAC	TCATCCAGTTGAGCAGGAAGC	AGAULCIGGTAAAULGUUUU GGTTGGACAGGACATCTG GCCATTATCATTCATCGGTC	
		R154	R150	R145	R146	R79	R147	R155	R138	R143		R182	<b>R</b> 191	R196	R203	R184	R214	
	Mneomonic Name	RATPSTIAA	RATTKG6	RATTNF	<b>RATRSKG5</b>	RATATROPO	RATTGDCL	RATPTRYI	RATALBA1	RATUCPA								
	erence	z	Z	Z	-	Z	Z	Z	Z	Τ	I	I	1	I	I	I	I	
	Locus name Refi	Trypsin inhibitor-like protein, pancreatic	T-kininogen	Tumor necrosis factor	Tonin	α-Tropomyosin	Asp-, Gly-, Glu- and Leu-tRNAs	Trypsin I, pancreatic	Transthyretin	l'Incounting protein		Random cloned STMS	Random cloned STMS	Random cloned STMS	Random cloned STMS	Random cloned STMS	Random cloned STMS	
		18	11	20	I	80	13	41	18	61		ν.	I	9	7	17	12	
	Locus symbol Chr.	TILP	TKG	TNF	TON	TPM	TRAGGL	TRYI	TTR	UCP		A8	2B1	D3	E5	F4	Η4	

^{*a*} Both the forward and reverse primer sequences are listed in the 5' to 3' orientation. ^{*b*} The size is based on the databases except for random cloned STMS. ND, The size is not determined.

Mnemonics are from GenBank or EMBL databases. Mnemonic for ACE is that of mouse homologue. Chr., The rat chromosome numbers were assigned by means of the somatic cell

hybrid clone panel except for underlined loci, which were determined from linkage to chromosome-assigned loci. Two PCR-products for LSN were assigned to chromosome 1 (probably the structural gene) and chromosome 12 (probably the related DNA fragment), respectively. References for chromosome-assigned loci. N, newly assigned; 1, HILBERT *et al.* 1991; 2, YASUE *et al.* 1992; 3, LEVAN *et al.* 1991; 4, GAL *et al.* 1984; 5, SZPIRER *et al.* 1984; 6, MORI *et al.* 1989; 7, COLLARD, SCHIJVEN and TULP 1982; 8, SUGIYAMA, NAGASE and YOSHIDA 1984; 9, DEN DUNNEN et al. 1987; 10, DONNER et al. 1985; 11, RAMPERSAUD and WALZ 1987; 12, MARINO, FULLER and ELDER 1986; 13, COOKE, SZPIRER and LEVAN 1986; 14, SZPIRER et al. 1990; 15, GOLDNER-SAUVÉ et al. 1991; 16, PEAR et al. 1986; 17, SCHRÖDER et al. 1980; 18, J. SZPIRER, et al. 1991; 19, SZPIRER et al. 1989; 20, SÜMECI et al. 1983; 21, WIENER et al. 1982; 22, ZHANG et al. 1988 (they assigned it to chromosome 5); 23, HILLIKER et al. 1991; 24, FURCHIGNONI-LATAUD et al. 1990; 25, C. SZPIRER, et al. 1991; 26, PRAVENEC et al. 1991; 27, MORI et al. 1992b.

## Rat Gene Mapping Using STMS

## TABLE 2

A list of 29 additional loci used for linkage analysis

Locus symbol	Locus name	Chr. (LG) ^a	Analysis	Reference
ACO1	Aconitase-1	5 (II)	Enzyme, electrophoresis	1, 2
AGT	Angiotensinogen	19	RFLP	3
AHD2	Aldehyde dehydrogenase-2	5 (II)	Enzyme, electrophoresis	2
AMYI	Amylase-1	2 ^b	Enzyme, electrophoresis	4
В	Brown	5 (II)	Coat color	2
С	Albino	1 (I)	Coat color	5
ES2	Esterase-2	19 ^b (V)	Enzyme, electrophoresis	6, 7
ES3	Esterase-3	19 ^b (V)	Enzyme, electrophoresis	6, 7
ES6	Esterase-6	8 (VII)	Enzyme, electrophoresis	8
FH	Fumarate hydratase	13 (X)	Enzyme, electrophoresis	9
GC	Group specific component	14 (VI)	Protein, electrophoresis	10
GDC1	$\alpha$ -Glycerophosphate dehydrogenase-1	86	Enzyme, electrophoresis	11
Н	Hooded	14 (VI)	Coat color	12
HAO1	Hydroxyacid oxidase-1	3 ^b (IV)	Enzyme, electrophoresis	2,13
HBB	Hemoglobin $\beta$ -chain	1 (I)	Protein, electrophoresis	14
INS 1	Insulin-1	1	RFLP	15, 16
LAP1	Leucine aminopeptidase	1 (I)	Enzyme, electrophoresis	17
MBP	Myelin basic protein	18	RFLP	18, 19
NKR	Neuromedin K receptor	2	RFLP	20
PEP3	Peptidase-3	13 (X)	Enzyme, electrophoresis	21
PG1	Urinary pepsinogen-1	(XII)	Enzyme, electrophoresis	22, 23
PGD	Phosphogluconate dehydrogenase	5	Enzyme, electrophoresis	24, 25
REN	Renin	13	RFLP	26
$\overline{RT1}$	Major histocompatbility	20 (IX)	RFLP, cell surface antigen	27, 28
SCN2A	Sodium channel II, $\alpha$	3	RFLP	19
SPAT	Serine:pyruvate aminotransferase	9	RFLP	29
SVP1	Seminal vesicule protein-1	3 ^b (IV)	Protein, electrophoresis	13, 30
TCP1	<i>t</i> -Complex	1 '	RFLP	19
ZI	Zitter	36	Behavior	13

^a Chr, Rat chromosone number; (LG), classical linkage group.

^b Newly assigned to the chromosomes from the linkage analysis in this study.

Underlined loci which contain microsatellites were typed with both RFLP and STMSs. Reference 1, ADAMS et al. 1984; 2, CRAMER, MOWERY and ADAMS 1986; 3, MORI et al. 1989; 4, MIZUNO and SUZUKI 1978; 5, FRENCH, ROBERTS and SEARLE 1971; 6, WOMACK 1973; 7, YAMADA, NIKAIDO and MATSUMOTO 1980; 8, PRAVENEC, KREN and KLIR 1987; 9, CRAMER, BLANKERT and PAUL 1985; 10, BENDER, CLEVE and GUNTHER 1981; 11, ERIKSSON et al. 1976; 12, MOUTIER, TOYAMA and CHARRIER 1973; 13, YAMADA et al. 1989; 14, BRDICKA 1968; 15, SOARES et al. 1985; 16, MORI et al. 1992a; 17, VAN ZUTPHEN et al. 1985; 18, GOLDNER-SAUVÉ et al. 1991; 19, YASUE et al. 1992; 20, MORI et al. 1992b; 21, WOMACK and CRAMER 1980; 22, CRAMER 1981; 23, HAMADA et al. 1987; 24, CARTER and PARR 1969; 25, YOSHIDA 1982; 26, PREVENEC et al. 1991; 27, LOBEL and CRAMER 1981; 28, PALM 1971; 29, MORI et al. 1992c; 30, GASSER 1972.

LYON and KIRBY 1991) or human nomenclatures (MCALPINE *et al.* 1991), when the homologous loci are known, or from the gene name as found in the data bases. The human genetic localization data were retrieved by M. CHIPPERFIELD from GDB (Genome Data Base, W. H. Welch Medical Library, Baltimore, Maryland). Six randomly cloned STMSs used in this study are also included.

**Design of primer sequence and condition of PCR analysis:** Of 172 primer sets tested, 134 amplified specific products for 118 loci and were available to map them on particular chromosomes (Table 1). More than one primer set were used for 15 loci, which were designed to analyze more than one microsatellite region or to find different polymorphic STMSs in the microsatellite region. The average length of PCR products for these loci in the strains examined was 150 base pairs with a range of 78–455.

Suitable PCR conditions for each primer set were

selected by varying  $Mg^{2+}$  concentration (1-3 mM) and annealing temperature (50°, 55° or 60°). The optimal conditions for 119 primer sets are listed in Table 3.

All STMSs yielded, upon PCR amplification, products corresponding to a single locus, with two exceptions: LSN and A2UG. Two products with different sizes were generated by the LSN primer set: the smaller product (assigned to chromosome 12 as LSNR) disappeared when the annealing temperature was changed from 55° to 60°, indicating a related fragment of the larger products, presumed to be structural gene (assigned to chromosome 1 as LSN). As for A2UG, only the shorter products were found to be polymorphic.

**Chromosomal assignment:** DNAs from 18 hybrid clones, segregating all of the individual rat chromosomes, were used as templates for PCR amplification. The presence or absence of specific PCR product in

## TABLE 3

Size polymorphism of 119 STMSs for 107 loci and the PCR conditions

		<b>.</b>	Annealing	3 6 94		
Chr.	Locus symbol	name	(°C)	Mg ⁺⁺ (mM)	No. of alleles	Length variation of the PCR-product among 8 inbred rat strains
1	BSIS	R151	50	2	2	IS, TM > ACI, BN, F344, SHR, WTC, ZI
	CALM3	R94	60	2	1	
	CEAR	R100	55	1	2	IS, SHR, WTC > ACI, BN, F344, TM, ZI
	CYPBE	R37	55	1	1	
	CYPE	R136	55	1	1	
	DBPCEP	R93	55	1.5	1	
	IGF2	R152	50	1.5	3	SHR, WTC > ACI, F344, IS, TM, $ZI > BN$
	KAL	R33	55	2	4	ACI, F344, SHR, $ZI > TM > BN$ , $IS > WTC$
	LSN	R119	60	1	3	SHR. WTC > ACL BN, F344, TM, $ZI > IS$
	MYI 2	R161	50	15	4	BN > IS > ACI SHR TM 7I > F344 WTC
	PRPC2	<b>P</b> 50	55	1.5	2	ACI SHP $\times$ TM $\times$ RN F344 IS WTC 71
	DVC	RJ0 D159	55	1.5	9	ACI, SHR $>$ IM $>$ DN, FJH, IS, WIC, ZI ACI DN E944 SHD TM 71 $>$ IS WTC
	SECD	R150	55	1	2	AGI, DN, F 544, SHK, TM, $LI > 15$ , WTC
	SECA	R04	55 55	1	1	
	SHUL	Rol D14C	35 FF	1.5	1	
	ION	<b>R</b> 140	55	1.5	2	ACI, BN, F344, SHR, 1 M, ZI > IS, W1C
2	СРВ	R132	50	1	4	F344, TM, ZI > ACI, SHR > IS > BN, WTC
	FGA	R123	55	2	3	ACI > BN, F344, TM, ZI > IS, SHR, WTC
	FGG	R1	55	1.5	3	ACI, IS, SHR, TM, WTC, ZI > F344 > BN
		R14	55	1	2	ACI, BN, F344, IS, SHR, WTC > TM, ZI
	FST	R2	60	ī	2	F344, IS, SHR, TM, $ZI > ACL, BN, WTC$
	HTRIA	R195	55	9	- 9	ACL BN IS SHR TM WTC $71 > F344$
	MTIDD	R125	55	9	2	ACI BN SUD $\sim 5944$ TM 71 $\sim 15$ WTC
	DELC	R100	55	2	1	ACI, $DN$ , $SHK > F544$ , $IM$ , $ZI > 15$ , $WIC$
	PFLG	RIZ4	55	2	1	DN FRAA IS SUD THANTS ALS ACT
	PKL	K35	55	1.5	z	BN, $F344$ , 15, 5HK, 1 M, W I C, $ZI > ACI$
		R48	55	1	2	BN, IS > ACI, F344, SHR, TM, WTC, ZI
		R49	55	1	3	ACI > IS > F344, BN, SHR, TM, WTC, ZI
	PRLR	R157	50	1	2	ACI, SHR, WTC > BN, F344, IS, TM, ZI
3	CAT	<b>R</b> 99	55	15	8	SHR > ACL BN F344 TM WTC ZL>IS
-	N/D	D58	55	1.5	ĩ	
	DCV	R35 D45	55	1	1	
	FUN	K40	55	1	1	
		R57	55	1	1	
	PTP	R156	50	1.5	1	
	SCN2A	R69	60	2	3	IS > BN, TM, WTC, ZI > ACI, F344, SHR
	SVS2P	R142	55	1.5	4	BN, TM > SHR > IS > ACI, F344, WTC, ZI
4	A2M	R76	55	1.5	3	ACI, F344, IS, SHR, TM, $ZI > WTC > BN$
	AMPP	R105	50	2	3	BN > F344, IS, SHR, TM, ZI, $WTC > ACI$
	CPA	R31	55	1.5	2	BN, F344, IS, SHR, TM, WTC, $ZI > ACI$
	ENO2	R19	55	1	ī	
	LINUL	R15 R90	55	15	6	WTC > 71 > F344 IS > ACL > BN > SHR TM
	FADDI	D 199	55	9	4	IS TM > BN F844 SHD WTC > $71$ > $ACI$
	FADE I	N122	55	2	-	13, 1M > DN, 1377, 51R, W 10 > 21 > A01
	ILO	Köö	55	z	4	ACI, $1M$ , $W I C > 15$ , $LI > F 344$ , $5RR > BN$
	KCPVD	R17	55	1	I	
	NPY	R12	55	1.5	4	SHR > ACI, IS, TM, WTC, $ZI > F344 > BN$
		R13	55	1	3	BN, TM, $ZI > F344 > ACI$ , IS, SHR, WTC
	PTHLH	R153	55	1	3	IS, TM, ZI > ACI, F344, SHR, WTC > BN
	SPR	R15	55	1.5	4	SHR > BN, F344 > IS, TM, ZI > ACI, WTC
	TGFA	R148	60	1	2	BN, F344, SHR, TM, WTC > ACI, IS, ZI
	TRY1	R155	60	2	3	BN > IS, SHR, TM, WTC, ZI > ACI, F344
5	A2UG	R44	55	1	3	ZI > ACI, BN, F344, SHR, TM > IS, WTC
		R67	55	1	1	
	GLUTB	R25	55	1.5	4	ACI, TM > F344, IS, SHR > WTC, ZI > BN
	PND	R39	55	1	2	ACI, BN, F344, SHR, TM, ZI > IS, WTC
		<b>R</b> 59	55	1.5	3	ZI > ACI, BN, F344, SHR, TM > IS, WTC
6	СКВ	<b>R</b> 00	50	1.5	5	BN > F344, $SHR$ , $TM > ACL$ , $ZI > WTC > IS$
0	ICHF	R54	55	1	9	ACL SHR. TM. $ZI > BN. F344$ . IS. WTC
	IGHE	DES	55 60	1	<u>с</u> Л	SHP > ACI TM > 18 F844 71 > PN WTC
		RUJ	00	1	4	0110 - 001, 101 - 10, 1077, 21 - 010, 010

## **TABLE 3**—Continued

Chr.	Locus symbol	Primer name	Annealing temp. (°C)	Mg ²⁺ (тм)	No. of alleles	Length variation of the PCR-product among 8 inbred rat strains
7	F7 A 1	R116	55	15	9	ACL IS WTC > BN F344 SHR TM 71
	ICE1	R110 P190	50	1.5	2	TM $\land$ ACI BN F244 IS SUD 71 WTC
	IGFI	R125 D77	55	1.5	2	1  M > AO1,  BN, F344, 15, SHR, 21, W IC
	LALDA	R//	55 EE	1 5	1	BN 71 N FRAA IS TWIN ACL SUD WTO
	MIC	K51	55	1.5	3	BN, $ZI > F344$ , 15, $IM > AU1$ , SHK, WIC
	0005	R/5	55	1.5	2	ACI, F344, SHK, TM, WTC $>$ BN, IS, ZI
	PERF	R159	55	1	3	BN, F344, WTC, ZI > ACI, SHR, TM > IS
8	ACPH	<b>R9</b> 0	55	2	4	BN > ACI > F344, SHR, TM, WTC, $ZI > IS$
	АРОСЗ	R102	55	2	3	F344, IS, TM, ZI > BN, SHR, WTC > ACI
	MYLC IV	R109	60	1	4	F344, IS, SHR, WTC > BN > TM, ZI > ACI
	PKATA	R46	55	1	2	ACI, BN, IS, WTC, ZI > F344, SHR, TM
	RBP2	R97	55	1	2	IS, ZI > ACI, BN, F344, SHR, TM, WTC
	THY1	R149	55	2	2	ACI, BN, IS, SHR, WTC, ZI > F344, TM
	ТРМ	R79	55	2	3	IS > ACI, BN, F344, TM, WTC, ZI > SHR
9	CRYG	R27	55	1	3	ACI, BN, F344, TM > IS, ZI > SHR, WTC
		R28	55	1	3	IS > ACI, BN, TM > F344, SHR, WTC, ZI
	INHA	R112	55	2	1	
10	ABP	R56	55	1	3	ACI, BN, IS, $ZI > F344$ , SHR, $WTC > TM$
	ADRA1B	R92	55	1	2	IS > ACI, BN, F344, SHR, TM, WTC, ZI
	AEP	R126	55	2	3	ACI, BN, SHR, TM, ZI > IS, WTC > $F344$
	ASGR	R10	55	1	2	TM > ACI, BN, F344, IS, SHR, WTC, ZI
	GH	R3	55	1.5	5	BN, IS, SHR > F344, WTC > ZI > TM > ACI
	MYHSE	R6	55	1.5	3	SHR > F344, TM, WTC > ACI, BN, IS, ZI
	NGFR	R7	55	1.5	3	ZI > BN, F344, IS, SHR, TM, WTC > ACI
	PPY	R65	55	1.5	2	ACI, BN, IS, ZI > F344, SHR, TM, WTC
	SYB2	R144	50	1	3	ACI, $BN > F344$ , $SHR$ , $TM$ , $WTC$ , $ZI > IS$
11	CSPMO2	R107	55	1	2	ACI, IS > BN, F344, SHR, TM, WTC, ZI
	PKCS	R121	50	1	1	
	SMST	R22	50	2	2	F344, IS, SHR, TM, WTC, ZI > BN, ACI
	TKG	R150	50	2	2	SHR, TM > ACI, BN, F344, IS, WTC, ZI
12	MDH2	R120	55	1.5	2	ACI, F344, SHR, IS, TM, WTC, ZI > BN
	PLANH	R137	55	1.5	3	BN, SHR, ZI > ACI, IS, TM, WTC > F344
13	LCA	R52	55	1	1	
	TRAGGL	R147	55	1	1	
14	AFP	R43	55	1.5	5	TM > BN, $ZI > ACI$ , $WTC > IS > F344$ , $SHR$
	ALB	R40	55	2	3	ACI, F344, TM, WTC > IS, SHR > BN, ZI
	CSNA	R101	55	1	4	ACI, F344, WTC > SHR > BN, IS, $ZI > TM$
	GCK	R130	55	2	2	F344 > ACI, BN, IS, SHR, TM, WTC, ZI
	IGFBP	R113	55	2	3	BN, SHR > F344, IS, WTC > ACI, TM, ZI
16	MBPA	R108	55	1.5	3	IS, WTC > ACI, F344, SHR, TM, ZI > BN
17	ACRM	R103	50	1.5	4	BN, F344, TM > WTC > ACI, SHR, ZI > 1S
	HH1TTS	<b>R1</b> 15	55	2	2	ACI, BN, F344, SHR, TM, WTC, ZI > IS
	PRL	R23	55	1	2	BN, WTC > ACI, F344, IS, SHR, TM, ZI
	RPL35P	R118	60	1	2	ACI, BN, F344, IS, SHR, WTC, ZI > TM
18	ADRB2	R30	50	2	3	ACI, BN, TM, ZI > F344, SHR > IS, WTC
	GJA 1	R98	55	2	4	ACI, F344, WTC > SHR, ZI > BN, IS > TM
	GRL	R36	55	1	1	
	NGFI	<b>R</b> 18	55	1	1	
	OLF	R66	55	1	2	TM, ZI > ACI, BN, F344, IS, SHR, WTC
	TILP	R154	50	1.5	3	BN, IS, SHR, WTC > ACI, ZI > F344, TM
	TTR	R138	50	1.5	4	ACI, IS, SHR > TM > ZI > BN, F344, WTC

### TABLE 3—Continued

Chr.	Locus symbol	Primer name	Annealing temp. (°C)	Мg ²⁺ (тм)	No. of alleles	Length variation of the PCR-product among 8 inbred rat strains
19	AGT	R60	55	3	1	
	CTRB	R135	55	1.5	2	BN, IS, SHR, TM, WTC, ZI > ACI, F344
	HEOXG	R117	55	2	2	ACI, $F344 > BN$ , IS, SHR, TM, WTC, ZI
	HP	R114	55	1	3	IS > ACI, BN, SHR, TM, WTC, $ZI > F344$
	TAT	R89	55	1.5	3	F344, ZI > ACI, IS > BN, SHR, TM, WTC
	UCP	R143	55	1	3	BN, F344, IS, SHR, TM > ACI, ZI > WTC
20	TNF	R145	55	1.5	4	WTC > ACI, IS, ZI > BN, F344, TM > SHR
X	AR	R47	55	1	2	ACI, BN, F344, SHR, TM, ZI > IS, WTC
	CBPI	<b>R80</b>	60	2	2	BN, F344, IS, SHR, TM, WTC > ACI, ZI
		<b>R</b> 96	55	1.5	2	BN, F344, IS, SHR, TM, WTC > ACI, ZI
	MYCS	R160	50	2	2	SHR, WTC > ACI, BN, F344, IS, TM, ZI
	PFKFB	<b>R</b> 87	55	1	3	WTC > ACI, BN, F344, IS, TM, $ZI$ > SHR
	PRPS2	R91	55	1.5	4	F344, TM, ZI > IS, SHR, WTC > $BN > ACI$

Chr., Rat chromosome number. Length variation was resolved by analysis using 4% agarose gel electrophoresis.

hybrid clones was examined and compared with that of a reference panel for segregation of rat chromosomes (YASUE, SERIKAWA and YAMADA 1991). Although, in some cases, DNA segments were amplified also in myeloma Sp2/O-Ag14 (background DNA), determination of the presence or absence of rat specific DNA segments was usually possible from the length difference. However, chromosomal assignments for primers R28 (for CRYG locus), R29 (CAT), R50 (PBPC2), R63 (IGHE), R155 (TRY1) and R231 (MT1PA) were not possible, and they were, therefore, assigned by linkage analysis. For eight genes assigned to chromosomes 16, 18 and 20, 100% concordance was not apparent. Rat chromosome 16 could not be cytogenetically visualized in clone YS03, even though the specific PCR products were generated in this clone. Likewise, rat chromosomes 20, 18 and 16 could also not be detected in clones YS11, YS15 and YS18, respectively, but their specific DNA products were generated in each clone. This discordance was also seen in a previous study using the same clones and it is considered to be due to the translocation of rat chromosome segments to mouse chromosomes (YA-SUE, SERIKAWA and YAMADA 1991; YASUE et al. 1992). DNA segments generated from the remaining primers were assigned to chromosomes with 100% concordance (Table 1).

**Polymorphism:** Polymorphic differences, presumably due to variation in length of the microsatellite regions, were examined among eight inbred strains of rats, for 119 STMSs loci (Table 3). Of these, 81.5% (97/119) were found to manifest size variability between the eight strains tested. The allelic state of these loci is summarized in Table 4, which also shows the influence of motif size. Only two of the mononucleotide repeats were tested, and neither was found to be polymorphic. Polymorphic repeat sequences were de-

tected for all other repeats (see Table 4 for their distribution).

Linkage analysis: Linkage analysis of polymorphic microsatellite loci was performed with data from seven backcrosses, in which 29 other polymorphic loci were also typed (Table 2), and the WKY  $\times$  SHRSP F₂ populations (HILBERT et al. 1991). Three loci AGT, REN and SCN2A were analyzed with both STMSs and RFLPs, in which discrepancy between the typing data was not found. Recombination frequencies were estimated independently in each of the crosses. As no significant differences in the orders of loci were found when results from the different crosses were compared, the data were then combined. Initially, linkage groups were determined without taking account of chromosomal assignments. Two markers were assigned to the same linkage group when their pairwise LOD score was more than 3. Only one discrepancy was found between chromosomal assignments obtained by this criterion and the results of the somatic cell hybrids: although the ACE locus exhibited a LOD score of 3.1 with a single marker on chromosome 5 (PGD), it was assigned to chromosome 10 from the somatic cell hybrid panel. ACE also exhibited close linkage (LOD score >5) to six other markers assigned to chromosome 10, which confirmed the results of the somatic cell hybrid panel. In particular, the maximum LOD score was 26.9 between ACE and GH, and 23.0 between ACE and NGFR.

Multipoint analyses were performed to determine the best supported order within each linkage group, and to estimate recombination fractions between adjacent markers (Table 5). A subset of markers which did not vary within odds 100:1 of the best supported order were chosen as anchor points (underlined loci in the table) for the genetic map.

 TABLE 4

 Distribution of STMSs by alleles and motif repeat size

	No. of alleles ^a								
Motif type	1	2	3	4	5	6	Total		
Mono	2	0	0	0	0	0	2		
Di	6	27	27	13	3	1	77		
Tri	6	7	4	1	0	0	18		
Tetra	8	3	5	3	0	0	19		
Di + tri	0	0	1	0	0	0	1		
Di + tetra	0	1	0	1	0	0	2		
Total	22	38	37	18	3	1	119		

^a The number of STMS alleles was resolved in a comparison among eight different inbred rat strains on 4% agarose gel electrophoresis.

#### DISCUSSION

A substantial number of candidate genetic markers were extracted from public sequence data bases for development of microsatellite polymorphism in the rat genome, sufficient to provide a good starting point for the elaboration of a rat genetic map. Although these data bases contain an inherent bias in favor of protein-coding sequences, this bias did not affect the search for microsatellites, as a large number of candidates were found. Microsatellites of 20 bases or more of uninterrupted repeats (WEBER 1990) were PCR-formatted and analyzed in this study. The following three aspects were examined: (i) the informativeness of each candidate marker, (ii) its chromosomal assignment using a panel of rat × mouse somatic hybrids, and (iii) the generation of a linkage map.

To monitor the informativeness of each of these candidate genetic markers, we determined the number of alleles per STMS that could be resolved in a comparison among eight different rat inbred strains on agarose gel electrophoresis. (It should be noted that due to the separation method used, the number of microsatellite alleles determined in our study is certainly likely to be underestimated, since minor size differences would not have been noticed.) As expected, STMSs were found to be highly polymorphic in rats just as was previously demonstrated for mice (LOVE et al. 1990) and humans (e.g., WEBER 1990), and that variability is dependent on the nature of the microsatellite (i.e., motif: Table 4 or length and motif: Table 6). None of the mononucleotide repeats tested in this study proved to be polymorphic. STMSs belonging to the "AC" motif family were especially abundant and almost all were polymorphic, with as many as six alleles. Among the other dinucleotide repeats, those based on the motif "AG" were also highly polymorphic, although they were found less frequently than "AC." In addition, tri- and tetranucleotides repeats were also observed to be polymorphic. These represent a convenient source of genetic markers,

since they are common ( $\sim$ 30% of all microsatellites) and since the larger variations in allele sizes can simplify their interpretation.

WEBER (1990) previously reported that the number of alleles of "AC" STMSs in humans is correlated with the number of bases in the repeat. We therefore examined the potential variability of each rat STMS as a function of total repeat size (see Table 6). This suggested that dinucleotides in rats tend to be variable once a threshold size of at least 20 bp has been reached. This observation can also be extended to other repeat motifs. Yet, the threshold is not the same for all motifs, *e.g.*, tri- and tetranucleotides seem to require a longer stretch of uninterrupted repeats than dinucleotides, more than 30 and 40 bp, respectively. This suggests that STMSs which contain more than 10 repeats of each motif (di-, tri- or tetranucleotides) have a high probability of being polymorphic.

Linkage analysis relies on the use of polymorphic markers, in contrast to interspecific somatic cell hybrid panels. All sequence tagged sites, whether polymorphic or not, can, theoretically at least, be chromosome assigned, provided the rat and mouse homologous PCR-products yield distinct bands in the gel. In this manner, 112 microsatellite-containing loci were assigned to a particular chromosome with one or more loci assigned to all chromosomes except for 15 and Y (Table 1). The chromosome assignments, as determined by the use of interspecific somatic hybrids, were confirmed and extended by linkage analyses. The remaining six loci (see underlined chromosome numbers in Table 1), for which it was difficult to determine the chromosome by the clone panel, were also assigned to specific chromosomes from the linkage data. Only one of the markers showing a two-point LOD score superior to three  $(Z_{max} = 3.14)$  was discordant, while about half of the 35 showing values intermediate to 2 and 3 proved to be erroneous (data not shown). Multipoint analyses allowed ordering of the linked markers on this map. Marker sets whose orders remained unaltered within odds of 100:1 while descending through the likelihood of possible orders were chosen to provide a framework of anchor points (underlined loci in Table 5) for future mapping. Sexaveraged map distances were calculated. It should be pointed out, though, that as a result of the nature of the crosses analyzed (seven backcrosses with the  $F_1$  as female parent, and two F2 crosses), map distances are likely to be biased toward female map distances. In the current map, summing distances between all linked markers on all 24 linkage groups and adding 10 cM for each singleton, and assuming an additional 10 cM coverage at the extremities, one can already account roughly between 50 and 70% coverage of the 2400 cM rat genetic map.

Altogether 24 linkage groups were identified, 10

## TABLE 5

## Order of 142 loci on rat chromosomes and their homologs in mice and humans

		Rat		М	ouse	Hu	man
Chr.	Linkage group with (classical group)	Locus name	Recombination fraction	Locus	Chr.	Locus	Chr.
1	1	TCP1	0.00	Tcp-1	17 (8)	TCP1	6q25-q27
		CEAR	0.00	Mouse         Human           Locus         Chr.         Locus           Tcp-1         17 (8)         TCP1         6q2           CEA         19q           Pkcc         7 (3)         PRKCG         19q           Cyp2a, -b         7 (7)         CYP2A, -B         19q           Kal         7 (22)         KLK1         19q           c         7 (41)         TYR         11q           d         7 (49)         HBB         11p           MTICP, MTIDP         16q         19q           Ins-1         6         CALM3         19           Cyp2a, -b         7 (7)         CYP2A, -B         19q           Ins-1         6         CALM3         19           Cyp2a, -b         7 (7)         CYP2A, -B         19c           Mmy-1, 2         3 (68)         19         19c           Pk-1         3 (53)         PKLR         1q!           Fgg         3 (59)         FGG         4q!           PRPL         5p         5p         5p	<i>19</i> q13.2		
		РКС	0.11	Pkcc	7 (3)	PRKCG	<i>19</i> q13.4
		<u>2B1</u>	0.12				
		CYPE	0.06	Cyp2a, -b	7 (7)	CYP2A, -B	<i>19</i> q13.2
		TON	0.09				-
		KAL	0.00	Kal	7 (22)	KLKI	<i>19</i> a13.3
		LAPI	0.26		- (/		
		<u></u>	0.05	c.	7(41)	TVP	11014 091
	(1)		0.03	ι	7 (71)	III	11414-421
		<i>B</i> 515	0.08		= (10)		
	(1)	<u>HBB</u>	0.16	H00	7 (49)	нвв	<i>11</i> p15.5
		MYL2	0.00				
		MTIPA	0.00			MT1CP, MT1DP	<i>16</i> q13
		<u>LSN</u>	0.13				
		<u>IGF2</u>	0.03	Igf-2	7	IGF2	<i>11</i> p15.5
		PBPC2				РВР	Unassigned
	NL ND	INSI CALM3		Ins-1	6	CALM3	19
	ND ND	CYPBE DBPCEP		Сур2а, -b	7(7)	СҮР2А, -В	<i>19</i> q13.2
	ND ND	SECR SHDL					
2	2	<u>AMY1</u>	0.10	Amy-1, 2	3 (68)	····	
		<u>PKL</u>	0.10	Pk-1	3 (53)	PKLR	<i>1</i> q21
		P9KA	0.01				
		<u>FGG</u>	0.05	Fgg	3 (59)	FGG	<i>4</i> q28
		FGA	0.00			FGA	<i>4</i> q28
		<u>CPB</u>	0.30				
		<u>PRLR</u>	0.23			PRPL	5p14-p13
		FST	0.10				-
		 MT1PB	0.14			MT1CP, MT1DP	16q13
	NL	NKR					
	ND ND	HTRIA PFLG				HIKIA	Jcen-q11

## TABLE 5-Continued

	Rat					Mouse	Human		
Chr.	Linkage (classi	group with cal group)	Locus name	Recombination fraction	Locus	Chr.	Locus	Chr.	
3	3		SCN2A				SCN2A	2q22-q23	
			CAT	0.21	Cas-1	2 (40)	CAT	11p13	
			<u></u>	0.24		- ()		F	
		(IV)	<u>HAO1</u>	0.08	Hao-1	2 (56)			
		(IV)	ZI						
		(IV)	SVP1	0.31	Sup-1	2 (67)			
			SUSAD	0.08					
			<u>3732F</u>	0.12					
			PCK				PCK1	Unassigned	
	ND ND		IVD PTP		Ptpa	2 (46)	IVD	13q14-q15	
4	4		СРА	,	Сра	6 (15)	CPA1	7q32-qter	
			TRVI	0.09	Trv-1	6 (20)	TRY1	7a32-ater	
			<u>11111</u>	0.14	1,91	0 (20)			
			NPY	0.00	Npy	6	NPY	7pter-q22	
			FABP1		Fabp1	6 (32)	FABP1	2p11	
			TGFA	0.13			TGFA	2p13	
				0.04					
			SPR	0.07					
			AMPP	0.95					
			<u>A2M</u>	0.25			A2M	12p13.3-p12.3	
			ENO2	0.04			ENO2	<i>12</i> p13	
				0.05	D.1.11	<i>,</i>	D70111 11		
					Pthlh II-6	5(11)		7p91-p14	
	ND		KCPVD				KCNA1, -2, -5	12	
5	5A	(II)	ACO1	0.19	Aco-I	4 (22)	ACO1	9q22-q32	
			A2UG	0.13					
	5B		GLUTB		Glut-1	4 (52)	GLUT1, -5	<i>I</i> p35-p31.3,	
				0.26				1p31	
		(II)	AHD2	0.07	Ahd-1	4 (59)	ALDH1	<i>9</i> q21.1	
			PND	0.07	Pnd	4 (67)	PND	<i>1</i> p36	
			PCD	0.07	Pad	A (65)	PCD	1-26 2 -26 12	
	NL	(11)			<u> </u>	4(0)	<u>100</u>	1050.5-050.15	
	NL	(II)	<u>B</u>		<i>b</i>	4 (35)			
6	6A	(VIII)	<u>IGHE</u>	0.11	Igh-7	12	IGHE	<i>14</i> q32.33	
			CKB	0.11	Ck-3	12 (64)	СКВ	<i>14</i> q32.3	
	NL		D3						
7	7A		<u>MYC</u>	0.17	Мус	15 (18)	МҮС	<i>8</i> q24	
			<u>E5</u>	0.17					
			IGF1	0.23	Iøf-1	10 (61)	IGF1	12023	
								1-*	

### TABLE 5-Continued

	Rat					Mouse	Human		
Chr.	Linkage (classic	group with cal group)	Locus name	Recombination fraction	Locus	Chr.	Locus	Chr.	
	7B		ELA1	0.00	Ela-1	15 (48)	ELAI	12	
			I AL RA				IAIRA	12018	
8	8A	·	THY1		Thv-1	9 (24)	THY1	11a22.3-a23	
	AP		0.04	,	( )	APOC3	11q23-qter		
	8B	(VII)	ES6	0.19					
			ТРМ	0.12			TMP1	Unassigned	
	8C		<u>PKATA</u>	0.05			ACAA	<i>3</i> р23-р22	
			<u>GDC1</u>	0.00					
			<u>ACPH</u>	0.06	Apeh	9	APEH	<i>3</i> p21	
			MYLC1V	0.00	Mylc	9 (70)	MYL3	<i>3</i> p21	
			RBP2	0.15			RBP2	<i>3</i> p11-qter	
9	NL NL		CRYG SPAT		Cryg-1	1 (30)	CRYG1 AGXT	2q33-q35 2q36-q37	
	ND		INHA		Inha	1	INHA	2q33-qter	
10	10		<u>MYHSE</u>	0.03	Myhs-e	11 (37)	МҮНЗ	17pter-p11	
			ABP	0.00	Abpa, g	7 (10)			
			ASGR	0.00	Asgr-1, -2	11 (24, 42)	ASGR1	17pter-p12	
			SYB2	0.00	Syb-2	11	SYB2	17pter-p12	
			NGFR	0.20	Ngfr	11 (55)	NGFR	17q21-q22	
			PPY	0.07			PPY	17p11.1-qter	
			AEP	0.00					
			ACE	0.12			DCP1	17q23	
			<u>GH</u>	0.02	Gh	11 (68)	GH1, -2	17q22-q24	
	ND		ADRA1B				ADRA1B	5q23-q32	
11	11		SMST	0.02	Smst	16 (19)	SST	<i>3</i> q28	
			TKG				KNG	3q26-qter	
	ND ND		CSPMO2 PKCS						
12	12A		PLANH	0.03			PLANH1	7q21.3-q22.1	
			MDH2		Mor-1	5 (74)	MDH2	7p13-q22	
	12 <b>B</b>		LSNR	0.07					
			H4					1-49.1	
13	13	(X)	<u>FH</u>	0.33			ľН	1942.1	
			<u>REN</u>	0.18	Ren-1	1 (48)	REN	<i>1</i> q32	
		(X)	РЕРЭ		Pep-3	1 (49)	PEPC	<u>1q25</u>	
	ND ND		LCA TRAGGL		Ly-5	1 (55)	CD45 TRE, TRN	Iq31-q32 Ip36, 1p36.1	

	Rat					Mouse	Human		
Chr.	Linkage (classic	group with al group)	Locus name	Recombination fraction	Locus	Chr.	Locus	Chr.	
14	14A	(VI)	<u>H</u>	0.10					
		(VI)	GC	0.09	Gc	5	GC	4q12-q13	
			<u>CSNA</u>	0.02	Csna	5 (39)	CSN1	Unassigned	
			AFP	0.00	Afp	5 (46)	AFP	4q11-q13	
			ALB		Alb-1	5 (46)	ALB	4q11-q13	
	14 <b>B</b>		GCK	0.02			GCK	Unassigned	
			IGFBP				IGBP1	7p13-p12	
16	NL		MBPA						
17	17		ACRM	0.08			CHRM3	<i>1</i> q41-q44	
			<u>F4</u>	0.00					
			PRL	0.09	Prl	13	PRL	6p22.2-p21.3	
	NL ND		RPL35P HH1TTS						
18	18		<u>GRL</u>	0.10	Grl-1	18 (21)	GRL	5q31-q32	
			ADRB2	0.10	Adrb2r	18	ADRB2	<i>5</i> q31-q32	
			<u>OLF</u>	0.07					
			<u>GIA1</u>	0.16			GJA1	6q14-qter	
			MBP	0.10	Мвр	18 (57)	MBP	18q22-qter	
	ND ND		TTR NGFI				TTR	18q11.2-q12.1	
			TILP						
19	19		HEOXG	0.18					
		(V)	<u>ES2</u>	0.07	Es-1	8 (33)			
			UCP	0.07			UCP	4q28-q31	
		(V)	ES3	0.07					
			HP	0.00	Hp	8 (46)	HP	16922.1	
			TAT	0.09	Tat	8 (46)	TAT	16099 1	
			<u></u>	0.02		0 (40)		10422.1	
			AGT		Agt	8 (46)	AGT	<u>16q23-q24.1</u>	
20	20	(IX)	RTI		H-2	17 (19)	HLA	6p21.3	
			TNF	0.13	Tnfa, Tnfb	17 (19.5)	TNFA. TNFR	6n21.3	
X	21		CBPI						
			PRPS2	0.08			PRPS2	Xp22.3-p22.2	
			MYCS	0.06					
			never	0.03					
			AR			Y (20)	PFKFB1	X	
					4.17	A (22)	лл	AQ11.2-Q12	

Chr., Chromosome number. NL, No linkage, although it was analyzed for linkage relationship. ND, Not used for linkage analysis. Underlined loci are anchor markers, in which the order does not change with odds > 100:1. Mouse Chr. (cM), Chromosomal location (with centimorgan from centromere) of candidate genes of the mouse homologue. Human Chr., Chromosomal location of candidate genes of the human homolog. Mapping information of mouse and human genes was retrieved from GDB, HGM11 (MCALPINE *et al.* 1991) or Mouse Genome (HILLYARD *et al.* 1991; LYON and KIRBY 1991).

#### T. Serikawa et al.

#### TABLE 6

Total repeat size of microsatellites and number of alleles

			No. of STMS with size of microsatellite (bp):						
Motif type	No. of alleles ^a	20-24	25-29	30-34	35-39	40-44	45-49	≥50	
Mono	1	1	1						
Total		1	1						
Di	1				1		1	4	
	2	1	1	3	2	2	4	14	
	3	1			2	5	5	14	
	≥4				1	6	3	7	
Total		2	1	3	6	13	13	39	
Tri	1	3	1					2	
	2	4		1			1	1	
	3				2	1		1	
	≥4							1	
Total		7	1	1	2	1	1	5	
Tetra	1	6		1	1				
	2	1	1						
	3		1	1		1	1	1	
	≥4						2	1	
Total		7	2	2	1	1	3	3	

^a The number of STMS alleles was resolved in a comparison among eight different inbred rat strains on 4% agarose gel electrophoresis.

groups were composed of 2 loci and 12 singletons were left (shown as no linkage (NL) in Table 5). Sixty five loci, which consist of 58 microsatellite-containing loci (marked with N in Table 1 including two loci for LSN) and seven additional loci (marked with asterisk in Table 2) were newly assigned on the rat chromosomes, while assignment of the remaining 81 genes was confirmed, except for PG1 (no linkage) and PBPC2. (It was mapped to chromosome 1 by linkage analysis, although it has been previously reported to be located on chromosome 5; ZHANG et al. 1988.) It is also interesting to note that INS1 has been shown by in situ hybridization, to map to the distal tip of chromosome 1, and provides thus a good telomeric anchor marker (MORI et al. 1992a). Absence of linkage of INS1 to any of the tested markers therefore implies that this part of chromosome 1 has not been covered yet, despite of the "long" linkage group. Three classical linkage groups (LG) were newly assigned to a particular chromosome: LG-IV to chromosome 3, LG-V to chromosome 19 and LG-VII to chromosome 8. Assignment of six classical linkage groups previously reported was confirmed as follows; LG-I to chromosome 1, LG-II to chromosome 5, LG-VI to chromosome 14, LG-VIII to chromosome 6, LG-IX to chromosome 20, and LG-X to chromosome 13.

The wide distribution of microsatellites throughout the genome, combined with their high degree of polymorphism, makes these systems an attractive source of genetic markers. The highly variable nature of these markers might raise some concern in genetic studies, if as a result of hypermutability they would also often be unstable. However, after having scored over thirteen thousands genotypes in the offspring in this study, there were only two loci (CPB and CYPE) for which PCR products were detected whose length differed from the expected parental sizes (data not shown). These results suggest that microsatellite loci show remarkable stability, and are highly suitable for linkage studies.

Markers from this map are likely to be of general utility in a large number of genetic studies in rat. Furthermore, in contrast to maps based on "random" DNA markers, the current map presents the interest of placing a number of gene tags on the rat genetic map. An important advantage of a gene map is its utility in reverse genetics through the candidate gene approach. In addition, these markers can also serve, through comparative mapping, as reference points across species.

Hence, the mapping coordinates of the homologous rat, mouse and human genes, when available, were compared (see Table 5). In rat chromosome 1, 2, 3, 4, 5, 10, 14 and 19, gene orders on chromosome correlated to those of homologous loci on mouse chromosome 7, 3, 2, 6, 4, 11, 5 and 8 with some exceptions. The human homologs were located on two or three different chromosomes, except for rat chromosome 10, in which the human homologs were located only on chromosome 17. This knowledge can have immediate applications.

Indeed, in some instances, flanking markers can be inferred from the conservation of synteny groups between rats, mice or humans. As some microsatellites also appear to be conserved between closely related species such as mice and rats (STALLINGS *et al.* 1991), mouse microsatellite loci may be available as PCRprimer source for the unknown rat loci and vice versa. Thus, rat genes for which the mouse or human homologs have not been mapped yet, could be informative to identify and map the homologous genes and contribute to the construction of a detailed genetic map in these species. Comparative gene mapping should thus contribute to the identification and localization of genes of interest.

As an illustration of the power of such an integrated approach, this strategy was used, upon incrimination of a defined section of the rat chromosome 10 as being involved in the regulation of arterial blood pressure, (i) to identify in the corresponding human region a candidate gene, ACE, (ii) to derive primers flanking a mouse microsatellite in this locus, and (iii) to develop a PCR-formatted STMS for the rat ACE. Thereby we were able to confirm that rat ACE is confined within the suspected chromosomal region and is thus a candidate locus for the phenotype studied (HILBERT et al. 1991). A similar approach was followed by JACOBS et al. (1991).

To sum up, PCR-formatted STMSs have numerous known attractive genetic advantages, some of which can be seen in this study. These include, (i) their being often polyallelic (more than two alleles) and thus often genetically informative, (ii) their abundance, (iii) their widespread dispersion throughout the genome, (iv) their presence in the vicinity of protein-coding genes, providing excellent markers for them as well as means to generate a genetic map of loci associated with known genes.

In conclusion, mapping using STMS extracted from the public data bases proved to be a very powerful methodology. In this work, we attempted to lay the foundations for an informative genetic map. The numbers of microsatellite markers will undoubtedly increase, as a result of the growing data bases or as targeted search for such loci will continue. It is therefore to be expected that rat gene mapping will make rapid progress and a high resolution rat genetic map will be constructed in very near future. This could prove to be essential for the full utilization of rat as a genetic model for the study of polygenic inheritance.

We thank MICHAEL CHIPPERFIELD for his help with the identification of homologous human genes, HOWARD CANN for his valuable comments, JOSIANNE SZPIRER for facilitating the linkage between T.S. and J.S.B., and XAVIER MONTAGUTELLI for GENELINK. This work was supported by the Association Française contre les Myopathies, the French Ministry of Research and Technology and the Israeli Ministry of Agriculture.

## LITERATURE CITED

- ADAMS, M., P. A. BAVERSTOCK, C. H. S. WATTS and G. A. GUTMAN, 1984 Enzyme markers in inbred rat strains: genetics of new markers and strain profiles. Biochem. Genet. 22: 611-629.
- BECKMANN, J. S., and J. WEBER, 1992 Survey of human and rat microsatellites. Genomics 12: 627-631.
- BENDER, K., H. CLEVE and E. GUNTHER, 1981 A previously described serum protein polymorphism in the rat identified as Gc ("vitamin D-binding protein"). Anim. Blood Groups Biochem. Genet. 12: 31-36.
- BRDICKA, R., 1968 The chromosome I of the laboratory rat (*Rattus norvegicus*). Linkage studies of the hemoglobin locus. Acta Univ. Carol. Med. 14: 93-98.
- CARTER, N. D., and C. W. PARR, 1969 Phosphogluconate dehydrogenase polymorphism in British wild rats. Nature 224: 1214.
- COLLARD, J. G., J. F. SCHIJVEN and A. TULP, 1982 Localization of rat genes on fractionated chromosomes by molecular hybridization. Cytogenet. Cell Genet. 32: 257–258.
- COOKE, N., C. SZPIRER and G. LEVAN, 1986 The related genes encoding growth hormone and prolactin have been dispersed to chromosome 10 and 17 in the rat. Endocrinology **119**: 2451– 2454.
- CRAMER, D. V., 1981 Genetic variation of urinary pepsinogen and its probable linkage to albinism in the rat. Immunogenetics 13: 555-558.
- CRAMER, D. V., J. J. BLANKERT and L. C. PAUL, 1985 Linkage of loci encoding a kidney endothelial antigen and fumarate hydratase (*Fh-1*) in the rat. Biochem. Genet. **23**: 623-629.
- CRAMER, D. V., P. A. MOWERY and M. ADAMS, 1986 Biochemical markers in rats: linkage relationships of aconitase (Acon-1), aldehyde dehydrogenases (Adh-2 and Ahd-c), alkaline phosphatase (Akp-1), and hydroxyacid oxidase (Hao-1). Biochem. Genet. 24: 217-227.
- DEN DUNNEN, J. T., J. SZPIRER, G. LEVAN, M. Q. ISLAM and J. G. G. SCHOENMARKERS, 1987 All six rat gamma-crystallin genes are located on chromosome 9. Exp. Eye Res. 45: 747-750.
- DEVEREUX, J., P. HAEBERLI and O. SMITHIES, 1984 A comprehensive set of sequence analysis programs for the VAX. Nucleic Acid Res. 12: 387–395.
- DONNER, M. E., L. C. SKOW, H. W. KUNZ and T. J. GILL, 1985 Electrophoretic variation in low molecular weight lens crystallins from inbred strains of rats. Biochem. Genet. 23: 787-800.
- ERIKSSON, K., O. HALKKA, J. LOKKI and A. SAURA, 1976 Enzyme polymorphism in feral, outbred and inbred rats (*Rattus norve*gicus). Heredity 37: 341–349.
- FRENCH, E. A., K. B. ROBERTS and A. G. SEARLE, 1971 Linkage between a hemoglobin locus and albinism in the Norway rat. Biochem. Genet. 5: 397–404.
- FULCHIGNONI-LATAUD, M. C., M. WEISS, C. SZPIRER and G. LEVAN, 1990 Assignment of the rat genes coding for phenylalanine hydroxylase, tyrosine aminotransferase and pyruvate kinase to chromosomes 6, 19 and 2 respectively. Cytogenet. Cell Genet. 53: 172-174.
- GAL, A., J. L. NAHON, G. LUCOTTE and J. M. SALA-TREPAT, 1984 Structural variants of the  $\alpha$ -fetoprotein gene in different inbred strains of rat. Mol. Gen. Genet. **195**: 153–158
- GASSER D. L., 1972 Seminal vesicle protein in rats: a gene in the fourth linkage group determining electrophoretic variants. Biochem. Genet. 6: 61–63.
- GILL, T. J., III, G. J. SMITH, R. W. WISSLER and H. W. KUNZ, 1989 The rat as an experimental animal. Science **245**: 269– 276.
- GOLDNER-SAUVÉ, A., C. SZPIRER, J. SZPIRER, G. LEVAN and D. L. GASSER, 1991 Chromosomal assignments of the genes for glucocorticoid receptor, myelin basic protein, leucocyte com-

mon antigen, and TRPM2 in the rat. Biochem. Genet. 29: 275-286.

- HAMADA, H., and T. KAKUNAGA, 1982 Potential Z-DNA forming sequences are highly dispersed in the human genome. Nature 298: 396-398.
- HAMADA, H., M. G. PETRINO and T. KAKUNAGA, 1982 A novel repeated element with Z-DNA forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc. Natl. Acad. Sci. USA **79**: 6465–6469.
- HAMADA, S., J. YAMADA, K. BENDER and M. ADAMS, 1987 A new polymorphic pepsinogen locus (PG-2) in the rat (*Rattus norvegicus*). Exp. Anim. **36**: 267–272.
- HEARNE, C. M., M. A. MCALEER, J. LOVE, T. J. AITMAN, R. J. CORNALL, S. GHOSH, A. KNIGHT, J.-B. PRINS and J. A. TODD, 1991 Further PCR-analysed microsatellites for mapping the mouse genome. Mamm. Genome 1: 273–282.
- HEDRICH, H. J., 1990 Genetic Monitoring of Inbred Strains of Rats. Gustav Fisher Verlag, Stuttgart.
- HILBERT, P., K. LINDPAINTNER, J. S. BECKMANN, T. SERIKAWA, F. SOUBRIER, C. DUBAY, P. CARTWRIGHT, B. DE GOUYON, C. JULIER, S. TAKAHASI, M. VINCENT, D. GANTEN, M. GEORGES and G. M. LATHROP, 1991 Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats. Nature 353: 521-529.
- HILLIKER, C. E., M. I. DARVILLE, M. S. ALY, M. CHIKRI, C. SZPIRER, P. MARYNEN, G. G. ROUSSEAU and J. J. CASSIMAN, 1991 Human and rat chromosomal localization of two genes for 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase by analysis of somatic cell hybrids and *in situ* hybridization. Genomics 10: 867–873.
- HILLYARD, A. L., D. P. DOOLITTLE, M. T. DAVISSON and T. H. RODERICK, 1991 Locus map of mouse. *Mouse Genome* 89: 16– 30.
- JACOBS, H. J., K. LINDPAINTNER, S. E. LINCOLN, K. KUSUMI, R. K. BUNKER, Y.-P. MAO, D. GANTEN, V. J. DZAU and E. S. LANDER, 1991 Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell **67**: 213–224.
- KANO, Y., S. MAEDA and T. SUGIYAMA, 1976 The location of ribosomal cistrons (rDNA) in chromosomes of the rat. Chromosoma 55: 37-42.
- LATHROP, G. M., and J. M. LALOUEL, 1984 Easy calculations of lod scores and genetic risks on small computers. Am. J. Hum. Genet. **36:** 460-465.
- LATHROP, G. M., Y. NAKAMURA, P. CARTWRIGHT, P. O'CONNELL, M. LEPPERT, C. JONES, H. TATEISHI, T. BRAGG, J. M. LALOUEL and R. WHITE, 1988 A primary genetic map of markers for human chromosome 10. Genomics 2: 157-164
- LEVAN, G., J. SZPIRER, C. SZPIRER, K. KLINGA, C. HANSON and M. Q. ISLAM, 1991 The gene map of the Norway rat (*Rattus norvegicus*) and comparative mapping with mouse and man. Genomics **10:** 699–718.
- LITT, M., and J. A. LUTY, 1989 A hypervariable microsatellite revealed by *in vitro* amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet. **44**: 397– 401.
- LOBEL, S., A. and D. V. CRAMER, 1981 Demonstration of a new genetic locus in the major histocompability system of the rat. Immunogenetics 13: 465-473.
- LOVE J. M., A. KNIGHT, M. A. MCALEER and J. A. TODD, 1990 Towards construction of a high resolution map of the mouse genome using PCR-analysed microsatellite. Nucleic Acid Res. 18: 4123-4130.
- LYON, M. F., and M. C. KIRBY, 1991 Mouse chromosome atlas. Mouse Genome 89: 37-59.
- MARINO, N. W., G. M. FULLER and F. F. B. ELDER, 1986 Chromosomal localization of human and rat  $A\alpha$ ,  $B\beta$ , and  $\gamma$  fibrinogene genes by *in situ* hybridization. Cytogenet. Cell Genet. **42:** 36-41.

- MCALPINE, P. J., T. B. SHOWS, C. BOUCHEIX, M. HUEBNER and W. A. ANDERSON, 1991 The 1991 catalog of mapped genes and report of the nomenclature committee. Cytogenet. Cell Genet. 58: 5-102.
- MIZUNO, M., and K. SUZUKI, 1978 Genetic variation of pancreatic α-amylase in the rat, *Rattus norvegicus*. Jpn. J. Genet. **53**: 137–142.
- MONTAGUTELLI, X., 1990 A program in PASCAL for backcross genetic linkage analysis. J. Hered. 81: 490-491.
- MONTAGUTELLI, X., T. SERIKAWA and J.-L. GUÉNET, 1991 PCRanalysed microsatellites: data concerning laboratory and wildderived mouse inbred strains. Mamm. Genome 1: 255-259.
- MORI, M., K. ISHIZAKI, T. YAMADA, H. CHEN, T. SUGIYAMA, T. SERIKAWA and J. YAMADA, 1989 Restriction fragment length polymorphisms of the angiotensinogen gene in inbred rat strains and mapping of the gene on chromosome 19q. Cytogenet. Cell Genet. 50: 42-45.
- MORI, M., K. ISHIZAKI, T. SERIKAWA and J. YAMADA, 1992a Localization of the rat insulin I gene (INS1) to chromosome 1q55 by fluorescence in situ hybridization. Cytogenet. Cell Genet. 59: 31–33.
- MORI, M., Y. YOKOTA, M. YASUE, T. SERIKAWA and J. YAMADA, 1992b Assignment of the rat genes coding for substance P receptor, substance K receptor and neuromedin K receptor to chromosome 4, 20 and 2, respectively. Cytogenet. Cell Genet. (in press).
- MORI, M., T. ODA, K. NISHIYAMA, T. SERIKAWA, J. YAMADA and A. ICHIYAMA, 1992c A single serine:pyruvate aminotransferase gene on rat chromosome 9q34-36. Genomics (in press).
- MOUTIER, R., K. TOYAMA and M.-F. CHARRIER, 1973 Linkage of a plasma protein marker (*Gl-1*) and the hooded locus in the rat (*Rattus norvegicus*). Biochem. Genet. **10:** 395–398.
- MOYZIS, R. K., D. C. TORNEY, J. MEYNE, J. M. BUCKINGHAM, J.-R. WU, C. BURKS, K. M. SIROTKIN and W. B. GOAD, 1989 The distribution of interspersed repetitive DNA sequences in the human genome. Genomics 4: 273–289.
- PALM, J., 1971 Immunogenetic analysis of Ag-B histocompability antigens in rats. Transplantation 11: 175–183.
- PEAR, W., G. WAHLSTRÖM, J. SZPIRER, G. LEVAN, G. KLEIN and J. SU*MEGI, 1986 Localization of the rat immunoglobulin heavy chain locus to chromosome 6. Immunogenetics 23: 293–295.
- PRAVENEC, M., V. KREN and P. KLIR, 1987 Assignment of *Es-6* locus to linkage group II of the rat (*Rattus norvegicus*) by the use of HXB recombinant inbred rat strains. J. Immunogenet. 14: 313-316.
- PRAVENEC, M., L. SIMONET, V. KREN, J. KUNES, G. LEVAN, J. SZPIRER, C. SZPIRER and T. KUNTZ, 1991 The rat renin gene: assignment to chromosome 13 and linkage to the regulation of blood pressure. Genomics 9: 466-472.
- RAMPERSAUD, A., and F. G. WALTZ, JR., 1987 Mapping of genes for cytochromes P-450b, P450e, and P-450h in the rat. J. Biol. Chem. 262: 5649-5653.
- RYCHLIK, W., and R. E. RHOADS, 1989 A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and *in vitro* amplification of DNA. Nucleic Acid Res. 17: 8543–8551.
- SCHRÖDER, J., K. AUTIO, J. M. JARVIS and C. MILSTEIN, 1980 Chromosome segregation and expression of rat immunoglobulins in rat/mouse hybrid myelomas. Immunogenetics 10: 125-131.
- SOARES, M. B., E. SCHON, A. HENDERSON, K. KARATHANASIS, R. CATE, S. ZEITLIN, J. CHIRGWIN and A. EFSTRATIADIS, 1985 RNA-mediated gene duplication: the rat preproinsulin I gene is a functional retroposon. Mol. Cell. Biol. 5: 2090– 2103.
- STALLINGS, R. L., A. F. FORD, D. NELSON, D. C. TORNEY, C. E. HILDBRAND and R. K. MOYZIS, 1991 Evolution and distribution of (GT)_n. Genomics 10: 807–815.

- STOLC, V., 1990 DNA and mRNA sequences in the rat. Rat News Let. 23: 25-34.
- SUGIYAMA, K., S. NAGASE and T. H. YOSHIDA, 1984 Chromosomal localization of the rat albumin gene in normal and albuminemic rats determined by in situ hybridization. Jpn. J. Genet. 59: 577-583.
- SÜMEGI, J., J. SPIRA, H. BAZIN, J. SZPIRER, G. LEVAN and G. KLEIN, 1983 Rat c-myc oncogene is located on chromosome 7 and rearranges in immunocytomas with t(6.7) chromosomal translocation. Nature **306**: 497–498.
- SZPIRER, C., J. P. KRAUS, M. RIVIÉRE, M. SWAROOP, T. OHURA, Y. MATSUBARA, J. SZPIRER, M. Q. ISLAM and G. LEVAN, 1989 Assignment of the rat genes coding for medium-chain acyl-Co-A carboxylsase, isovaleryl-CoA dehydrogenase, and the  $\beta$  subunit of propionyl-Co-A carboxylase to chromosome 2,3, and 8, respectively. Cytogenet. Cell Genet. **50**: 23–26.
- SZPIRER, C., M. RIVIÉRE, J. SZPIRER, M. GENET, P. DREZE, M. Q. ISLAM and G. LEVAN, 1990 Assignment of 12 loci to rat chromosome 5: evidence that this chromosome is homologous to mouse chromosome 4 and to human chromosome 9 and 1 (1p arm). Genomics 6: 679–684.
- SZPIRER, C., M. RIVIÉRE, J. SZPIRER, C. HANSON, G. LEVAN and G. N. HENDY, 1991 Assignment of the rat parathyroid hormonelike peptide gene to chromosome 4: evidence for conserved synteny between human chromosome 12, mouse chromosome 6 and rat chromosome 4. Cytogenet. Cell Genet. 56: 193–195.
- SZPIRER, J., G. LEVAN, M. THÖRN and C. SZPIRER, 1984 Gene mapping in the rat by mouse-rat somatic cell hybridization synteny of the albumin and α-fetoprotein genes and assignment to chromosome 14. Cytogenet. Cell Genet. **38**: 142–149.
- SZPIRER, J., C. SZPIRER, M. RIVIÉRE, C. HOUAT, M. BAUMANN, G.
  H. FEY, V. POLI, R. CORTESE, M. Q. ISLAM and G. LEVAN, 1991 The interleukin-6-dependent DNA binding protein gene (transcription factor-5-TCF5) maps to human chromosome 20 and rat chromosome 3, the *Il-6* receptor locus (IL6R) to human chromosome 1 and rat chromosome 2, and the rat IL6 gene to rat chromosome 4. Genomics 10: 539-546.
- TAKAHASHI, R., K. MIHARA, S. MAEDA, T. YAMAGUCHI, H.-L. CHEN, N. AOYAMA, S-H. MURANO, M. HATANAKA and T. SUGIYAMA, 1986 Secondary activation of c-abl may be related to translocation to the nucleolar organizer region in an *in vitro* cultured rat leukemia cell line (K3D). Proc. Natl. Acad. Sci. USA 83: 1079–1083.
- TAUTZ, D., 1989 Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acid Res. 17: 6463-6471.
- VAN ZUTPHEN, L. F. M., M. DEN BIEMANN, H. J. HEDRICH and R. KLUGE, 1985 Assignment of *Lap-1* to linkage group I of the rat (*Rattus norvegicus*). Biochem. Genet. 23: 599–606.

- WEBER, J. L., 1990 Informativeness of human (dC-dA)_n-(dG-dT)_n polymorphisms. Genomics 7: 524–530.
- WEBER, J. L., and P. E. MAY, 1989 Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. **44**: 388–396.
- WIENER, F., M. BABONITIS, J. SPIRA, G. KLEIN and H. BAZIN, 1982 Non-random chromosomal changes involving chromosome 6 and 7 in spontaneous rat immunocytomas. Int. J. Cancer 29: 413-437.
- WILLIAMSON, R. W., A. BOWCOCK, K. KIDD, P. PEARSON, J. SCHMIDTKE, P. CEVERHA, M. CHIPPERFIELD, D. N. COOPER, C. COUTELLE, J. HEWITT, K. KLINGER, K. LANGLEY, J. BECKMANN, M. TOLLEY and B. MAIDAK, 1992 Report of the DNA committee and catalogues of cloned and mapped genes, markers formatted for PCR and DNA polymorphisms. Cytogenet. Cell Genet. 58: 1190-1833.
- WOMACK, J. E., 1973 Biochemical genetics of rat esterases: polymorphism tissue expression and linkage of four loci. Biochem. Genet. 9: 13-24.
- WOMACK, J. E., and D. V. CRAMER, 1980 Peptidase-3 (*Pep-3*), dipeptidase variant in the rat homologous to mouse Pep-3 (*Dip-3*) and human PEP-C. Biochem. Genet. 18: 1019-1026.
- YAMADA, J., H. NIKAIDO and S. MATSUMOTO, 1980 Linkage analyses among five esterase loci in the laboratory rat (*Rattus norvegicus*). Biochem. Genet. **18**: 433–438.
- YAMADA, T., M. MORI, T. SERIKAWA and J. YAMADA, 1989 Assignment of body trumulous mutant gene zitter (zi) to linkage group IV of the rat (*Rattus norvegicus*). J. Hered. 80: 383-386.
- YASUE, M., T. SERIKAWA and J. YAMADA, 1991 Chromosomal assignments of 23 biochemical loci of the rat by using rat × mouse somatic cell hybrids. Cytogenet. Cell Genet. 57: 142– 148.
- YASUE, M., T. SERIKAWA, T. KURAMOTO, M. MORI, T. HIGASHIG-UCHI, K. ISHIZAKI and J. YAMADA, 1992 Chromosomal assignments of 17 structural genes and 11 related DNA fragments in rats (*Rattus norvegicus*) by Southern blot analysis of rat × mouse somatic cell hybrid clones. Genomics 12: 659–664.
- YOSHIDA, M. C., 1978 Rat gene mapping by rat-mouse somatic cell hybridization and a comparative Q banding analysis between rat and mouse chromosomes. Cytogenet. Cell Genet. 22: 606-609.
- YOSHIDA, M. C., 1982 Assignment of the syntenic genes AK2, ENO1, PGD, and PGM2 to rat chromosome 5. Cytogenet. Cell Genet. 32: 330
- ZHANG, J., L. DIRCKX, P. MARYNEN, W. ROMBAUTS, B. DELAEY, H. VAN DEN BERGHE and J.-J. CASSIMAN, 1988 Mapping of rat prostatic binding protein genes C1, C2 and C3 to rat chromosome 5 by *in situ* hybridization. Cytogenet. Cell Genet. 48: 121-123.

Communicating editor: K. ARTZT