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ABSTRACT 
We previously developed a cladistic approach to identify subsets of haplotypes defined by restriction 

endonuclease mapping or DNA sequencing that are associated  with  significant phenotypic deviations. 
Our approach was limited to segments of  DNA in  which little recombination occurs. In such  cases, a 
cladogram can  be constructed from the restriction site or sequence data  that represents the evolution- 
ary steps that  interrelate  the observed haplotypes. The cladogram is used to define a nested statistical 
design to identify mutational steps  associated  with  significant phenotypic deviations. The central 
assumption behind this strategy is that any undetected mutation causing a phenotypic effect is 
embedded within the same evolutionary history that is represented by the cladogram. The power of 
this approach depends upon the confidence one has  in the particular cladogram used to draw 
inferences. In this paper, we present a strategy for estimating the set of cladograms that are consistent 
with a particular sample  of either restriction site or nucleotide sequence data  and  that includes the 
possibility of recombination. We first evaluate the limits of parsimony  in constructing cladograms. 
Once these limits  have been determined, we construct the set of parsimonious and nonparsimonious 
cladograms that is consistent with these limits. Our estimation procedure also identifies haplotypes 
that are candidates for being products of recombination. If recombination is extensive, our algorithm 
subdivides the DNA region into two or more subsections, each having little or  no internal recombi- 
nation. We apply  this estimation procedure  to  three  data sets to illustrate varying degrees of cladogram 
ambiguity and recombination. 

G ENETIC  studies  of  quantitative  traits  have  tra- 
ditionally  utilized  phenotypic  correlations be- 

tween  related  and  unrelated  individuals  to  estimate 
the fraction of the  interindividual  variance  in  the 
population  that is attributable  to  unmeasured  geno- 
typic  differences.  Recent  advances  in  molecular ge- 
netics  are  making it  possible to  locate  and  characterize 
the loci that  determine this  genetic  component of 
variance. In one  approach, a complete  linkage  map  of 
the  genome  based  primarily on restriction  fragment 
length  polymorphisms  (RFLPs) is used  to  identify  the 
regions  that  are  segregating for Mendelian  factors 
that  influence  quantitative  phenotypic  variation  (PA- 
TERSON et al. 1988; SOLLER and BECKMANN  1988). 
Reverse  genetic  strategies  may  then  be  used  to  find 
the  quantitative  trait loci (QTL)  that are located  in 
close  proximity to  the  RFLPs  that are significantly 
associated  with a phenotypic  effect. An alternative, 
candidate  gene,  approach  to  relating a QTL  to  phe- 
notypic  variation is possible  when the  trait  of  interest 
is  determined by biochemical or physiological  func- 
tions  under  the  control  of  identified  genes.  When 
structural  variation in the  protein  product  of  such a 
gene is present, allelic variations  in a candidate  gene 
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may  be  characterized by electrophoretic  techniques. 
However,  the  quantitative  variation in the  trait of 
interest  may be controlled by noncoding  sequences o r  
electrophoretically  cryptic  variation. In such cases, if 
the  candidate  gene  has  been  cloned,  the  population 
can  be  screened for RFLP  or  sequence variability  in 
and/or  near  the  candidate locus to  define  haplotype 
variation.  One  then analyzes the associations  between 
haplotype  variation  at  the  candidate locus and phe- 
notypic  variation  in  the  quantitative  trait. In this  man- 
ner,  haplotypes  can be identified  that  are associated 
with  statistically  significant phenotypic  deviations. 
Then  individuals  carrying  these  haplotypes  can  be 
subjected  to  more  detailed  molecular  analyses  to  iden- 
tify the  responsible  mutations. We have  introduced a 
cladistic approach  to  identify  haplotypes  and  individ- 
uals that  most likely carry  such  mutations (TEMPLE- 
TON et al. 1988). 

O u r  application  of cladistics  assumes that  the  hap- 
lotypes are  defined  from  restriction  endonuclease 
mapping in small  segments  of DNA in  which  little 
recombination  occurs  (TEMPLETON,  BOERWINKLE  and 
SING 1987; TEMPLETON et al. 1988).  The  haplotypes 
defined by mutations in  a DNA region  having  little 
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or  no recombination are organized  into  a  cladogram 
that portrays  the  evolutionary steps that  interrelate 
the observed haplotypes to  one  another. If the  root 
of  the cladogram can be  determined or estimated, the 
cladogram  represents  a phylogenetic tree of the DNA 
region being characterized.  However, our analysis 
does  not  require  the  cladogram  to  be  rooted. We 
employ the cladogram to define  a  nested statistical 
design that is used to systematically detect significant 
associations between mutational steps defined by the 
RFLPs and deviations of a  quantitative  trait  from the 
sample mean. The central assumption behind this 
approach is that if an unknown  mutation causing a 
phenotypic effect occurred at some point in the evo- 
lutionary history of the population, it would be  em- 
bedded within the same historical structure  repre- 
sented by the cladogram. 

Obviously, the power of the cladistic approach  de- 
pends upon the confidence one has in the cladogram 
and the  rarity of recombination.  More  than one cla- 
dogram may be consistent with the  data being consid- 
ered even when using a single estimation  method, and 
different  methods can yield different  cladograms. The 
first objective of this paper is to present  an  algorithm 
for estimating the set of plausible cladograms; that is, 
those  cladograms  that  portray linkages among haplo- 
types that have a high probability (30.95) of being 
true. Such a plausible set  documents  the  extent of 
uncertainty  about the exact topology of the cladogram 
for a  particular  data  set. The second objective is to 
identify those haplotypes that  are likely candidates  for 
being  the  products of recombination and, when re- 
combination  appears to be  common in the region  as  a 
whole, to subdivide the DNA region  into smaller 
subsegments in  which little to no recombination has 
occurred.  Separate  cladogram sets are then  estimated 
for each subregion. We illustrate our estimation  pro- 
cedure with three examples that  differ in the  extent 
of  recombination and cladogram  uncertainty. In sub- 
sequent  papers in this series, we will show  how prob- 
abilities can be assigned to  the various cladograms in 
this plausible set and how this quantitative assessment 
of  uncertainty can be  incorporated  into  the cladistic 
analysis of phenotypic associations. 

EVALUATING THE LIMITS OF PARSIMONY 

There  are several ways  of estimating  cladograms 
from  restriction site or DNA sequence data, including 
maximum parsimony, maximum likelihood and com- 
patibility (FELSENSTEIN 1983; TEMPLETON 1983a). 
Most applications of these  approaches have focused 
on the estimation of interspecific phylogenies. Here 
we are estimating an intraspecific allele or haplotype 
phylogeny that in general  extends  over  a  much shorter 
period of evolutionary  time  than interspecific phylog- 
enies. When evolutionary  time  periods are  short, max- 

imum parsimony, maximum likelihood and compati- 
bility tend  to yield the same estimated phylogeny 
(SOBER 1983). Maximum parsimony is considered by 
most to be the  method of choice because it is the 
easiest and most practical to implement. T o  justify the 
use of parsimony (SOBER 1988), we first investigate 
the limits of validity of maximum parsimony for  intra- 
specific allelic phylogenies. For interspecific phylog- 
enies it is known that  there  are certain  conditions 
under which parsimony can be misleading (FELSEN- 
STEIN 1983; GOLDMAN 1990).  Although  the results 
from  these interspecific studies are useful, intraspe- 
cific allele phylogenies are affected by many processes 
that  are generally ignored in interspecific phylogenies. 
In this regard, coalescent theory (KINGMAN 1982; 
GRIFFITHS 1989) indicates that  the phylogeny of the 
current  array of alleles or haplotypes at a locus is 
strongly influenced by effective population size, allele 
frequency  arrays,  patterns of gene flow, etc. Recently, 
HUDSON (1  989) has used coalescent theory to investi- 
gate  the validity of parsimony for  restriction site data 
under  the assumption of no selection. Under parsi- 
mony, a  restriction site difference is explained by the 
minimum number of mutations; namely, one. HUDSON 
shows that, in a sample of n haplotypes, the probability 
that  a  restriction site difference between two ran- 
domly drawn haplotypes being due  to  more  than  one 
mutation  (the  nonparsimonious  state) is: 

where r is the  length (in nucleotides) of the  endonu- 
clease recognition  sequence, and 0 = 4 N p  where N is 
the  inbreeding effective size and p is the mutation 
rate  per nucleotide. The probability that two ran- 
domly chosen DNA sequences differ at a  particular 
nucleotide site is given by O/( l  + 0) = I9 for I9 small. 
The parameter I9 is readily estimated  from the restric- 
tion site data (EWENS 1983). 

The first step in evaluating parsimony is to estimate 
I9 using standard  procedures (EWENS 1983)  and eval- 
uate Equation 1. If the  resulting probability is small 
(we will use the  standard 5% level throughout this 
paper),  one can simply estimate the cladogram using 
maximum parsimony. However,  a  cladogram will be 
based on differences at many different polymorphic 
sites. Hence, even if the probability that any one of 
these sites has a  nonparsimonious  state is small, there 
can still be  a substantial probability that  at least one 
of the site differences will deviate from parsimony. 
Hence,  acceptance of parsimony at this state  does  not 
necessarily eliminate the need  for  dealing with clado- 
gram  uncertainty. 
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FIGURE 1.-Diagram of the haplotype sampling process being 
modeled.  Two haplotypes are sampled from the present population 
that differ at  an index restriction site. The mutation causing the 
difference at the index site occurred t time units ago. It makes no 
difference to our calculations whether or not  the  common ancestor 
had the index site or  not  (hence, its ancestral state is indicated by a 
question mark over the heavy bar); only that one  of its descendants 
has the restriction site (+) and  one  does  not (-) and that these states 
have persisted into the present. At the time of the index  mutation, 
the conlnlon ancestor of the two current haplotypes bore several 
other restriction sites, indicated by the +'s in the ancestral haplo- 
type. We are concerned with the current state of the restriction 
sites  found in the common ancestral haplotype. 

HUDSON shows that Equation  1 is likely to  be  greater 
than 0.05 for  reasonable values of the  parameter 8. 
For  example, the Drosophila ADH locus data 
(AQUADRO et al. 1986)  that was previously subjected 
to a cladistic analysis (TEMPLETON, BOERWINKLE and 
SING  1987) has 8 = 0.0064, which  yields H = 0.12.  
Many other loci that have been  examined have 8 
values of similar magnitude (EANES, LABATE and 
AJIOKA 1989).  Hence, we generally expect  that Equa- 
tion l will be greater  than 0.05 for most data sets. 
Given that  Equation  1 fails to justify  a  general use  of 
parsimony among  randomly  drawn  pairs of haplotypes 
in a sample of size n, the second step in our algorithm 
for defining  a  set of plausible cladograms is to evaluate 
the limits  of validity or parsimony for estimating the 
mutational  transitions between specific haplotype 
pairs as opposed to randomly  drawn pairs. 

HUDSON'S probability refers  to  the chances of a 
nonparsimonious  relationship between any two hap- 
lotypes that  differ at a given restriction site in a sample 
of n haplotypes, regardless of the states of the  other 
restriction sites in the DNA region under study. Ob- 
viously, the probability of a  nonparsimonious  relation- 
ship  should  decrease when we restrict our attention 
to only those pairs of haplotypes that  differ by a 
smaller number of restriction sites. Given that H is 
sufficiently large  that we cannot apply parsimony to 
all haplotype pairs, we nevertheless may be  able to 
apply parsimony to  haplotype pairs that  share most  of 
the  other restriction sites. We explore this possibility 
by  estimating q, the probability that a block  of r 
nucleotides has experienced  a  mutation  after  an  index 
mutation has occurred  that  resulted in the restriction 
site polymorphism (Figure 1). We consider the case  in 
which the phenotypic  state associated with the index 

mutation (ie., the presence vs. the absence of a restric- 
tion endonuclease  recognition  sequence) has not  been 
altered,  the haplotypes are different  at j restriction 
sites (including  the  index  site), and  the haplotypes 
share m cut  restriction sites. The estimates of q asso- 
ciated with values o f j  and m will be used to evaluate 
the validity of maximum parsimony in inferring  intra- 
specific phylogenies. 

Like HUDSON  (1  989), we condition on the fact  that 
two haplotypes differ at a  particular  restriction site, 
and we call this the index  restriction site. We assume 
that  the  original  divergence of the two haplotype 
lineages at this index restriction site was due  to a 
single nucleotide  substitution. This index  mutation 
defines the origin of two haplotype lineages that ini- 
tially differ by only one  restriction site. As time  pro- 
ceeds, the two lineages can acquire  additional restric- 
tion site differences.  For now, we will assume that we 
can rank all the  current polymorphic sites by their 
relative  evolutionary ages, and  the index site by defi- 
nition has a  rank of 1 (this assumption is not  important 
for  the final estimation procedure). Let q1 be  the 
probability of a  nucleotide  change within a block  of r 
nucleotides in the two haplotypes since their respec- 
tive lineages diverged at  the index  restriction site. 
(Note, all of the  procedures  developed in this paper 
can be  applied  to DNA sequence  data by the simple 
expedient of setting r = 1 in  all  of the following 
equations.) We assume that this q1 is the same for all 
blocks  of r nucleotides in the DNA region under 
consideration. We further assume that  the time period 
is sufficiently small that  at most one  additional  muta- 
tion per restriction site block can occur  after  the index 
mutation.  This implies that  the value of 91 will be 
small. We  now estimate 91 as a  function of j ,  the total 
number of restriction sites by which the two haplo- 
types differ at present (given that they differ by at 
least one,  the  index  site),  and of m, the total number 
of cut  restriction sites which they share  at  present. 

The first step in the estimation procedure is to 
construct  a probability model for  the  relevant haplo- 
type state changes. First we consider  the oldest poly- 
morphic  restriction  site, the index site. The index 
restriction site will retain its phenotypic  state if no 
mutations  occurred at  the  restriction site in the  hap- 
lotype lineage with the recognition  sequence and 
either no mutation  occurred at  the  restriction site in 
the  haplotype lineage without the recognition se- 
quence, or a second mutation  occurred  but  did  not 
result in the creation of the  recognition  sequence. 
Under  our assumptions, the probability of this last 
event is ql(3r - 1)/(3r) if there is no transition/ 
transversion bias because one  nucleotide  substitution 
out of the 3r possibilities can restore  the recognition 
sequence, so that  one  mutation must be  excluded. 
However, if there is a  strong bias  in favor of transi- 
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tions, as frequently  occurs with mitochondrial DNA 
for which 90% of the mutations are transitions 
(BROWN et al. 1982), most mutations are simply binary 
switches over short  periods of evolutionary  time, so 
the probability of a  mutation  that  does  not alter  the 
restriction site state can be  approximated by ql (r  - 
l)/r. In general, we can write this probability as ql(br  
- l)/(br) where b reflects the transition bias such that 
b = 3 if there is no bias and b = 1 if there is extreme 
bias. With these  approximations, the probability that 
the index polymorphic state is retained as: 

(1 - 9l)[(l - 41) + 91(br - l)/(br)l 

= ( 1  - - 91/(br)]. (2) 
Now consider the m cut restriction sites, each in- 

volving r nucleotides, that  are  shared in common by 
the two haplotypes. Under  our assumption that  at 
most only one additional  mutation  occurred at any 
given restriction site, the  cut  restriction sites shared 
in common by the two haplotypes must have been in 
the recognition sequence  nucleotide  state at  the time 
of the index mutation followed by no mutations in 
either haplotype lineage. The probability that two 
haplotypes share  a site is ( 1  - ql)'. Assuming inde- 
pendence of sites, the probability that they share m 
cut sites is: 

( 1  - 91)'". (3) 

Finally, we assume that  the two haplotypes differ at 
j restriction sites; that is, they differ a t j  - 1 restriction 
sites in addition to  the index site. There  are two ways 
in which these  additional  differences  could have 
arisen. First, the  recognition  sequence  could have 
been  present at  the time of the index  mutation,  and 
subsequently retained in one lineage but lost  in the 
other. Since we are not  interested in whether or not 
this recognition sequence is on the haplotype with the 
recognition  sequence at  the index  restriction site, 
there  are two ways of achieving this state,  for  a  total 
approximate probability of 2ql(l - 91). The other 
alternative is that the recognition  sequence did not 
exist at  the time of the  index  mutation, but  rather 
that a  subsequent  mutation in an one-off site (ie., a 
block of r nucleotides that have the  proper recognition 
sequence nucleotides at only r - 1  nucleotide sites, 
although with an  extreme  transition bias we also re- 
quire  that  the one-off site differs by a  transition) 
caused the  appearance of the recognition  sequence in 
one lineage (with probability q l / (br ) ) ,  but in the  other 
lineage this block  of nucleotides either did not  mutate 
o r  mutated to a  state other  than  the recognition 
sequence (with probability [ 1 - q l / (br ) ] ) .  Once again, 
there  are two ways in  which these  events could occur, 
and we also note  that  for every restriction site present 
in the DNA segment, we expect br one-off segments 
to be present (TEMPLETON 1983b).  Hence, there  are 

a  total of 2br ways of gaining  a  recognition  sequence 
from  the  set of one-off sites. Thus,  the total probabil- 
ity of any one-off site becoming a  restriction site is 
approximately: 

2br[ql/(br)][l - ql/(br)l = 2ql[l - ql/(br)] (4) 
Consequently, the total probability of a  restriction site 
difference other  than  that  at  the index site is, under 
our  assumptions: 

29l(l - 91) + 2br[gl/(br)I[l - ql/(br)l 

= 2q1[2 - ql(br + l)/(br)] ( 5 )  

Finally, the probability of the one-off sites in both 
haplotype lineages remaining  as non-cut sites is 1 - 
2q1[l - ql/(br)] under  our set of assumptions. Com- 
bining Equations 2, 3,  5 ,  and  the probability of one- 
off sites remaining  non-cut sites, the total probability 
that two haplotypes differ at  the index  restriction site, 
differ at j - 1 other restriction sites, and  share in 
common the presence of m cut  restriction sites is 
approximated by: 

L(j,m) = ( 1  - ql)[l  - ql/(br)](l - q1)'" 

.(2q1[2 - q1(br + l)/(br)]Ij-' 

- 29l[l - 9l/(Wll 

= (2q1)j-'(1 - q1)2m+1[1 - ql/(br)] 

.[2 - q1(br + l)/(br)]j-l 

( 1  - 2ql[l - qi/(br)ll (6) 

Equation 6 can be used in a variety of ways to 
estimate q l .  One  standard  method is maximum likeli- 
hood, which estimates q 1  as the value which maximizes 
Equation 6 given j and m. Although maximum likeli- 
hood has many optimal properties, in general it  yields 
biased estimators and can encounter  boundary value 
problems. This is the case for Equation 6. One of the 
most important  and common cases that we will need 
to evaluate is when j = 1 ; that is, the two haplotypes 
differ at only one restriction site. When this occurs, 
there  are no additional observable mutations, and  the 
maximum likelihood estimator of q 1  occurs on  the 
boundary  condition of 0; that is, Equation 6 reaches 
its maximum value of 1 when 91 = 0 regardless of the 
value of m if there  are no additional observable mu- 
tations. Hence, maximum likelihood will always justify 
the use of maximum parsimony between haplotypes 
that  differ by only a single restriction site. However, 
in light of HUDSON'S (1989) work, we expect this 
conclusion to be too  extreme.  Moreover, it is intuitive 
that  the estimator of q 1  should  decrease with increas- 
ing m,  but this does  not  occur with the maximum 
likelihood estimator when j = 1. For these reasons, 
maximum likelihood is an  inappropriate  estimator in 
this case. 
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Instead, we will regard Equation 6 as  a  posterior 
probability distribution of the  data given q1 and esti- 
mate q1  through a Bayesian  analysis. To perform  a 
Bayesian analysis, we need  a  prior probability distri- 
bution  for q l .  Because q1 is a  probability, it can range 
in  theory between 0 and  1,  although most realistic 
values of q1 should be small. Moreover,  Equation 6 is 
valid only for small values of q1. One reasonable  upper 
bound  for q 1  is H (Equation 1). We will always be 
contrasting haplotypes that  are  more similar to  one 
another  than randomly  drawn  pairs that differ by at 
least one site. Hence, q 1  should always be less than H ,  
and  one reasonable and simple prior is a  uniform 
distribution  over the interval 0 to H .  We will use this 
prior  throughout  the  remainder of this paper. How- 
ever, we note  that all the examples presented in this 
paper  (and  additional examples as well) were analyzed 
with several priors:  a  uniform (0, H ) ,  a  uniform (0,  
2 H ) ,  a  uniform ( O , l ) ,  and various beta  distributions 
that  concentrated most of the probability mass to- 
wards the smaller values of 41. The numerical impact 
of these  different  priors was trivial, even when the 
prior placed considerable probability mass on  to large 
values of q l .  For  example, most of the estimates pre- 
sented in this paper are  the same (to  three decimal 
places) with either a  uniform (0, H )  prior  or a  uniform 
(0,l) prior,  and  the estimates that were changed were 
only  altered by no  more  than 0.007 and usually con- 
siderably less. Hence, our final estimator is not sensi- 
tive to this set of  possible priors.  It  should also be 
pointed  out  that  different  approximations can be used 
to derive  alternative  forms of Equation 6. For  exam- 
ple, we used a  linear  approximation in dealing with 1- 
off sites, but a more exact  alternative is to use a term 
involving an  exponent  proportional to m. The numer- 
ical impact of this alternative  approximation was also 
trivial, although its impact on  computing  time was 
not. 

Combining  Equation 6 with the uniform  prior on 
q1, the Pitman estimator [PITMAN (1939)-a standard 
Bayesian estimator] of q1  is 

1 1 

i l  = 1 q l L ( j , m ) d q l / l  ~ ( j P W q 1 .  (7) 

When j > 1, it is also possible for deviations from 
parsimony to  occur with respect to  the restriction site 
differences  that  arose  subsequent to  the index site. 
Hence, we now consider  mutations that arose after 
the second oldest mutation associated with a  different 
site. The probability of these  mutations in a block  of 
r nucleotides is designated by q2. This is exactly the 
same statistical problem  that we have already consid- 
ered, except that we now ignore  the  nucleotides as- 
sociated with the index  mutation.  Hence, we can also 
estimate 42 from  Equation 7 simply  by replacingj with 
j - 1. This iterative procedure is repeated  to yield the 

set of estimators ( 4 1 ,  . . . , qj]. Note,  that  although we 
assumed we knew the rank order of the evolutionary 
ages of the j restriction sites that  differ between the 
two haplotypes, this iterative estimation procedure 
depends only upon the observable values o f j  and m. 
Hence,  the assumption about  the relative ages of the 
mutations causing site differences is only a conven- 
ience in developing the model and is not necessary 
for  the actual estimation procedure. 

An estimator of Pj, the probability that two haplo- 
types differing by j sites but sharing m have a parsi- 
monious relationship ( i e . ,  no unobserved  mutations 
at any site), is: 

j 
F j  = (1 - ii), 

i= 1 

A package in Mathematica (WOLFRAM  1991) has 
been  written to  perform all the calculations used in 
this paper  and is available upon  request to  the senior 
author. 

AN ALGORITHM  FOR  CLADOGRAM 
ESTIMATION 

As mentioned  earlier,  cladograms  can  be  estimated 
by maximum parsimony if Equation 1 is  less than 
0.05. Hence, the following algorithm is predicated 
upon the observation  that  Equation 1 is greater  than 
0.05. Given this inequality, Equation 8 will be our 
fundamental tool in evaluating the limits  of parsi- 
mony. We will apply Equation 8 successively to hap- 
lotypes differing by one, two, etc.  restriction sites to 
define  these limits. 

Step 1: Estimate PI; that is, the probability of par- 
simony for  the  haplotype pairs that  differ by only a 
single site. In  general, intraspecific data sets will yield 
many different pairs that  differ by only a single site. 
Although the estimation  procedure can be  applied to 
all  possible pairs,  a more efficient (but  more conserv- 
ative) procedure is to identify the haplotype  pair  that 
shares the fewest number of cut  restriction sites. If 
the resulting  estimator of P1 is  less than  0.95, we 
would recommend  that  the estimation procedure  be 
terminated because there will be  extreme  cladogram 
ambiguity when parsimony cannot  be  justified even 
among haplotypes differing by a single step. 

If PI is greater  than 0.95,  then each single step is 
likely to be parsimonious. Hence, we link up all hap- 
lotypes that  differ by a single restriction site. This 
subdivides the original haplotypes into one  or  more 
1  -step networks. It is also commonplace for  restriction 
mapping to reveal other mutational  changes, such as 
insertions or deletions, or  for  the restriction site data 
to be  supplemented by protein  data (e .g . ,  protein 
electrophoresis). Since these types of mutational 
changes tend to  be  unique (e .g . ,  many insertions or 
deletions may occur,  but they differ in position and 
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size) or  rare relative to restriction site changes (e.g., 
electrophoretic mobility changes or nonsynonymous 
nucleotide  substitutions when dealing with sequence 
data), these other types of mutations are integrated 
into  the 1-step networks in a parsimonious fashion, as 
suggested by LLOYD and CALDER (1 99 1). These 1 -step 
networks can be  constructed  from  standard phyloge- 
netic analysis programs such as  PAUP (SWOFFORD 
1990). For example, the “show distance matrix”  op- 
tion in PAUP gives the observed  mutational distance 
matrix and allows one  to rapidly identify all haplotypes 
that differ by only one  mutation. 

Although any single mutational  step  between hap- 
lotypes within a 1-step network is likely to be parsi- 
monious, if the network consists of many mutational 
steps, it is probable  that deviations from parsimony 
may occur  somewhere in the network. Deviations 
from parsimony often show up as  convergent or par- 
allel mutations (TEMPLETON 1983b), which are called 
homoplasies. The models of TEMPLETON (1 98313) and 
HUDSON  (1989)  indicate that homoplasies are very 
likely for  restriction site changes, so they are  to be 
expected in any l-step  network  containing many mu- 
tational steps. In some cases homoplasy can result in 
a closed loop of  possible mutational steps connecting 
a set  of haplotypes within a  l-step  network.  A true 
evolutionary tree will have no closed loops (although 
it may have homoplasies), so the  occurrence of such 
loops implies uncertainty in the cladogram.  Such loops 
can also arise because of recombination, and  that 
possibility is investigated next. 

Step 2: The l-step  networks are next used to iden- 
tify potential  products of recombination. AQUADRO et 
al. (1986)  concluded  that  recombination  should only 
be inferred if a single recombination  event  can resolve 
two or more homoplasies. As will be shown in the 
next section, in practice AQUADRO et al. (1986) also 
inferred  recombination when a single recombina- 
tional  event resolved a single homoplasy involving a 
mutation  regarded as evolving in a completely parsi- 
monious fashion (e.g.,  an  insertion/deletion). We use 
both of these criteria in our algorithm. 

We first inspect the  l-step  networks  for homoplasies 
involving the mutational classes regarded as com- 
pletely parsimonious. If such homoplasies exist, we 
inspect the haplotypes to identify potential recombi- 
nation events that could explain these homoplasies. 

Second, we inspect the  data  to see if recombination 
can resolve two or more homoplasies involving restric- 
tion sites or nucleotides. This inspection involves two 
steps. First, if there  are multiple loops within a  l-step 
network, we see if recombination can eliminate two 
or  more homoplasies. Second, we inspect for multiple 
homoplasies involving the mutational  connections 
among  the different 1-step networks. This inspection 
is accomplished by performing  a  standard maximum 

parsimony analysis of the  entire data set using a  pro- 
gram such as PAUP. The previously identified 1-step 
networks are overlaid upon  the maximum parsimony 
cladogram+), and  the mutational  connections be- 
tween two haplotypes found in different 1-step net- 
works are  recorded. If these  mutational  connections 
involve two or  more homoplasies, we inspect the  data 
to see if a single recombination  event  among the 
haplotypes (ignoring any mutations  that are unique to 
the candidate  recombinant haplotypes) can resolve the 
homoplasies. If so, the candidates are regarded as 
recombinants. 

The impact of these  inferred  recombination  events 
upon  the  remainder of the analysis depends  upon  the 
portion of the sample size affected by the  inferred 
recombination event(s). If only a small number of 
observations is associated with a  recombinant haplo- 
type(s), we simply exclude the  inferred  recombinant 
haplotype(s) from  the  cladogram in  all subsequent 
steps, as was done by TEMPLETON, BOERWINKLE and 
SING (1  987)  for  the Drosophila Adh locus. 

If a substantial proportion of the  data is excluded 
by this step or if recombination  appears  to  be extensive 
in the region as a whole, we suggest that  the DNA 
region  be  subdivided  into two or more  subregions 
within which recombination is rare.  Separate clado- 
grams would be  estimated for each subregion. This 
subdivision is accomplished by using a modification of 
the  “approximate”  algorithm given in HEIN  (1990). 
SAWYER  (1989)  and STEPHENS (1985)  present algo- 
rithms to detect  the  presence of recombination within 
a  data  set,  but  these  algorithms do not  reconstruct  the 
history of the haplotypes nor  infer which  specific 
recombinations have taken place. Because our pri- 
mary purpose is to estimate the evolutionary history 
of the haplotypes, we must use an  algorithm such as 
HEIN’S  that  does make these  inferences. 

Starting  at  the  ends of the DNA region being ex- 
amined,  keep  adding  additional sites and constructing 
maximum parsimony cladograms until there is evi- 
dence  for no more  than  one  recombination  event 
resulting in a sample exclusion (using the criteria given 
above). Once these two terminal  regions have been 
identified, the algorithm is repeated  on  the  remainder 
of the DNA region  until the region has been subdi- 
vided into  a set of mutually exclusive and exhaustive 
subregions, each with little to  no  internal  recombina- 
tion. All subsequent  cladogram estimation steps are 
performed  separately within each subregion.  In this 
case, the evolutionary history of the  region as a whole 
cannot  be  estimated due  to extensive recombination, 
but  rather a set of evolutionary histories are estimated 
for each subregion. Each of these  subregions is treated 
as the unit of analysis in  all subsequent steps. 

Step 3: Augment j by one  and estimate P,. For j > 
1 ,  the  number of relevant  haplotype pairs is usually 
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sufficiently small so that all pairs  should  be separately 
calculated.  For efficiency, one should  start with the 
pair  sharing the fewest common sites.  If parsimony is 
accepted in this case, it will be true for all others as 
well. As before, parsimony is accepted when P, > 0.95. 
If parsimony is accepted,  unite the two (j - 1)-step 
haplotype  networks through  the two haplotypes that 
differ by j steps to  form  a  j-step  network ( i e . ,  a 
haplotype  network in which all haplotypes differ by 
no  more  than j sites from  their  neighbors,  excluding 
mutations in those classes regarded  as absolutely par- 
simonious). As before,  mutational loops may arise 
within these  j-step  networks  that  are indicative of 
cladogram ambiguities. 

Repeat this step until either all haplotypes are in a 
single network (in which  case the estimation  proce- 
dure has been  completed) or the haplotypes have been 
subdivided  into two or  more nonoverlapping  net- 
works among which  all parsimonious connections have 
a P value less than  0.95.  In  the  later case, proceed to 
Step 4. 

Step 4: We now unite  the  separate  networks  iden- 
tified in Step  3  into  a single cladogram. Because we 
have  already  concluded that parsimony among these 
networks is likely to be violated, we need to consider 
nonparsimonious linkages as well. Let x be the  number 
of mutational steps involving restriction sites (or  other 
potentially nonparsimonious  mutational classes) that 
connect two networks under maximum parsimony 
(estimated by using the maximum parsimony clado- 
gram  for  the  entire  data set that was generated  for 
Step 2). Then,  the probability that y or fewer of the x 
restriction site mutations are  not parsimonious is: 

Y i X 

C C II q j ( k )  ll (1 - q j d  (9) 
i=O I k=l k=i+l 

where I refers  to  the  set of all permutations of the x 
age ranks ( i . e . ,  the ranks of evolutionary age of the 
mutations associated with restriction site differences 
between  the two haplotypes, as used in deriving Equa- 
tion 8). Since we are concerned only with the total 
number of mutations that  occurred  beyond  those 
required by parsimony, we need to consider all per- 
mutations of the age  ranks with which these  additional 
mutations are associated that yield the same number 
of total  additional  mutations. This is accomplished by 
placing these  age  ranks into two classes of size i and x 
- i, and  then  summing  over all permutations of the 
age ranks  that result in these class  sizes. These  alter- 
native  permutations are indicated byj(k), which refers 
to the kth permutation in the set I. The first product 
in  (9) is defined  to  be  1 when i = 0. For  example, if x 
= 3 and y = 1,  then  Equation  9 becomes: 

(1 - 4d(1 - 42)(1 - 4 3 )  + 41(1 - 42)V - 4 3 )  

+ 4 2 u  - q 1 ) U  - 4 3 )  + 43(1 - 42)(1 - 41). 

We then  find the minimum value of y such that 
probability (8) is greater  than  or equal to 0.95. Our 
set of plausible cladograms  contains all connections 
between disjoint networks  that  include the maximum 
parsimony solutions as well as any connections involv- 
ing up  to y additional  mutational steps. 

In practice, it is often impractical to consider all 
possible connections when y 2 2. Consequently, when 
the  number of  possible connections is large, we rec- 
ommend  that  the investigator be  content with  simply 
knowing which networks of haplotypes are likely to 
be  connected to  other networks without specifying 
the specific haplotypes within each network  through 
which the connections are made. In some cases, a 
network may be  connected to  more  than  one  other 
network through x + y mutations or less, and all such 
connections are regarded as being plausible and  there- 
fore  contribute  to  cladogram  uncertainty. 

Our estimated  cladogram set will therefore consist 
of all the parsimonious and non-parsimonious connec- 
tions between the haplotype networks identified by 
the algorithm  above, and  the alternative cladograms 
that  are  generated by all the various ways of breaking 
closed loops within the networks. 

SOME  WORKED  EXAMPLES 

The ADH locus in Drosophila  melanogaster: Our 
first  example uses data  on  49 lines of D. melanogaster 
that  were  scored with a  battery of restriction enzymes 
for  a  13-kb  segment of DNA encoding the alcohol 
dehydrogenase  gene,  as described in AQUADRO et al. 
(1986). The insertions and/or deletions at  the “b” 
position are all different,  but were not  indicated as 
such in the  paper of AQUADRO et al. (1  986),  although 
they were analyzed with these differences in mind (C. 
F. AQUADRO, personal  communication). Accordingly, 
we number these  different  insertion/deletion events 
to make this difference explicit. As mentioned  earlier, 
H = 0.12 in this case, so we need to use the algorithm 
described  above instead ofjust simply using maximum 
parsimony in an unqualified fashion. 

There  are several haplotype pairs that  differ by only 
a single restriction site, and  the minimum number of 
shared  cut sites among  these pairs is 26. Using Equa- 
tion 7 with b = 3, j = l and m = 26 and a  uniform (0, 
0.12)prior,yieldsql=0.017,soP1=0.9830rgreater 
for  l-step  transitions.  Hence, we accept parsimony 
between haplotypes differing by only one mutation. 
Figure 2 presents  the  resulting  l-step  haplotype  net- 
works in  which insertion/deletion and amino-acid 
changing  mutations have also been  added  on in a 
parsimonious fashion. Three 1-step networks  arise, 
with one consisting of 27 of the 29 haplotypes (net- 
work I),  and two networks consisting of a single hap- 
lotype each (networks I1 and 111). No loops appear 
within any of these 1-step networks, so there is no 
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NETWORK I 

0-74 ,+ 1 4 ~  -,0-26 FIGURE 2.-The 1-step  haplotype 
networks  at  the Drosophila  melanogaster 
ADH locus derived  from  the  data in 
AQUADRO et al. (1986).  The  49 lines de- 

“O-n”,  n = 1-29, in the  terminology of 
B +0.26 TEMPLETON et al. (1 988). Each arrow 

0-24 fine  29 haplotype categories, designed as 

0-1 6 indicates one  mutational  event. The  de- 

4-23 arrow, using the  notation given in 
AQUADRO et al. (1986). “S” and “F” refer 
to  electrophoretic mobility of the Adh 
protein,  and  “Ins”  and  “Del”  refer  to 
insertions and  deletions relative to a ref- 
erence  chromosome (each of these  events 
could  be  either  an insertion or a deletion 

o-2 root  of  the network). Because the  net- 
works are  unrooted,  each  arrow is dou- 
ble-headed. Each mutational  event has  a 
“+” and a ‘ I - ”  by it. The  “+”’s indicate 

0 scription  of the  event is indicated by the 

0 - 4  

0 -5  mutational  event  depending upon the 

NETWORK II: 0-7 

the  presence of the  notated  genetic  state 
and  the ‘“”’s its absence.  Since the net- 
work is unrooted,  both possibilities could 
have occurred in the  evolutionary history 
of  the Adh region,  and  the type of change 
as a function of evolutionary  direction is 
indicated by the symbol closest to  the 
arrowhead  that  defines  the evolutionary 
direction. Asterisks identify all possible 
homoplasies in the  cladogram,  whether 
or not they are involved in loops of am- 
biguity. 

NETWORK 111: 0-29 

cladogram ambiguity at this level  of analysis. 
To identify potential  recombinants, we first exam- 

ine within each network for homoplasies associated 
with insertions/deletions or amino acid changes. Po- 
tential homoplasies are indicated by asterisks in Figure 
2. Four  potential  candidates are identified by this 
single homoplasy criterion (haplotypes 0-1 I, 0-26, 0- 
27, and 0-28). Our second criterion for a  potential 
recombinant is two or more homoplasies connecting 
a haplotype to its nearest  neighbor in another network 
o r  multiple loops within a  l-step  network. Since there 
are no within network loops, we examine the connec- 
tions  under maximum parsimony among  the  three 1- 
step networks. Haplotype 0-7 (network 11) is con- 
nected to 0-6 (network I) by two mutations,  but only 
one is a  potential  restriction site homoplasy. Hence, 
there is no evidence for  recombination in this case. 
Haplotype 0-29 (network 111)  is connected to  either 
haplotype 0-2 or 0-15 (network  I), in each case by two 
homoplasies and would be  a  terminal  haplotype under 
either connection.  Hence,  haplotype 0-29 is also a 
candidate  for being a  recombinant. 

We next inspect each of these  candidates to see if 
they can be generated by a single recombination 

event,  ignoring any mutations  that are unique to  the 
candidate  haplotype.  Among the  four haplotypes 
identified by the first criterion, each can be  generated 
by a single recombination  event. The sole multiple- 
homoplasy candidate is haplotype 0-29, which can also 
be  generated by a single recombination  event 
(AQUADRO et al. 1986).  Hence, we eliminate haplo- 
types 0-1 I, 0-26,  0-27, 0-28 and 0-29 from all further 
analysis because they are likely to be  recombinants. 
This reduces the  number of l-step networks to two 
because network I11  is eliminated with the exclusion 
of its sole member,  haplotype 0-29. 

We next  consider the case  in  which j = 2, the 
haplotypes found in a 1-step network  that  differ by 
two restriction sites from  their closest haplotype in 
another  l-step network. With the exclusion of  the 
recombinant haplotypes, there is only one such con- 
nection. Haplotypes 0-7 (network 11) and 0-6 (network 
I)  share  28  cut  restriction sites, resulting in P = 0.953 
from  equation (8). In this case, we accept the parsi- 
monious connection. The resulting cladogram is 
shown in Figure 3. In this case, there is no uncertainty 
in the cladogram using the criterion given above, even 
though  there still are some homoplasies involving 
restriction sites. 
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FIGURE 3.-The estimated cladogram 
for  the Adh gene region, using the  data 
given in AQUADRO et al. (1 986) and ex- 
cluding haplotypes satisfying our criteria 
for being recombinants. 
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The AMY locus in D. melanogaster: Our next  ex- 
ample is based on  the restriction site maps given in 
LANGLEY et al. (1988)  for  the amylase locus (although 
we exclude  5 lines with incomplete  haplotype  infor- 
mation  for this analysis). Equation  1 yields H = 0.1 14, 
so we proceed to  Step 1. The two haplotypes that 
differ by only one restriction site and that  share  the 
fewest common  cut  restriction sites are  the haplotypes 
represented by lines  KAOl and R106 (LANGLEY et al. 
1988).  For  these haplotypes, m = 20. Using b = 3 
because this is nuclear DNA and a  uniform  (0,0.114) 
prior, q 1  = 0.022 and P = 0.978. Thus, 1-step net- 
works are justified and  are shown in Figure  4 (with 
nonrestriction site mutations overlaid in a parsimon- 
ious fashion). Two 1-step networks  result, one con- 
sisting of only a single haplotype  (network 11). Net- 
work I has a  cube of interconnecting loops in its 
center, which can generate 240 different  cladograms. 

We next inspect for  recombinant  candidates. Using 
the first criterion, we find that  there  are  no homopla- 
sies within the networks that involve insertions/dele- 
tions or amino acid changes.  Hence, no potential 
recombinants exist involving non-restriction  site  mu- 
tations.  Looking at restriction sites, we discover that 
haplotype 0-1 (network 11) is connected parsimon- 
iously by two mutational steps to haplotype 0-2 (net- 
work I), but only one of these  mutations is a  homo- 
plasy. Hence, there is no evidence  for  recombination 
among  the networks. However, there  are six intercon- 
necting loops within 1-step network I (Figure 4). Re- 
combination  near the EcoRI -2.2 site can break five 
of these six loops, with a single loop  remaining  that 
always  involves a  potential homoplasy at  the EcoRI 
-2.2 site. Because  of this potential homoplasy at  the 
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EcoRI -2.2 site, it is impossible to infer  whether or 
not  recombination  occurred  to the  right or left of the 
EcoRI -2.2 site. However, we can infer  that it oc- 
curred  near this site. In  a case  like this, we recommend 
that  the DNA region  be subdivided into  three regions: 
one  that  extends  from  the Hind111 -9.7 site on  the 
extreme left of Amy DNA region  studied by LANGLEY 
et al. (1988)  up  to  but  not  including  the EcoRI -2.2 
site,  a second that includes only the EcoRI -2.2 site, 
and a third  that  extends  from  but does  not  include 
the EcoRI -2.2 site up  to  and  including  the EcoRI 4.8 
site at  the  extreme  right of this region. 

We now need  to  reevaluate the limits of parsimony 
for  the two subregions on  either side of the EcoRI 
-2.2 site. For the left subregion, m = 10 minimally 
for pairs differing by a single restriction site, yielding 
P = 0.966.  Hence, we construct  the 1-step networks 
for  the left subregion, as shown in Figure 5.  Two 1- 
step  networks  result, with one consisting only of hap- 
lotype 0-1. As mentioned  before, this haplotype is not 
a  candidate  for  recombination, so we proceed  to  Step 
3, where m = 10  for  the 0-1, [O-2,041 haplotype pair 
in the left subregion, yielding P = 0.913.  Hence, we 
move on  to  Step  4, which  yieldsy = 1 with a probability 
of 0.998  from  Equation  9.  This yields  only  two plau- 
sible connections, 0-1 to [O-2,041 (the parsimonious 
connection of length two) and 0-1 to 0-3 (a non- 
parsimonious connection of length  three).  This yields 
a  total of two plausible cladograms  for this subregion. 

For 1-step parsimony in the  right  subregion, m = 9, 
yielding P = 0.965.  Hence, we construct the  l-step 
networks  for the  right  subregion, as shown in Figure 
6.  In this case, there is only a single 1-step network 
with only one plausible cladogram. 
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NETWORK I NETWORK I 

NETWORK II: 0-1 

FIGURE  4.-The 1-step haplotype networks for the Amy gene 
region of D.  melanogaster using the data in LANGLEY et al. (1988). 
Mutations are identified using the notation given in LANGLEY et al. 
(1988), and is  similar to that used in Figure 2. Solid arrows indicate 
transitions that are unambiguous under our criteria, whereas 
dashed arrows define loops of ambiguity under parsimony due  to 
homoplasies. 

The esterase 6 locus in D. melanogaster: Our final 
example is the  esterase  6 locus restriction site data 
given in GAME  and  OAKESHOTT  (1  990). This is a  2  1.5- 
kb region, and hence is longer  than any of the  other 
examples given earlier.  Interestingly,  GAME and OAK- 
ESHOTT (1990)  attempted  a cladistic analysis upon 
these  data,  but  abandoned  the  effort because recom- 
bination was apparently so common  that it was impos- 
sible to construct  a meaningful cladogram. 

In this case, H = 0.175 and m = 65 minimally when 
j = 1.  Step  one yields PI = 0.993 with a  uniform (0, 
0.175)  prior, so we construct the 1-step networks. 
One of the 1-step networks consists of  six haplotypes 
[haplotype  numbers 16, 19, 25,  27,  28 and 30, using 
the designations given in GAME  and OAKESHOTT 
(1  990)],  and 24 1 -step networks consist of but  a single 
haplotype.  Hence, the  number of candidates  for  re- 
combination is very large, and  indeed almost all of 
them involve multiple homoplasies that might  be  ex- 
plained  through  recombination.  Hence, we agree with 
the conclusion of GAME  and OAKESHOTT (1  990)  that 
recombination is so common that  a meaningful cla- 
dogram  cannot be reconstructed  for the  entire  region. 
We accordingly applied  the  algorithm by HEIN (1 990) 

yl (0-17,0-18,0-19,0-20,6-21 ) 

0-8 

NETWORK II: 0-1 

FIGURE  5.-The 1-step haplotype networks for  the left Amy gene 
subregion of D. melanogaster using the data in LANGLEY et al. (1988). 
Mutations are identified using the notation given in LANGLEY et al. 
( 1  988). Some of the haplotypes given in Figure 4 are boxed  together 
in this figure because they are identical in the left subregion. 

to subdivide this region  into  subregions within which 
there is little to  no recombination. Three subregions 
resulted, and each is subjected  to an  independent 
analysis. We will continue  to use the haplotype desig- 
nations given by GAME  and OAKESHOTT (1990), al- 
though  for any particular  subregion many  of these 
haplotypes (defined by restriction sites in  all three 
subregions) collapse into a single subregional haplo- 
type category. 

The first  subregion  extends  from  the XbaI -4.3 site 
to  the RsaI +0.20 site. It includes the 5' sequence and 
a little of the  coding  region.  For this subregion, m = 
25 minimally and PI  = 0.982, so we construct the 1- 
step networks given in Figure 7. Going on to  step two, 
only one  potential  recombinant exists, either haplo- 
type 9 (with haplotype 24 being one parental  type, 
and haplotypes 3,  8,  15 or 26 being the  other)  or 24 
(with haplotype 9 being one  parental,  and  either  the 
haplotypes identical to haplotype 4 in this region or 
haplotypes 23 or 27 being the  other).  In this case, 
recombination satisfies both of our criteria: two hom- 
oplasies are resolved (XbaI -4.3  and  Insb - 1.4),  and 
a homoplasy involving a  insertion/deletion  event is 
resolved (Insb  -1.4). We cannot tell which of these 
two haplotypes is the recombinant and which the 
parental  type,  but we exclude  both because both  are 
rare. Going on to  Step  3, we find that P2 = 0.951  for 
the two-mutation parsimonious connections of haplo- 
type 12 to  either  haplotype 5 or  the (3 ,  8, 15) haplo- 
type category in this region.  Haplotype 13 is related 
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FIGURE 6.-The I-step haplotype networks for  the right Amy 
gene subregion of D. melanogaster using the data in LANGLEY et al. 
(1988). Mutations are identified using the notation given in LANG- 
LEY et al. (1988). Some of the haplotypes given in Figure 4 are 
boxed together in this figure because they are identical in the right 
subregion. The two inversions [Inv(cy) and In(2R)NSI are included 
in both Figures 5 and 6 because they span both regions and  do not 
involve recombination. 

parsimoniously to haplotype 2 by three mutational 
steps (two of which are unique to haplotype 13, so no 
recombination is indicated  here). In this case, the 
probability of a parsimonious linkage between haplo- 
types 13 and 2 is 0.902. Step 4 indicates that  the 
probability of a linkage of 3 or  4 mutational steps is 
0.997, so we need  consider only those linkages of 
haplotype I? to the  remaining haplotypes that  deviate 
from parsimony by no  more  than  one  extra  step. The 
nonparsimonious linkages of length four involve hap- 
lotypes 3 et al., 4 et al., and 5, yielding a  total of four 
plausible connections of haplotype I 3  to  the remain- 
der of the cladogram.  Hence, there  are a  total of 2 X 
4 = 8 cladograms in the estimated set for this subre- 
gion when the plausible connections of haplotypes 12 
and 13 are both  taken into account. 

The  second subregion  extends  from the Tag1 +0.80 
site to  the EcoRI +4.3 site. This subregion encompas- 
ses the bulk of the coding  region and some of the 3' 
sequence. PI = 0.975,  and  the resulting 1-step net- 
work is shown in Figure 8A. The position of haplotype 
14 is uncertain only because that line was not  scored 
for  the EcoRI -4.3 site; if it had  been, its position in 
the cladogram would be  unambiguous. There  are  no 
candidates  for  recombination within this subregion, 
and eight  cladograms are plausible (four  due  to  the 
loop of ambiguity, times two due  to  the uncertainty 
of  haplotype 14's position). Because this subregion 
includes the bulk of the coding  region, we also over- 
laid the allozyme data  upon this cladogram, as shown 
in Figure  8B. The only difficulty with this overlay is 
that allozyme 9 is involved in multiple homoplasies in 
its relationship to allozyme 8. Allozyme types 8 and 9 
are minor  variants of the EST6-S allele. The simplest 
explanation  for this apparent homoplasy is that  one 
of these  variants involves a  mutation in the  portion of 

NETWORK I: 72 

NETWORK II: 7 3 

NETWORK 111 

- *  

Taql -0.63 : I  
24 

27 2 0 
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6 23 
FIGURE 7.-The I-step haplotype networks for the 5' subregion 

of  the Est6 gene region of D. melanogaster. The haplotype numbers 
are those given in GAME and OAKESHOTT (1990)  and are defined 
by restriction site variants throughout  the entire  region. As a 
consequence, more than one of the haplotype categories recognized 
by GAME and OAKESHOTT ( 1  990) can define  a single haplotype with 
respect to the variable sites  within a single subregion. Those hap- 
lotypes that are identical with regard to  the sites of this particular 
subregion are enclosed together in this diagram. The mutational 
transitions are indicated using the notation of GAME and OAKESH- 
OTT (1 990). Asterisks mark potential homoplasies. The parsimon- 
ious and/or nonparsimonious connections between the 1-step net- 
works are given in the text. 

the coding  region  covered by our first subregion 
(Figure 7) or was produced by a  recombination  event 
between  these two parts of the coding  region, whereas 
all the  other allozyme variants  (including  the overall 
EST6-S allele class) are  due  to mutations within this 
middle  subregion. The overlay of the allozyme data 
also helps resolve some of the ambiguity within the 
loop of four shown in Figure 8A. By not allowing 
allozyme 4 to be homoplasious, there  are only  two 
ways of breaking  that loop. With the scoring  ambi- 
guity for  haplotype 14,  there  are a total of four 
cladograms plausible for this subregion. 

The final, and largest subregion,  extends  from  the 
DdeI +4.7 site to  the EcoRI +16.6 site (the  remainder 
of the 3' sequence). P I  = 0.978 with m = 20, and 
Figure 9 shows the I-step  networks. Haplotypes 7, 10, 
I I ,  12, 20 and 26 are all  possible candidates  for 
recombination,  but only 16 and 12 involve two or 
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FIGURE 8.-The 1-step haplotype net- 
work for the middle subregion of the Est6 
gene region of D. melanogaster. This subre- 
gion includes the bulk of the coding  region. 
Part A indicates the network defined by 
restriction site and insertion/deletion mu- 
tations only. Part B overlays the allozyme 
changes upon the network given in  part A. 

more homoplasies in their  relationship to  the remain- 
der of the cladogram. In  neither case can  a single 
recombination  event explain these homoplasies. 
Hence,  there is no evidence for  recombination within 
this  subregion. Table 1 gives the results of Steps 3 
and 4 for investigating the parsimonious and  non- 
parsimonious connections  among the 1-step networks. 
As can be seen, many non-parsimonious connections 
must  be  considered,  resulting in a  total of 5400 plau- 
sible cladograms,  four of  which are parsimonious. 

DISCUSSION 

The main purpose of this paper is to provide  an 
algorithm  for  estimating  the  set of plausible clado- 
grams,  thereby  documenting the  extent of uncertainty 
about  the exact topology of the cladogram  for  a 
particular  data set. As shown by the above examples, 
our estimation algorithm may  yield a  set of cladograms 

that include the maximum parsimony subset plus non- 
parsimonious alternatives  that are consistent with 
quantifiable limits to  the deviation from parsimony. 
This is an  important first step in dealing with clado- 
gram  uncertainty because it provides a  documentation 
of exactly how much ambiguity is likely to exist. 

Even when our estimation  procedure yields a single 
cladogram, as it did  for  the Adh example, there  are 
advantages to  our  procedure  over traditional maxi- 
mum parsimony. The Adh cladogram given in Figure 
3 is identical to  that given by AQUADRO et al. (1986), 
with the exception of the haplotypes identified as 
recombinants (to be discussed shortly). AQUADRO et 
al. (1986)  estimated  their  cladogram through maxi- 
mum parsimony, but this procedure makes no assess- 
ment of cladogram  uncertainty.  Hence, AQUADRO et 
al. (1986)  stated  that  their  cladogram  “should  be 
viewed primarily as a visual summary of the  data  and 
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FIGURE 9.-The I-step haplotype networks for  the 3’ subregion 
of the Est6 gene region of D. melanogaster. The parsimonious and 
nonparsimonious connections among  the 1-step networks are given 
in Table 1. 

as only a  rough  approximation to  the  true phyloge- 
netic relationships among  the sequences.” However, 
our analysis not only estimates the cladogram, but 
places limits on its degree of uncertainty. With our 
analysis, we conclude that this cladogram is not  a 
“rough  approximation” at all, but  rather is far  more 
likely to be true  than any other alternative.  Hence, 
ou r  procedure  provides  a  method  for  both  estimating 
cladograms and  for  constructing  a  confidence set si- 
multaneously. 

One weakness of our confidence set is that it is 
based upon pairwise confidence assessments rather 
than  an overall confidence value for  the  cladogram as 
a whole. T o  make an overall assessment, one needs to 
develop  a model that ideally takes into  account all n 
haplotypes simultaneously [as  in HUDSON’S (1 989) 
model]  but that considers only the evolutionarily close 
pairings  found in the plausible cladogram set rather 
than  random pairings. Until such a model is devel- 
oped, we will have to  depend  upon pairwise assess- 
ments because alternative  confidence  procedures, 
such as bootstrapping (FELSENSTEIN 1988), also gen- 
erate confidence  statements only for individual 
branches in the cladogram and  not  for  the cladogram 
as  a whole. This is obviously an  area  that requires 
further investigation not only for our algorithm,  but 
for  other phylogenetic  inference  algorithms as well. 

Despite the above weakness, the  current algorithm 
has several strengths.  First, our procedure is comple- 
mentary  to  more  traditional  approaches  to  the  prob- 
lem of phylogenetic  inference. Most work in phylo- 
genetic  inference has focused on interspecific  data sets 
and has used only the information on  the d$erences 
among  the taxa.  For  example, with bootstrapping, 
maximum likelihood (FELSENSTEIN 1986), or  the 
non-parametric phylogenetic tests of TEMPLETON 

TABLE 1 

Pitman  estimators for the  probabilities of a  parsimonious 
relationship  between  the  1-step  networks  shown in Figure 7 

Haplotype  connections  Probability  Nonparsimonious  connections 
Parsimonious 

7 8 et al. 0.939 2 et  al., (15, 21),  5,  29,  30 
10 22 0.933 1 et al. 
I 1  2 et al. 0.936 1 et al.,  8 et al., 14, 16 
12 1 et al. 0.939 13, 22 
20 13, 2 et al. 0.939 1 et al., 8 et al., 14, 16 
26 1 et  al., 14 0.941 2 et al., 13, 22 

All of these probabilities were less than 0.95, so nonparsimonious 
relationships are also given. In each case, one need consider only 
nonparsimonious relationships of one  extra mutational step in order 
to have the probability of one of these parsimonious or nonparsi- 
nlonious relationships being true being greater than 0.998. 

(1983a,b),  the  greater  the differences  among  taxa, the 
greater  the statistical resolution (unless many of the 
differences are homoplasies). Focusing upon  differ- 
ences among taxa makes sense when working with 
interspecific groups  that  have  been genetically sepa- 
rated  for long  periods of time and  that have extinct 
ancestral nodes. However, with intraspecific data sets 
in  which haplotypes are  the  “taxa,” we expect most 
haplotypes to  differ minimally from some other hap- 
lotypes in the  data set and  for most ancestral nodes to 
still be  present. The interspecific statistical philosophy 
is inappropriate  for analyzing such intraspecific data. 
We have therefore  adapted a  major new focus in 
phylogenetic inference by emphasizing what is shared 
among haplotypes that  differ minimally. As a conse- 
quence, our probabilities of confidence are highest 
when the differences are  the least and decrease with 
increasing differences. This is just  the opposite of most 
other phylogenetic inference  procedures. Therefore, 
we are not  offering  the  present  algorithm as an  alter- 
native to  bootstrapping or nonparametric  testing,  but 
rather as a  complement to these other  procedures of 
phylogenetic inference. Our algorithm has greatest 
statistical resolution  where  these  alternatives have 
least, and vice versa. This observation suggests that 
the greatest overall statistical confidence can perhaps 
be achieved by using a combination of these proce- 
dures.  For  example,  confidence within the networks 
defined by our limits  of parsimony could be evaluated 
as described in this paper  (or ultimately, with an n 
haplotype model of the type described in the previous 
paragraph), whereas the  confidence of the connec- 
tions among  the  networks (which involve larger  dif- 
ferences) could be  evaluated with bootstrapping, max- 
imum likelihood, or nonparametric testing. Such a 
mixed approach would utilize the complementary 
strengths of these various algorithms. 

A second strength of our algorithm is that it pro- 
vides a  quantitative, empirical assessment of deviations 
from parsimony. The loci chosen as examples in this 
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paper are not unusual in their levels of genetic diver- 
sity, and we discovered many probable deviations 
from parsimony, particularly for  the Est-6 locus. This 
indicates, along with the work of HUDSON (1989), that 
deviations from parsimony must be  taken  into  account 
even when dealing with intraspecific allele phylogenies 
that generally span only a  short  period of evolutionary 
time.  These deviations can cause much  uncertainty in 
the  true cladogram,  but because we have a  quantita- 
tive assessment, our  method  does  not imply that all 
cladograms within the plausible set are equally likely. 
For  example, our third  subregion  cladogram set for 
the E s t 4  locus consists of 4 maximum parsimony 
cladograms plus 5396  nonparsimonious  alternatives. 
However, recall that  the probability of parsimony was 
still  very high in this case  (all parsimonious connec- 
tions  had  a probability of 0.933  or  greater), so it is 
obvious that  the parsimonious cladograms are much 
more likely than any of the  nonparsimonious  alterna- 
tives. We include  the  nonparsimonious  alternatives 
simply because they  cannot  be  excluded  at  the 5% 
level and not because we feel that they are as  likely as 
the maximum parsimony cladograms. In a future pa- 
per in this series, we focus our attention upon quan- 
tifying the relative probabilities of the cladograms 
within our estimated plausible set. 

The third major  strength of our algorithm is that it 
takes  into  account another factor that can undermine 
confidence in an intraspecific allele phylogeny: recom- 
bination. We have outlined  procedures  for  both  iden- 
tifying potential  recombinant haplotypes or identify- 
ing  subregions within  which recombination has not 
been a major evolutionary  factor.  With  regard to  our 
criteria  for identifying recombinant haplotypes, our 
analysis of the Adh gene  region  did  differ  from  that 
of  Aquadro et al. (1986). We identified  four haplo- 
types as  likely recombinants using the single homo- 
plasy criterion and  an additional haplotype as a likely 
recombinant using the multiple homoplasy criterion. 
AQUADRO et al. (1986) also identified  four of our five 
recombinant haplotypes as recombinants,  but  not 0- 
11. The stated  criterion  for  recombination by 
AQUADRO et al. (1986) was the resolution of two or 
more homoplasies by a single recombination  event. 
However, only haplotype 0-29 satisfies this criterion. 
The other haplotypes that they regarded as recombi- 
nants (0-26,  0-27, and 0-28) only resolve a single 
homoplasy, but in each case the homoplasy involves 
an insertion/deletion or allozyme change.  However, 
haplotype 0-1 1 satisfies this same criterion, so it is not 
clear to us exactly what criteria were used  in practice 
by AQUADRO et al. (1 986). 

One might argue  that  our ban on homoplasies in- 
volving insertions/deletions is too strict and thereby 
causes us to  infer  recombination  too  frequently. This 
may be the case, but we feel that for the purposes of 

cladistic analyses of phenotypic associations, it is better 
to exclude all  possible haplotypes for which there is 
some evidence for  recombination rather  than  to retain 
these  potential  recombinants which could  undermine 
the  fundamental assumption of the cladistic analysis. 
Hence, we will retain  both  criteria  for  recombination. 

There was evidence  for  recombination in all three 
examples. In the Adh example,  recombination af- 
fected only a small portion of the  sample, and in such 
cases we recommend that  the recombinants simply be 
excluded  from  the cladistic analysis, as we did in our 
earlier cladistic analysis of Adh enzyme activity (TEM- 
PLETON, BOERWINKLE and SING  1987).  This  does  not 
mean,  however,  that the  data  from  the  excluded lines 
are totally ignored;  rather, as illustrated by our pre- 
vious  analysis (TEMPLETON, BOERWINKLE and SING 
1987)  the recombinant haplotypes can be used  in a 
powerful fashion after  the cladistic analysis  of the 
nonrecombinant haplotypes to place limits on the 
physical location of the mutations causing significant 
phenotypic effects. Hence,  more  information is avail- 
able when some recombinants  exist, so their  presence 
actually augments  the biological power of the cladistic 
analysis. 

In the Amy and E s t d  examples, recombination was 
more extensive and we had  to subdivide the respective 
DNA regions into smaller subregions. A glance at 
Figures 5 through 9 indicates that even adjacent 
subregions can have very different  evolutionary his- 
tories.  Hence,  recombination can seriously scramble 
evolutionary histories and must be  taken  into  account 
when dealing with nuclear DNA regions. However, 
these  examples  illustrate that what at first glance 
appears to be a hopeless case due  to extensive recom- 
bination  [the Est-6 region as discussed by GAME  and 
OAKESHOTT (1 990)] can be successfully subdivided 
into  a smaller number of subregions in  which recom- 
bination has not been an  important evolutionary fac- 
tor.  Separate cladistic analysis of these  subregions can 
help localize the physical position of any phenotypi- 
cally important  mutation, as will be  illustrated by the 
next  paper in this series. When  dealt with properly, 
recombination  strengthens,  not weakens, the biolog- 
ical inference possible  with a cladistic analysis. 
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