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ABSTRACT 
The geographic distribution of genetic variation is an important theoretical and experimental 

component of population genetics. Previous characterizations of genetic structure of populations have 
used measures of spatial variance and spatial correlations. Yet a full understanding of the causes and 
consequences of spatial structure requires complete characterization of the underlying space-time 
system. This paper examines important interactions between processes and spatial structure in  systems 
of subpopulations with migration and  drift, by analyzing correlations of gene frequencies over space 
and time. We develop methods for studying important features of the complete set of space-time 
correlations of gene frequencies for  the first time in population genetics. These methods also provide 
a new alternative for studying the purely spatial correlations and  the variance, for models  with general 
spatial dimensionalities and migration patterns. These results are obtained by employing theorems, 
previously unused in population genetics, for space-time autoregressive (STAR) stochastic  spatial time 
series. We include results on systems  with subpopulation interactions that have time delay  lags 
(temporal orders)  greater than one. We  use the space-time correlation structure to develop novel 
estimators for migration rates that are based on space-time data (samples  collected over space and 
time) rather than on purely spatial data,  for real systems. We examine the space-time and spatial 
correlations for some  specific stepping stone migration models. One focus is on  the effects of 
anisotropic migration rates. Partial space-time correlation coefficients  can  be  used for identifying 
migration patterns. Using STAR models, the spatial, space-time, and partial space-time correlations 
together provide a framework with an unprecedented level  of detail for characterizing, predicting 
and contrasting space-time theoretical distributions of gene frequencies, and  for identifying features 
such  as the  pattern of migration and estimating migration rates in experimental studies of genetic 
variation over space and time. 

T HE distribution of genetic  variation  over  the 
space  that a species  occupies is an  important 

part of population  genetic  processes.  Spatial  structure 
promotes  formation of novel  combinations of genes, 
and  thus may  interact  over  time  with  both local adapt- 
edness  and  the  evolution of a species (WRIGHT 1978). 
Populations of species that  share sufficiently  low  rates 
of migration  become  genetically  isolated by distance, 
which  affects levels of local inbreeding (WRIGHT 
1943).  Recently  there have been  increasing  numbers 
of studies  on spatial structure,  and  these  generally 
indicate  strongly spatially autocorrelated  distributions 
of genetic  variation (SOKAL and ODEN 1978; SOKAL 
1979; SOKAL and MENOZZI 1982; SOKAL, SMOUSE and 
NEEL 1986; SOKAL, ODEN and BARKER  1987), in 
support  of earlier studies [e.g., reviews  in ENDLER 
(1977)  and EPPERSON (1990)l. To understand  the 
theoretical  causes and  consequences of spatial  struc- 
ture,  it will usually be necessary to  fully describe  the 
underlying  processes in both  space  and  time.  This is 
also  necessary  simply for  interpreting  the  form  of 
spatial structure in real  systems,  because  of  complex- 
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ities that  arise  in  choosing  among  various  spatial  proc- 
esses generated by different  underlying  space-time 
processes [e.g. ,  BENNETT (1979)l. Moreover,  natural 
selection  can  create  sharp  spatial  patterns,  and  many 
studies  have  sought  also  to  detect  evidence of natural 
selection  in  spatial  patterns of gene  frequencies  among 
subpopulations.  However,  many  of  the  interactions of 
selection  with  spatial structure  are  confounded with 
those of isolation by distance (ENDLER 1977; EPPER- 
SON 1990).  Thus  for  both  theoretical  and  experimen- 
tal  purposes  it is important  to develop and use  in the 
fullest  possible detail  the space-time  structures of proc- 
esses for neutral loci. 

There  is a long  tradition of mathematical analyses 
of the spatial  variance and  correlation (in addition  to 
studies  of  spatial  patterns of homozygosity and  kinship 
coefficients) [e.g., review by NAGYLAKI  (1986)l.  This 
work led to  the  advanced  migration  matrix  methods 
of ROGERS and HARPENDING (1986)  and ROGERS 
(1  988),  which are generally  applicable  to  many  theo- 
retical and real systems. T h e  present  work uses  a  new 
method,  and  presents  some  new  results  on spatial 
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correlations.  However, w e  also present the first anal- 
yses of complete sets of space-time correlations of gene 
frequencies, analyses for space-time data,  and analyses 
of systems  with subpopulation  interactions that have 
time delay lags (temporal order)  greater  than  one, 
The models studied here  are  the  important stepping 
stone type models (KIMURA 1953; KIMURA and WEISS 
1964; WEISS and KIMURA 1965; MAL~COT 1948). 
These models feature  discrete  subpopulations, with 
discrete  generations,  genetic  drift within each  subpop- 
ulation, and migration between adjacent or spatially 
proximal subpopulations. 

Results of studies on spatial correlations  indicate 
that spatial distributions of genetic variation will bear 
simple characterizations only for some systems  with 
one spatial dimension (where  subpopulations such as 
riparian plants are  distributed effectively on  a line) 
and with simple patterns of migration [ c f :  FELSENSTEIN 
( 1  975), SAWYER  and FELSENSTEIN (1 981)  and  NAGY- 
LAKI (1986)l. For systems  with two spatial dimensions 
the spatial correlation structure generally does 
not  bear  a  form  that can be expressed simply [e.g., 
FLEMING  and  Su  (1974)  and  NAGYLAKI  (1974,  1978, 
1986)J Nonetheless, with the migration matrix  ap- 
proach,  the variance and spatial correlations can be 
calculated for virtually any migration  pattern in sys- 
tems with finite numbers of subpopulations (BODMER 
and CAVALLI-SFORZA 1968; SMITH 1969; MARUYAMA 
1974).  However, even the general  features of rela- 
tionships of the spatial correlations to  the migration 
rates are not  clear.  For  example, the effects of the 
degree of anisotropy in migration  rates has not been 
fully characterized (SOKAL 1979).  In  the  further  de- 
velopments by ROGERS and  HARPENDING  (1986)  and 
ROGERS (1988), models of finite systems are built to 
study various types of life  cycles, some of which are 
clearly more  appropriate  for some species [see also 
FIX (1 978))  These  studies do not  include systems  with 
temporal order  one  greater  than  one. 

The space-time “structure”  of migration  drift  proc- 
esses  has not been characterized. There  are important 
process interactions  between the spatial structure of 
genetic variation and  the genetic  changes caused by 
migration over time, and these  warrant study. Genetic 
change in a  subpopulation  depends on  both  the 
amount of immigration  from other subpopulations 
and  the  correlations of genetic variation between the 
source  subpopulations and  the  recipient  subpopula- 
tion. In addition,  methods  are  not available for mak- 
ing full use of space-time genetic  data  for  interpreting 
the underlying migrational processes. Methods such 
as SLATKIN’S  (1985)  are based solely on spatial data 
for  a single fixed point in time. It is becoming increas- 
ingly feasible to obtain substantial space-time genetic 
data. Analyses  of space-time correlations use the  ad- 
ditional information in space-time data sets for esti- 

mating  migration  rates.  Moreover, it is often possible 
to obtain space-time data  for multiple loci,  which for 
all neutral loci should show similar space-time struc- 
tures  and contrasts. Finally, there is a lack of studies 
of both  theoretical and experimental  population ge- 
netic processes with effects (interactions)  that have 
time lags greater  than  one generation. 

The present  paper analyzes the complete space-time 
correlation structure of migration  drift systems. It 
uses a new approach by employing theoretical results 
for a class of stochastic space-time models known as 
space-time autoregressive  (STAR) models [e.g., BEN- 
NETT (1979), TANEJA and AROIAN  (1980) and AROIAN 
(1985)J  In  fact,  the results using STAR  methods 
extend to transformed space-time systems  with effects 
with temporal lags greater  than  one, which  systems 
(to  the  author’s knowledge) have not  been  character- 
ized in population genetics. Several other directions 
that  the basic  systems studied here can be extended, 
including  extension to finite systems, are noted in the 
RESULTS and DISCUSSION.  We simultaneously study 
new mathematical results and calculation formulae 
for spatial  correlations, and these use different  approx- 
imations and assumptions than do  other methods of 
computing spatial correlations. The present  methods 
simultaneously compute  the  entire space-time corre- 
lation structure  along with the spatial correlations. 
Even when used just  for spatial correlations, they are 
quite efficient, and they have some advantages in some 
cases arising  from the fact that  correlations are com- 
puted directly with spatial lags. However, in part 
because relative efficiency also  may depend complexly 
on all aspects of a system, only a  brief comparison of 
methods for calculating spatial correlations is made in 
the DISCUSSION. 

We characterize  a number of important  properties 
and methods  for  finding the space-time correlations of 
gene  frequencies. New results are developed for  more 
general  transformed space-time systems and  then 
more specific properties are revealed for  the correla- 
tions for specific models with one  and two spatial 
dimensions. These  features  include how the decay of 
space-time correlations with time and  the decay of 
spatial correlations  over distance depend  on  the sys- 
tematic  force and migration parameters.  Another as- 
pect that is studied in some detail is the effect of 
anisotropic (directionally asymmetric) migration rates 
on  the  degree of directionality in space-time and spa- 
tial correlations. The effects of anisotropy on the 
directionality of spatial correlations have been impor- 
tant  experimental issues (e .g . ,  SOKAL, ODEN  and BAR- 
KER 1987). We  also find some cases  with anisotropy 
which are counterexamples to  the paradigm of strictly 
monotonic  decrease of the (spatial) isolation function 
on distance (NAGYLAKI  1986). Non-monotonicity in 
real systems is sometimes interpreted as being due  to 
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FIGURE 1 .-Schematic representation of subpopulations (0), in 
strict stepping stone migration models, located on: (a) a line and (b) 
a two-dimensional lattice. (a) x represents  the absolute location of 
subpopulation x; and @ I  are  the migration rates in the directions 
of the arrows. (b) x and y represent the coordinates for subpopula- 
tion (x,y); &,o, &,o, are  the migration rates from each of 
the  four nearest neighbors to subpopulation (x,y). 

rare long distance migration  events or to deviations 
from  neutrality assumptions. It is also shown how 
space-time correlations of gene  frequencies in real 
systems can be used to develop  estimators of migration 
rates  that are based on space-time rather  than purely 
spatial genetic  data. Also described for  the first  time 
are  the  properties of the space-time partial  correlation 
coefficients, which provide  a  unique  framework  for 
identifying migration  patterns  from  genetic  data in 
nature. In  total, the results in this paper, by viewing 
transformed  migration  drift systems as STAR proc- 
esses, provide  frameworks  both  for  studying  theoret- 
ical space-time distributions and  for  characterizing 
experimental systems  with space-time genetic  data. 

RESULTS 

General  features, life cycles,  and  recursion  equa- 
tions  for  gene  frequencies  in  stepping  stone  type 
models: For the migration  drift models of the type of 
KIMURA (1  953),  discrete  subpopulations are  arranged 
on  a lattice (Figure  1) with uniform distances separat- 
ing  nearest  neighbor  subpopulations in each spatial 
dimension, and  here all subpopulations are assumed 
to have equal  numbers of individuals, N .  The subpop- 
ulations are assumed to  extend  to infinity in every 
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direction, which simplifies the analyses by avoiding 
complications arising  from  boundary  subpopulations 
(FELSENSTEIN 1975). Migration to  and  from any given 
subpopulation  occurs only with a  finite  number of 
other subpopulations.  In  addition, there is an outside 
systematic pressure with constant rate, m,, which may 
represent  immigration  from  a  population with fixed 
allele frequency, qm. This may  also be  translated  into 
terms of a  constant rate of long distance migration, 
which is the same between all subpopulations, and q, 
is simply the mean allele frequency, i ,  among all 
subpopulations.  In some contexts,  the  outside system- 
atic pressure can also be  translated  into  terms of rates 
of reversible mutation, or certain  forms of selection 
(KIMURA and WEISS 1964). 

In  general, we let q,,t be the frequency of a  gene in 
an  adult  subpopulation with spatial coordinates con- 
tained in the vector x and  at time  generation t ,  after 
genetic  drift,  before  migration. 

The life  cycle for each discrete  generation is as in 
KIMURA and WEISS (1  964)  and BODMER and CAVALLI- 
SFORZA (1968). The genetic  drift  component in the 
system occurs only within each subpopulation as the 
gametes are randomly chosen to  represent  the  adult 
generation. Then the gametes in the  next  generation 
are chosen deterministically, based on: 1)  the  gene 
frequencies in the  adults of each subpopulation in the 
present  generation; 2) the  strength of the outside 
systematic pressure; and  3)  the  pattern  and rates (&b) 

of migration between subpopulations. The gametes 
controlled by the outside systematic pressure have 
deterministic  gene  frequency 9.. (as fixed in the  out- 
side population or as determined  from  mutation  rates) 
or 4 (the mean for all subpopulations in the case  of 
“long distance migration”). The only stochastic com- 
ponent is random sampling during survival of adults 
from zygotes (genetic  drift) within each subpopulation 
each generation. The gene  frequency  recursion  equa- 
tions for this life history, using notation similar to 
WEISS and KIMURA (1 965),  are: 

qx,t+l  = (1 - C $Jx,b - m m ) q x , t  + mmqm 
b#O (1) 

+ d’r,bqx+b,t + [x,f+l. 
b#O 

Here  the  are  the “sampling errors” associated 
with binomial sampling of genes during genetic drift 
each generation. Each &,b (for b # 0) is the migration 
rate  from all appropriately  defined  subpopulations to 
population x, where x is a  vector of coordinates  and 
b is a  vector of integer values for  the spatial lags or 
relative location of a  subpopulation  (at x + b) from x 
in each dimension. Thus  the  pattern of migration is 
the set of non-zero &,I,. As an example,  consider  the 
case of  one spatial dimension, with isotropic migration 
between nearest  neighbor subpopulations. The non- 
zero  rates are &,-l = &,I = m 1 / 2  and: 
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+ - (qx-1,t + qx+1.1) + &,t+l. 
m l  

2 

I n  general,  the  random variable &,+l in Equation  1 
has conditional mean zero and variance: 

where qf,,+l = expected value of qx,t+l  (conditioned  on 
q,,, for all x), which equals the  right  hand side of 
Equation 1 without the  term [,,,+l. 

Let i,,, = q,,, - 4, where 4 is the expected allele 
frequency in any subpopulation in the system. Thus 
if the system is at allele frequency  equilibrium as 
determined by the outside systematic pressure ( i . e . ,  
E 9 = q,), the  term m m q m  drops  out.  For  the  example 
of isotropic strict  stepping  stone in one dimension the 
equation simplifies to: 

&,,+I = ( 1  - m l  - mm)ix . t  + - (&-I,, + &+l,t) + &,,+I. 

The expected values and variances of the ,$x,t+l are 
unchanged. 

STAR representations of migration drift models: 
I n  order  to use the  STAR  approach, which require ho- 
moscedasticity of error terms,  the  arcsine  square  root 
variance stabilizing transformation is applied to  the 
gene  frequencies in the general Equation 1. Details 
are presented in APPENDIX 1. Briefly, if = arcsine 
(q:::) and zm = arcsine (4;") in radians,  then the 
conditional variance of i,,, is the variance a: of  the 
new stochastic error a,,,, a: = 1/8N + O( 1/N2),  and 
the conditional expected value of i,,* is approximately: 

m l  

2 

+ m m z m  + &,bix+b,t--l + ax,,. 
b#o 

This is true as long as the q,,, are not less than  about 
0.1 or  greater than about  0.9 (see APPENDIX 1). The 
stochastic, genetic drift  component is contained in the 
variable ax,t. The expected value of a,,, is zero, and 
the  important  feature is that u: is approximately con- 
stant  at 1/8N for all ax,,. The correlations between the 
i,,, are  the same as those  for q,,, (see APPENDIX 1). The 
variance of i,,, differs  from that of qx,t because of the 
difference in the variance of the stochastic inputs, and 
at equilibrium, 

Var(q) = 4q(l - q)Var(z) (4) 

where 4 is the mean (equilibrium)  gene  frequency, qm 
(BODMER and CAVALLI-SFORZA 1968). 

Because we consider only cases  in  which the system 
has reached  equilibrium ( i e . ,  i = E T",,, = zm), we 

subtract zm from  the i,,, to form  a new set of (mean 
adjusted) Then  at equilibrium, 

zx,t = 1 - C &,b - m m  zx,t-l ( b+O ) ( 5 )  

+ C &,bzx+b,t-l + ax,,. 
W O  

This is a STAR process. With the assumption that 
migration  rates  depend only on relative rather  than 
absolute locations in space (see APPENDIX I ) ,  we can 
write instead of 4x.b: 

z,,, = 1 - C 4 b  - mm GW (b#o  ) (6)  
+ &zx+b,t-l + ax,,. 

W O  

In  the specific cases  of one  and two spatial dimensions 
outlined below, we will not always  use vector notations 
x and b. If we let 40 equal  1 minus the sum of the f$b 

for b not  equal (O,O,. . .,O), minus m,, then: 

k t  = Cd'(b, .b2. .  . . ,bk)z(xl+bl.xz+b2..  . ..xk+b&-l (7) 
+ ax,,. 

Note  that  the  summations in Equation 7 include the 
vector 0 = (O,O,. . .,O), and they are taken  over  a 
certain  range of spatial lags for each spatial dimension 
k, i . e . ,  b k  ranges  from - I l k  to 121. 

In systems where  both spatial and temporal station- 
arity  obtain we can define  the space-time covariances 
(Ut,,,,) and correlations (pb,n), and  the spatial covari- 
ances (ub,O) and correlations (pb,O), solely  in terms of 
the spatial (b) and temporal (n) lags separating pairs 
of subpopulation  gene  frequencies in space and time 
(HOOPER and HEWINGS 198 1): ab,,, = E ( ~ , , , % , - b , ~ - ~ )  for 
n = 0,. . .,m and all spatial lag vectors b; pa,,, = ab,n/(J,, 

where a: = E (z:,,) for any x and t .  It is noteworthy 
that  for all  weakly stationary processes: pb,n = p-b,-n; 

= and pb,O = p-b.0; but  for some processes 
pb,n may not equal +b,n (for n # 0) (TANEJA and 
AROIAN  1980). 

Spatial  and  space-time  correlations  for  general 
migration  patterns: A  detailed description of how a 
stationary  migration  drift  (STAR) process can be in- 
verted  into what is known as an  infinite  parameter 
space-time moving average  (STMA) process is pre- 
sented in APPENDIX 2. The process Equation 7 is 
inverted to: 

2 

Z,,t = 9 (B,,B,) a,,, (8 )  

(Equation A1 1). In other words, each z,,, is a sum of 
fractions of random  inputs  from the past. 9(B,,Bt) is 
known as the  generating  function  for  the coefficients 
for  different spatial and temporal lags of the infinite 
moving average (MA) representation of the process 
(BENNETT 1979),  and it is used for  finding the individ- 
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ual moving average coefficients, the $b,n (APPENDIX 2). 
Each $b,n represents  the  component influence of the 
subpopulation with spatial lags b away from x and 
temporal lag n away from t ,  on  the value of In 
APPENDIX 2, it is shown how this is done in general, 
and  for specific systems as examples. Algorithms are 
provided below for these specific cases, and  FOR- 
TRAN programs are available from  the  author. Finite 
sums of MA coefficients provide close approximations 
of z.,~, and  the space-time variance, u:, and  the  corre- 
lations, fib,,,, can be closely approximated by summing 
the  products of the coefficients $b,n, times a,' (APPEN- 
DIX 2): 

m 

E E $m,k$m+b,k+n 
m k-0 

pb,n = m (10) 
E E $:.k 
m k-0 

Closely approximate values of a: and pb,,, can be 
computed, in many cases  with quite  moderate sum- 
mation limits, once  the  forms of the $b,n are known 
and  computed.  This formulation ( i e . ,  infinite  STMA) 
can also be used to show that  transformed  migration 
drift processes are generally  stationary under minimal 
and realistic assumptions about  the &, when m, > 0 
(APPENDIX 2). 

Important relationships between  spatial  and 
space-time  correlation coefficients, and estimators 
for general  migration  models: In APPENDIX 2 (Equa- 
tions A14) it is shown that: 

pb,n  = $rnPb+m,n-l (1  1) 
m 

(except  for n = 0, b = 0). In  general,  the  summation 
is taken over all spatial lags m which exchange mi- 
grants,  and including m = 0. In addition, 

(Recall that a,' = 1/8N.) These equations  alone  cannot 
be solved for  the Pb,n in terms of the 4 b  (HOOPER and 
HEWINGS 198 1). However,  they are useful for check- 
ing sets of #b,n computed  from MA coefficients. 

One very important  subset of the above  equations, 
collectively known as the Yule-Walker equations, can 
be solved to find  estimators  for the & for most systems 
(see below) (TANEJA and AROIAN 1980). Thus it is 
possible to estimate the &. from space-time data in 
real populations. Detailed examples of these esti- 
mators are provided below for the strict  stepping  stone 
models in one  and two spatial dimensions. 

STAR models for one spatial dimension and  with 
temporal  order  one: Systems with one spatial dimen- 
sion  simplify to: 

12 

%x,# 4bZx-tb.t-1 + &,t* (1 3) 
b-41  

4 - b  is the migration rate  from  population x - b to x 
(Figure la). Equations for the spatial and space-time 
correlation coefficients are, by simplification of Equa- 
tion l l: 

12 

pb,n = E h & + m . n - l  (14) 
m=-ll 

except  for b = n = 0 (note  that b is a scalar and  the 
summation is over only one variable, unlike Equation 
11). 

The strict  stepping  stone model for  one spatial 
dimension is one in which migration  occurs only from 
the two adjacent  neighbors, possibly  with different 
rates,  from the left or negative direction,  and 41 

from  the  right  or positive direction (see Figure la). 
In this case the process equation  (Equation  13) be- 
comes: 

Zx,t = 4OZx.t-1 + 4 - 1 ~ x - 1 , t - l  + 4 1 ~ x + l . t - l  + ~ x , t .  (15) 

In APPENDIX 2 (Equation A20) it is shown that, 

$b,n = 4oqb.n-1 + d'l$b+l,n-l + $-I$b-l,n-l (16) 

for I b I C n. Using this and  noting  that $o,o = 1,  and 
all other $6.0 = 0, provides  a  convenient  algorithm  for 
calculating the $b,n. Equation 16 can be used iteratively 
starting with n = 1,  and finding all nonzero coeffi- 
cients?  then with n = 2, etc. 

An example of the MA coefficients is shown in 
Table 1 for a  anisotropic case  with 4-1 = 0.0405, I#Q 

= 0.0810, moo = 0.01  (thus 40 = 0.8685). For this 
model there is greater migration  from  right to left 
than  there is from left to right  on  the line shown in 
Figure la. Naturally the MA coefficients (random 
shocks) for n > 1 for  the  right side of x are  larger 
(have more influence on zXJ than  those  for the left 
side (Table 1). 

The ratio u;/uo' was calculated by, 

and  the spatial or space-time correlations  for I b I > 0 
or n > 0 by, 

S L  

$m,k$m+b,k+n 
m--s k-0 

Pb.n = S L  (18) 
c $:,k 

m--s  k-0 

In  general, a reasonably small temporal limit L ( i .e . ,  
k = 0,. . .,L) and spatial limits -s d m d s suffice for 
the variance ratio  and  the spatial correlations, if m, is 
not  too small. 

An example of the space-time correlations is shown 
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TABLE 1 

Moving  average coefficients for various generation lags for a ondimensional case with m., = 0.01, &, = 0.0405, and dl = 0.081 

Lag $4,. $3.. q2.n $1 .n $0," $-I L $-x.. $4.. $-+," 

0 0.00 0.00 0.00 0.00 1 .oo 0.00 0.00 0.00 
1 0.00 0.00 0.00 0.04 0.87 0.08 0.00 0.00 

0.00 

2 0.00 0.00 0.00 0.07 0.76 0.14  0.01 0.00 
0.00 

3 0.00 0.00 0.00 0.09 0.67  0.18 0.02 0.00 0.00 
0.00 

4 0.00 0.00 0.01 0.1 1 0.60 0.22  0.03 
5 

0.00 
0.00 

0.00 
0.00 0.0 1 0.12 0.54  0.24 0.04 0.00 0.00 

6 0.00 0.00 0.0 1 0.13 0.49 0.25 0.06 0.01 0.00 
7 0.00 0.00 0.02 0.13 0.44  0.26 0.07 0.01 
8 0.00 0.00 0.02 0.13 0.41 0.26 0.08 0.02 

0.00 

9 0.00 
0.00 

0.00 0.02 0.13  0.37  0.27 0.09 0.02 
10 0.00 0.00 0.03 0.13 0.35 0.26  0.10 0.03 

0.00 

20 0.00 
0.00 

0.01 0.04 0.1 1 0.20 0.21 0.15 
40 

0.07 0.03 

60 
80 0.00 0.01 0.01 0.02 0.03 0.05  0.05 0.06 

100 0.00 
0.06 

200 
300 

0.00 0.01 0.03 0.06 0.10 0.12 0.12 0.10 0.07 
0.00 0.01 0.02 0.04 0.06 0.07 0.08 0.08 0.07 

0.01 0.01 0.01  0.02  0.03  0.04 0.04 0.04 
0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Conlputed by expanding Equation A  19 for each d ,  and checked using Equation 16 (A20). Values listed after  rounding off to two  decimals. 

Lag Pa.. P4.n PS." PZ.. P I . .  Po.. p-I." P-2.. P-3." P-4." P-5." 

0 0.12 0.19 0.28  0.43 0.65  1 .oo 0.65 0.43 0.28 0.19 0.12 
1 0.12 0.18 0.28 0.42 0.64 0.95 0.66 0.44 0.29 0.19 0.12 
2 0.12 0.18  0.27 0.42 0.63 0.90 0.67 0.45 0.29 0.19 0.13 
3  0.1 1 0.18  0.27 0.41 0.61 0.86 0.67  0.45 0.30 0.20 0.13 
4 0.1 1 0.17 0.27 0.40 0.60 0.82 0.67 0.46 0.30 0.20 0.13 
5  0.1 1 0.17 0.26 0.39 0.59 0.79 0.67 0.47 0.31 0.20 0.13 
6 0.1 1 0.17 0.26 0.39 0.58 0.76 0.66 0.47 0.3 1 0.21 0.13 
7 0.1 1  0.17  0.25 0.38  0.56  0.74 0.66 0.48 0.32 0.21  0.14 
8 0.1 1 0.16 0.25 0.37  0.55  0.71 0.65 0.48 0.32 0.21 0.14 
9 0.10 0.16 0.24 0.37 0.54 0.69 0.64 0.48  0.33 0.22 0.14 

10 0.10 0.16 0.24 0.36 0.52 0.67 0.63 0.48 0.33 0.22 0.14 
20 0.09 0.13 0.20 0.30 0.41 0.51 0.53 0.47 0.36 0.25 0.17 

Computed using Equation 18 with temporal limit L = 500 and spatial limits s = 20. Correlations checked using Equation 19 (A21). Some 
of the moving average coefficients for this case are listed in Table 1. 

i n  Table 2 for the MA coefficients represented in 
Table 1. Of course the purely spatial correlations 
(n = 0) are  the same in each direction,  but  naturally 
the space-time correlations of z,,~ with subpopulations 
to  the right ( b  < 0) are  greater  than  the correlations 
with those to the left ( b  > 0). Interestingly, the space- 
time  correlations with some of the past subpopulations 
on the  right side actually increase as  the time lag 
increases for small time lags (again this reflects the 
effects of anisotropic  migration), and  then these de- 
crease as time lag decreases further, as do all correla- 
tions for long time lags. In  contrast,  the space-time 
correlations for  the left side all decrease  monotoni- 
cally  with increasing time lag. Spatially symmetric 
space-time correlations  occur if and only if the migra- 

tion  rates are isotropic (APPENDIX 2). In all examples 
studied the correlations calculated from  the MA coef- 
ficients fit closely the specific forms of Equations 11 
and 12: 

pb,n = 4Opb,n-l + @lpb+l,n-l + ~ - l ~ b - - l , n - - l  (19) 

and 

The spatial correlations  for several other models 
with different migration rates and different values  of 
m, are shown in Figure 2. Briefly, the smaller the 
systematic pressure the  greater  the correlations, and 
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0.7 - 
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pb,O 
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0: 

m, c 1  mi X 
m 0.001 0.0405 0.0105 37.55 - 0.001 0.0405 0.w10 27.37 

0"Q 0.01 0.0405 0.0405 12.32 

c. 0.01 0.0405 0.w10 10.22 

0.0 ' 
0 1 2 3 4 5 6 7 6 9 1 0 1 1  

DISTANCE 

FIGURE 2.--Spatial correlations, p6.0, between subpopulations 
separated by b spatial lags, for several one-dimensional strict step- 
ping stone models with migration rates &I, and @ I  from nearest 
neighbors (see figure 1). Also shown are  the spatial correlations 
between gene frequencies, as predicted by KIMURA and WEIS 
(1 964) for  the two isotropic cases: p6.0 = e x p [ - b G ] .  

the same is true for  the space-time correlations. In  the 
cases  with anisotropy  (along with greater total immi- 
gration, + 41) the spatial correlations are only 
slightly greater  than those for  an isotropic model with 
migration  rates  equal to  the lower rate of the aniso- 
tropic case. In  addition,  greater values of m, result in 
smaller variance ratios (u?/uz), and  the anisotropic 
cases, with greater total  immigration  rates,  have lower 
variance ratios. The variance a? can be obtained by 
multiplying the  ratio by a: = 1/8N. 

Two-dimensional  models  with  temporal  order 1: 
Finite parameter  STAR models for two spatial dimen- 
sions, with temporal order  one, have process equations 
of the  form: 

k2 1, 

zx,y.t = 4b,a&+b,y+a.t-l + ax,y.t* (21) 
a=-k, b=-I, 

Here zx,j,t is the  transformed mean adjusted  gene 
frequency in a  subpopulation with coordinates x in 
the first spatial dimension and y in the second  dimen- 
sion (horizontal and vertical, respectively, in Figure 
1 b). Parameters 11 and 12 are as in the  one dimensional 
case ( i e . ,  the minimum and maximum lags  in the first 
spatial dimension for subpopulations  exchanging mi- 
grants with z ~ , ~ , ~ ) ,  and kl and k2 are  the analogous limits 
for  the second spatial dimension. 

For the strict  stepping  stone  model,  migration oc- 
curs only from  the  four nearest  neighbors, thus: 

zx,j,t  = 40,ozx.y.k" + 4 - l , o ~ x - l , j , t - l  + 4l,ozx+l,y,t-1 (22) 
+ 4o*-lz~,y-l,t"l + 4o,l~x,y+I*t-l + ax,y.t. 

The MA coefficients can be easily calculated by iter- 
ating  (FORTRAN  program available from  author) 
the  formula (APPENDIX 2, Equation A28): 

$b,a.n = 4O.O$b,a,n-I + 4-l,O$b-l,a,n-l 

+ ~l,O$b+l.a,n-l  

+ 4o,-l$b,a-l,n-l 

+ ~O.l$b,a+l.n--l 

(23) 

and  noting  that $ o , ~ , ~  = 1 .O and, $ b , a , ~  = 0 for all other 
a and b. Table 3 shows the MA coefficients for gen- 
erations  1, 10 and  100  for anisotropic  migration  rates 

and with systematic pressure m, = 0.01. Thus  there 
is more migration  for left to right  (negative to positive 
in x) and  from top to bottom (positive to negative in 
y) than  right to left and  bottom  to  top. Values of $b,n,n 

are  greater  for b > 0, and for a 0. As for  the  one- 
dimensional case the spatial gradient of $b,a,n becomes 
flatter  as n becomes large. 

The ratio of the variances, u?/uz, is calculated by: 

4-1,o = 0.02, dl,o = 0.01, &,-I = 0.01, 40.1 = 0.04, 

a2 
2 

@a s t u  
7 = ccc $t .U (24) 

and  the space-time correlations by: 

ccc $s,t,u$s-b,t-a,u-n 
s t u  

pb,o.n = ccc $ L U  
(25) 

s t u  

with appropriate  temporal  and spatial limits to  the 
summations. 

Values of pb,a,O, and Pb.a.5 for  the anisotropic case 
above are shown in Table 4. The space-time correla- 
tions are  greater  for past subpopulations  that are to 
the left or "above" present  subpopulations, as ex- 
pected  from the MA coefficients (Table 3). The spatial 
correlations  differ  between the two spatial dimensions, 
but  are  the same for opposite directions within a 
dimension. Spatial correlations  for several other ani- 
sotropic  migration models are shown in Table 5.  
Anisotropy in only one dimension causes asymmetry 
in the space-time correlations only in the same dimen- 
sion (see example Table 4). Interestingly, in extreme 
cases, where there is migration only in one direction 
in each dimension, the MA coefficients in one direc- 
tion  (for each dimension) are zero, yet the correlations 
for  short distances remain large. This reflects the 
shared history of local groups of subpopulations. 

In  general,  nonequivalence of the migration  rates 
for  different dimensions causes nonequivalence of the 
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TABLE 3 

'kb.-l.l  

' k b . O . 1  

'kb,l,l 

$b.P.I 

'kb.2l . l  

Generation 10 

0.00 0.00 0.00 0.04 0.00 0.00 
0.00 0.00 0.02 0.91  0.01 0.00 0.00 
0.00 0.00 0.00 0.0 1 0.00 0.00 0.00 
0.00 0.00 0.00  0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.01 0.04 0.00 0.00 0.00 
0.00 0.00 0.04 0.18 0.02 0.00 0.00 
0.00 0.01 0.09 0.42 0.05 0.00 0.00 
0.00 0.00 0.0 1 0.04 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 

Generation 100 0.01 0.01 0.02 0.01 0.0 1 0.00 0.00 
0.0 1 0.01 0.02 0.01 0.0 1 0.00 
0.01 

0.00 
0.01 0.0 1  0.01  0.01 0.00 0.00 

0.00 0.01 0.0 1  0.01 0.00 0.00 
0.00 

0.00 
0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 
0.00 

0.00 
0.00 0.00 0.00  0.00 0.00 0.00 

Computed using Equation 23 (A28) and checked using Equation A27. Values  listed after  rounding off to two decimals. 

Pl.a.0 PSLI.0 Pa4.o PI ... a Po .a. 0 P-lLI.0 P-2.0.0 P-Sc.0 P-4 A 0  

pb.-%O 0.00 0.01 0.01 0.02 0.02 0.02 0.01 0.01 0.00 
Pb.-S.O 0.01 0.01 0.02 0.04 0.06 0.04 0.02 0.01 0.01 
f ib."l .O 0.01 0.02 0.05 0.09 0.15 0.09 0.05 0.02 0.01 
pb. - l ,O  0.0 1 0.03 0.07 0.17 0.37 0.17 0.07 0.03 0.01 
pb.O.0 0.01 0.03 0.09 0.27 1 .oo 0.27 0.09 0.03 0.01 
$6.1.0 0.01 0.03 0.07 0.17 0.37 0.17 0.07 0.03 0.0 1 
Pb.P.0 0.01 0.02 0.05 0.09 0.15 0.09 0.05 0.02 0.01 
Pb.S.0 0.01 0.01 0.02 0.04 0.06 0.04 0.02 0.01 0.0 1 
p6.4.0 0.00 0.0 1 0.01 0.02 0.02 0.02 0.01 0.01 0.00 

PlLI.3 P3.0 P a . 0  $ 1 ~ . 5  p O s . 5  P-tLI.5 P-2e.5 P-SP.5 p-4.0.5 

pb.-4,5 0.00 0.01 0.0 1 0.02 0.03 0.02 0.0 1 0.01 0.00 
pb.-3.5 0.01 0.01 0.02 0.05 0.07 0.05 0.03 0.01 0.01 
pb.-5.5 0.01 0.02 0.05 0.10 0.17 0.10 0.05 0.02 0.01 
pb.--l.5 0.01 0.03 0.08 0.19 0.40 0.18 0.07 0.03 0.01 
pb.0.5 0.01 0.03 0.10 0.28 0.73 0.25 0.08 0.03 0.01 
p b . l . 5  0.01 0.03 0.07 0.17 0.3 1 0.16 0.06 0.03 0.0 1 
pb.2.5 0.01 0.02 0.04 0.09 0.13 0.08 0.04 0.02 0.0 1 
pb.3.5 0.01 0.01 0.02 0.04 0.05 0.04 0.02 0.01 0.00 
bb.4.5 0.00 0.01 0.01 0.02 0.02 0.02 0.01 0.01 0.00 

Computed using Equation 25 with temporal limit L = 200, and spatial limit f 5 in each dimension. Some moving average coefficients for 
this case are listed  in Table 3. Values  listed after rounding off to two decimals. 

spatial (Table 5 )  and space-time (not shown) correla- lags  in the dimension without  migration, and  the 
tions for  the same distance, between the two dimen- correlations  for  nonzero lags only in the  other dimen- 
sions. In the  extreme case, where  migration  occurs sion, follow that of the  one dimensional models dis- 
exclusively  in one dimension (results not shown), the cussed above. The reasons for these features can be 
spatial and space-time correlations are zero  for spatial seen in the relationships among  the pb,a,n, which come 
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TABLE 5 

Spatial  correlations, fibno, for different twodimension models  with  anisotropic migation rates and different systematic preaures, m, 

Spatial lag a Spatial  lag b in x coordinate 
in y coordi- 

nate 0 1 2 3 4 5 6 

a) m, = 0.001, &1.0 = &.o = 0.03, &,-I = 40,~ = 0.01 
0 1 .oo 0.58 0.37 0.24 0.16 0.10 0.07 
1 0.40 0.34 0.26 0.19 0.14 0.09 0.06 
2 0.20 0.19 0.16 0.13 0.10 0.07 0.05 
3 0.1 1 0.1 1 0.09 0.08 0.06 0.05 0.03 
4 0.06 0.06 0.05 0.05 0.04 0.03 0.02 
5 0.04 0.03 0.03 0.03 0.02 0.02 0.01 
6 0.02 0.02 0.02 0.01 0.0 1 0.01 0.01 

b) m, = 0.01, @ - l , ~  = = 0.03, &,-, = &C,J = 0.01 
0 1 .oo 0.42 0.19 0.09 0.04 0.02 0.01 
1 0.22 0.16 0.10 0.05 0.03 0.01 0.0 1 
2 0.06 0.05 0.04 0.03 0.01 0.01 0.00 
3 0.02 0.02 0.01 0.0 1 0.0 1 0.00 0.00 
4 0.01 0.01 0.00 0.00 0.00 0.00 0.00 
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

c) m, = 0.01, qLl,0 = 0.03,&1,0 = 0.01, &o,-~ = 0.01, 40.1 = 0.03 
0 1 .oo 0.32 0.12 0.05 0.02 0.01 0.00 
1 0.32 0.18 0.09 0.04 0.02 0.01 0.00 
2 0.12 0.09 0.05 0.02 0.01 0.00 0.00 
3 0.05 0.04 0.02 0.01 0.01 0.00 0.00 
4 0.02 0.02 0.01 0.01 0.00 0.00 0.00 
5 0.01 0.01 0.00 0.00 0.00 0.00 0.00 
6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

d) m, = 0.01, = = = 0.01, &o,l = 0.05 
0 1 .oo 0.22 0.06 0.02 0.00 0.00 0.00 
1 0.42 0.15 0.05 0.01 0.00 0.00 0.00 
2 0.18 0.09 0.03 0.01 0.00 0.00 0.00 
3 0.08 0.04 0.02 0.01 0.00 0.00 0.00 
4 0.03 0.02 0.01 0.00 0.00 0.00 0.00 
5 0.0 1 0.01 0.00 0.00 0.00 0.00 0.00 
6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0 1 .oo 0.37 0.15 0.06 0.03 0.01 0.00 
1 0.27 0.17 0.09 0.05 0.02 0.01 0.00 
2 0.09 0.07 0.05 0.03 0.01 0.0 1 0.00 
3 0.03 0.03 0.02 0.0 1 0.01 0.00 0.00 
4 0.01 0.01 0.01 0.00 0.00 0.00 0.00 
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

e)  m, = 0.01, = 0.015, 61.0 = 0.035, &o,-I = 0.025, &o,, = 0.005 

Only values for positive spatial  lags are listed  (as in a11 cases p-b..,o = pb,-o,O = fi-b,-a,o = pb,o,O). 

from specific forms of Equations 11 and 12: 

‘Jz 

‘Ja 

2 

7 = ( I  - 40.0p0.0,1 + 41,0p1,0.1 + ~ - l , o p - l , o , l  

$b.a.n = 4O,OPb,a.n-l + 41.Opb+l,a,n-I 

+ d”l,Ofb-l,a,n-l 

+ $O,Ipb.a+l,n-l 

+ ~ O , - l ~ b . a - l , n - l ~  

(27) 

Spatial correlations  for several isotropic migration 
models are shown in Figure 3. The spatial correlations 
are much smaller than  for  isotropic one dimensional 
cases  with similar rates of overall immigration  into  a 

subpopulation.  It  appears  that  migration is much more 
effective in spatially “spreading” the effects of local 
stochastic events in two spatial dimensions than in the 
one dimensionaI case. This, at least in part, is due  to 
the fact that matrices of correlations are positive def- 
inite, which places more  constraints on  the values of 
the correlations for  the two-dimensional cases [e.g., 
TANEJA and AROIAN (1980)l. In  addition,  greater 
systematic pressure has a  strong effect of reducing 
spatial correlations and  the spatial variance. The ef- 
fects of  parameters  on  the space-time correlations are 
similar to those  on spatial correlations with the same 
spatial lag, and detailed  results are not listed here. For 
a wide range of systematic pressures (m, ranging  from 
0.0002 to 0.01) and migration  rates, there  are large 
spatial and space-time correlations  for  near  neighbors, 
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FIGURE 3.--Spatial correlations, p6.a.~ as a function of distance, d 
= (a' + b')'/2. In all cases 6 = 9-1.0 = &,o = &,-I = 60.1. (a) Four 
m h e s  with m, = 0.001. one case with m, = 0.0002. (b) Four cases 
with m, = 0.01. (c) Three cases with m, = 0.1. In all cases, exact 
values are plotted for d < 4.0, and beyond 4.0 the graphs  are 
"stnoothed" (see text). 
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and  correlations rapidly drop to  near zero values for 
greater spatial lags. Spatial and space-time correlations 
are much smaller where m, = 0.1. Greater migration 
rates result in greater spatial (and space-time) corre- 
lations. I n  all  of the cases studied,  the  correlations 
decrease monotonically at least up to distances of four 
units. For greater distances the values sometimes did 
not decline exactly monotonically. The deviate corre- 
lations involved were always small, and always in- 
volved  small increases (less than  0.005)  above values 
for  at most two, for always  only slightly shorter dis- 
tances. 

Process identification and  estimation of migra- 
tion rates: Space-time genetic  data can  be  used to 
identify features of the  patterns of migration in a real 
system of subpopulations. I t  is assumed that  the system 
is the usual  case where  migration occurs only between 
some finite  set  of  spatially proximal subpopulations 
(up to some limits of spatial and temporal lags). Then 
identification can be  effected by examination of the 
partial  correlations. Partial correlation coefficients can 
be conveniently (but not necessarily) defined as the 
correlation between z,,~ and i&+b,r-k conditioned on 
all  of the spatially and temporally "intermediate" 
variables [e .g . ,  HOOPER and HEWINCS (198 l)]. For 
example,  the  intermediate variables for  the  one di- 
mensional case  with b and k positive are ( z ~ , ~ - ~ ;  y = x ,  x 
+ 1 ,. . .,x + b,  and s = 1 ,. . .,A; except  for  where y = x 
+ b and s = k]. Under this definition,  the partial 
correlations are zero  for pairs of subpopulations sepa- 
rated by more  than  the  greatest spatial lag between 
subpopulations  exchanging  migrants, or separated in 
time by more  than one  generation, for first order 
temporal models. The distance beyond which partial 
correlations are zero in real systems indicates roughly 
the spatial limits on  migration, within the  degree of 
statistical error. 

Once  the migration pattern  for  a real system  has 
been identified or roughly  delineated, or specified 
either by assumption or independent  information, 
then  estimators of the &, can be  obtained from space- 
time  data. Th i s  contrasts estimators [e .g . ,  SLATKIN 
(1 985)l which are based  solely on spatial data. In many 
real systems, the  pattern of migration may  closely 
approximate  and  thus be treated as a strict stepping 
stone pattern. In general, limits on the spatial lags 
must be  contained in the vectors 11 and 12, or in the 
dimensional case the scalars 1 1  and 12. If we form a set 
of equations of the type of Equations 1 1 ,  by multiply- 
ing Equation 7 by the coefficient of each f$b in Equa- 
tion 7 and taking the expected values, then we  will 
have a (usually nonsingular) set of k equations (linear 
in the &) with k unknowns,  that can be solved using 
standard  methods. For example, in the general one- 
dimensional system (Equation 13),  there  are k = 11 + 
l 2  + 1 equations  and unknowns. These  equations are 
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known as the Yule-Walker equations, and  their solu- 
tions after  replacing  the space-time correlations with 
their estimates, give the Yule-Walker estimators of 
the migration parameters. Estimators of m ,  can be 
obtained by subtracting  the sum of the migration  rates 
from 1.0. Also, in general it is possible to find the 
variances and covariances between the estimators 
(AROIAN 1985). The expressions for  the  estimators 
are usually very complex, and  although it is preferable 
to simply  use matrix  algebraic  operations, solutions 
are provided below for  the  one dimensional stepping 
stone model. 

For the one-dimensional anisotropic  strict  stepping 
stone migration model, we can derive  the Yule-Walker 
equations, which are (after  substituting one  for p0.0 

and pb,o for p-b .0) :  

P O , ]  = 40 + 4-1p1,o + 41p1,o 

which have the solutions: 

Estimates can be calculated by substituting estimates 
of p b , n  for the p b , n .  In  the isotropic case, the expressions 
for Yule-Walker estimators simplify considerably. 

In  the two dimension strict  stepping  stone model 
w e  find t.he equations: 

p-1,0,1 = 4o,opl,o,o + 4 1 , o  + 4-1,0p2,0.0 

+ 40,1p1,1,0 + 40,-1p1,1,0 

p1.0.1 = 40,0p1,0,0 + 41,0p2,0,0 + 4-1,o (30) 

+ 40,1p1,1,0 + 40,-1p1,1,0 

po,o,1 = cbo.0 + 41,0p1,0,0 + 4-l,opl,o,o 

+ cbo,Ipo,l,o + 4o,- lpo, l ,o  

po,-1,1 = 40,opo,1,0 + 4 l , o p l , l , o  + 4-1,0p1,1.0 

+ 4 0 , l  + 40,-1p0,2,0 

p0.1,1 = 4o,opo.l,o + 4l.Opl.l .o + 4-1,0p1,1.0 

+ cbo.lp0.2.0 + 40,-1. 

Because algebraic solutions for  the 4 b , a , n  are very com- 

plex, they are not listed here; however, the above 
system of equations can be solved using standard 
methods. 

DISCUSSION 

In this paper it is shown how STAR models can be 
used to characterize with great  detail the distribution 
of  genetic variation over space and time in migration 
drift systems. STAR results developed include novel 
descriptions of the space-time correlations of gene 
frequencies in migration  drift systems. Together with 
the variance, the space-time correlation structure con- 
stitutes  a complete space-time specification for many 
theoretical  genetic  drift migration systems. Analyses 
of STAR process representations  contribute new in- 
formation to  understanding  the  relations of space- 
time  correlation structure  and variance of gene  fre- 
quencies to  the  patterns  and  rates of migration,  the 
dimensionality of the system, and  the  strengths of 
systematic forces. This can also be viewed as repre- 
senting  information  on the interactions of temporal 
changes with spatial structure of gene frequencies. In 
addition,  STAR models form  a  detailed  framework 
for studying real systems, for  either spatial or space- 
time  data [see also CLIFF and  ORD (198 l)]. Thus 
STAR processes can be used not only as theoretical 
models, but also in principle as statistical models for 
identifying,  describing, and  interpreting  the processes 
underlying the history of real systems. 

General theoretical systems: In  the  present  paper, 
it was shown how space-time correlations, as well as 
spatial correlations and variances, can be found  for 
most types of patterns of migration.  Stationary distri- 
butions of the  STAR process representations exist if 
there is a  nonzero  uniform systematic pressure, m,, 
and  there  are some biologically reasonable constraints 
on  the migration patterns. Spatial and space-time cor- 
relations  can, in principle,  be  found  for the stationary 
distributions of even very complex migration models. 
In  the  present  paper this is done by using backshift 
operators  and  the individual coefficients, lC/b,n, of the 
infinite  parameter moving average  (STMA)  represen- 
tation, which is found by inverting  a  (finite  parameter) 
stationary  STAR process. This is an extension of the 
BOX and JENKINS (1976) methods of analyzing time 
series. Here  the methods of the  present  paper depart 
from previous methods  of analysis [e .g . ,  ROGERS  and 
HARPENDINC (1 986)]. The generality of the inversion 
method  extends  to systems in which subpopulations 
are not  regularly spaced on  a lattice. The only require- 
ment is that fixed migration rates  (and backshift op- 
erators) can be assigned to well-defined subsets of 
subpopulations  (HOOPER and  HEWINCS 1981). Al- 
though  the  present  paper  considers only systems  with 
infinite sets of subpopulations,  the same principles can 
be  applied  to systems  with finite sets. The methods 
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extend also to space-time systems  with temporal or- 
ders  greater  than  one. For example,  time delayed 
migration effects are expected in plant species with 
seed migration and seed dormancy. Thus  the basic 
framework described here seems promising  for  expan- 
sion into several important  theoretical  areas. 

Results for  theoretical systems for complex migra- 
tion patterns  are  not expressed in simple forms  (Roc- 
ERS and  HARPENDING  1986). As have others, we found 
that  for any kind of isolation by distance migration 
pattern,  the spatial correlations are generally largest 
among spatially proximal subpopulations, and to this 
we add  the somewhat unsurprising  result  that this is 
also generally true for the space-time correlations. 
However,  where migration rates are strongly aniso- 
tropic, the space-time correlations can be substantially 
smaller for  the most spatially proximal subpopulations 
compared  to less proximal subpopulations,  for  longer 
back time lags. In other words, with strongly aniso- 
tropic systems, spatial proximity per se is not very 
indicative of the relative amount of influence  from  an 
existing subpopulation  on future subpopulations at 
other locations, even in strict  stepping  stone  migration 
models. Moreover, in anisotropic systems the space- 
time correlations  for  a given spatial lag do not always 
decrease as the  time lag between populations in- 
creases, even in one dimensional strict  stepping  stone 
migration models. Increasing the systematic pressure 
generally decreases the space-time correlations as well 
as the spatial correlations and  the variance. Although 
general migration patterns  rarely give rise to “explicit, 
general  formulas”  for the correlations or variance 
(ROGERS and  HARPENDING  1986),  one  general  theo- 
retical result for  the partial space-time correlations is 
very simple. Under  the  definition used  in this work 
[HOOPER and  HEWINGS  (1981); qf MARTIN and  OEP- 
PEN (1 975)],  the  partial  correlations must be zero  for 
pairs of subpopulations  separated by more  than  the 
greatest spatial lag between subpopulations  exchang- 
ing  migrants, or separated in time by more  than  one 
generation,  for first order temporal models. 

Limitations to  the  present  methods  include the as- 
sumption that  the effects of migration are determin- 
istic, as do many other methods [e.g., KIMURA and 
WEISS (1 964), MAL~COT (1  948,  1973),  HARPENDING 
(1973),  SAWYER (1 976), MORTON (1 982),  and NAGY- 
LAKI (1  986)l. Thus STAR results are strictly applica- 
ble to systems  in  which large  numbers  (relative  to N )  
of propagules (not  adults)  migrate. The present  paper 
does  not consider other  important models such as 
those of ROGERS (1988)  and  FIX  (1978) which incor- 
porate stochastic migration effects; however we have 
found  that it is possible to  incorporate many forms of 
stochastic migration effects into modified STAR sys- 
tems (B. K. EPPERSON, unpublished results). In  addi- 
tion,  the systematic force is assumed to be  determin- 

istic and uniform  over all subpopulations [$, e.g., 
BODMER and CAVALLI-SFORZA (1  968)]. Finally, in for- 
mulating  migration  drift systems as STAR stochastic 
processes, the original spatial time series of gene  fre- 
quency evolution (qx , l ]  was transformed  to  the process 
{z,,~] using the arcsine  square  root  transformation 
(FISHER and FORD 1947; BODMER and CAVALLI- 
SFORZA 1968). The transformed process { z ~ , ~ }  is an 
acceptable  approximate  representation of the process 
{qXJ as long as the  gene  frequencies are not close to 
zero or  one (MOSTELLER and YOUTZ 1961 ; BODMER 
and CAVALLI-SFORZA  1968). Previous methods  for 
finding  gene  frequency  correlations [e.g. ,  KIMURA and 
WEISS (1964)  and  NAGYLAKI  (1986)l have often used 
different  approximations. Under  the conditions of 
approximation,  the scales of the  parameters in the 
recursions of the  transformed process { z ~ , ~ !  are  the 
same as those in the  untransformed process { q x , J ,  and 
the  correlations  for {zXJ are  the same as those for 
( q X , J ;  however the variance differs (BODMER and CAV- 
ALLI-SFORZA 1968). 

One-  and  two-dimensional  theoretical  stepping 
stone  systems: Several of the most important  stepping 
stone type processes for  one  and two spatial dimen- 
sions were studied in some detail. Results on space- 
time  correlations of gene  frequencies are new to pop- 
ulation genetics. FORTRAN programs  that use the 
MA coefficients to compute  the space-time correla- 
tions together with the spatial correlations and vari- 
ance in either  anisotropic or isotropic strict  stepping 
stone systems are available from  the  author. Space- 
time  correlations are generally larger in cases where 
m, is smaller or where  migration  rates are  larger,  and 
are generally smaller in the two dimensional models. 
Unlike spatial correlations, space-time correlations 
may differ substantially between directions within a 
spatial dimension as well as differ between dimensions, 
in anisotropic systems. Naturally, space-time correla- 
tions are  greater  for  the past subpopulations  that were 
located in the  direction opposite the  direction of 
greater migration flow. The differences can be sub- 
stantial, even for  time lags as small as five generations. 
Thus directional  migration should be  detectable in 
space-time data with similar spans of generations. 

The results for  partial  correlations, as defined in 
the present  paper, are simply stated.  For strict step- 
ping  stone models (isotropic or anisotropic),  the  par- 
tials are zero  for distances or time lags greater than 
one. 

Some of our results on spatial correlations and 
variance are new and  others  are paralleled in previous 
studies,  although the approximations, expressions, 
and computational  methods are  different.  The spatial 
correlations were large  for  nearest  neighbors  and 
generally decrease smoothly as the distance of sepa- 
ration increases. However, it is interesting  that we 
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were able to find some cases of anisotropic two-dimen- 
sional strict  stepping  stone processes in  which the 
decrease was not exactly monotonic,  contrary to gen- 
eralized results on kinship coefficients (NAGYLAKI 
1986). Some of the results which are directly compa- 
rable to previous  studies for strict  stepping  stone 
systems  in one  and two dimensions are briefly: 1) 
greater systematic pressures cause greater homogeni- 
zation of the surface,  resulting in lower spatial auto- 
correlations and smaller spatial variances; 2) for iso- 
tropic cases, greater  amounts of migration  result in 
greater spatial correlations, but also result in lower 
variances in frequencies;  3) spatial correlations are 
much greater in the one-dimension models compared 
to two dimension models with similar total rates  of 
immigration  into each subpopulation and similar val- 
ues  of m,. New features  revealed  include that aniso- 
tropic migration rates tend  to  produce spatial corre- 
lations similar to those of isotropic migration models 
with rates  equal that of the lower rate,  at least in the 
cases studied. In addition,  for two spatial dimension 
cases, differences between the two dimensions in  mi- 
gration  rates cause differences  between the dimen- 
sions in spatial correlations  for the same absolute value 
lag, but values of spatial correlations are  the same for 
the two directions within a dimension. The differences 
can be substantial with as little as two to  four fold 
differences in migration  rates in different dimensions 
(Table 5). Thus this level of dimensional directionality 
of spatial correlations may exist in nature (SOKAL, 
ODEN  and BARKER  1987). 

For specific  cases of isotropic one dimensional 
models, the correlations and variances computed  from 
the formulas of KIMURA and WEISS ( 1  964): 

and  the formula u,‘ = 44( 1 - 4) a: + O( 1/N2)  from 
BODMER ( 1  960), fit very closely those calculated using 
STAR methods  (Figure 2). For the variance ratios, 
with $1 = 0.0405,  for m, = 0.01, the predicted value 
is 12.42,  and  for m, = 0.001  the value is 39.28. The 
values calculated are similar, 12.32  and  37.55, respec- 
tively (Figure 2). It is worth  noting  that  the spatial 
correlations  for the several isotropic two dimensional 
models reported  here, with chosen parameters similar 
to some recent simulations by SLATKIN and ARTER 
(1991), fit fairly closely (after spatial rescaling), the 
values of Moran’s Z-statistics calculated on  the  gene 
frequencies in these simulations. 

Applications to real  systems: STAR models also 
form  a  general  framework  for statistical models for  a 
broad  range of space-time systems. Good discussions 

of the multifaceted statistical “structure” of STAR 
models can be  found in BENNETT (1979), CLIFF and 
ORD ( 1  981), and UPTON and FINGLETON (1985). 
Moreover, there  are well established statistical proce- 
dures  and some computer  programs  for analyzing 
space-time data in the  STAR framework (UPTON and 
FINGLETON 1985). Briefly stated, this complex struc- 
ture can be used to analyze space-time data  (or spatial 
data)  alone or together with different  forms of adjunct 
information,  and  information may enter in at differ- 
ent levels. STAR processes can be used as statistical 
models to identify,  describe, and  interpret  the proc- 
esses underlying the history of a real system. Theo- 
retical analyses are usej ul for  forecasting  a real system, 
if the  parameters  and  the  distributions at present are 
known (BENNETT  1979). For example, if independent 
information  on  migration  rates, even for  quite com- 
plex migration  patterns in real populations is known, 
expected values of {zJ as well as the spatial and space- 
time  correlations  for  neutral loci can be calculated. 
We can also compare statistically observed space-time 
correlations for  data  to  the  theoretical  correlations 
calculated from  STAR results. Thus the  STAR frame- 
work provides  a degree of generality  that seems 
unique in population genetics. Moreover,  although in 
order to use the  STAR  methods,  the  arcsine  square 
root  transformation must be applied to space-time 
gene  frequency data, arguably this transformation 
should be applied  for many other situations in popu- 
lation genetics (for  example in ANOVA  treatments 
of gene  frequency  data),  for  improved statistical prop- 
erties. 

In  the present  paper, the foci were on estimation of 
the migration  rates and systematic force, and also on 
the partial  correlation coefficients because of the sim- 
plicity  of presentation  for  the use  of partials in process 
identification. Once a migration pattern f i e . ,  the set 
of non zero $b) is estimated,  approximated or as- 
sumed, it is possible  in general to obtain  equations 
relating the space-time correlations  to  the migration 
parameters,  the 4b. These equations can be used 
to find Yule-Walker estimates of the rates &, after 
substituting sample estimates for  the &. These 
estimators can be expressed explicitly (as was done 
in the Results for  a special case), although it is more 
practical to use matrix  operations in computerized 
calculations of estimates of $b from data.  AROIAN 
(1  985) investigated the statistical properties of 
the  estimators, and  their variances and relationships 
to least squares and maximum likelihood estimators. 
It  appears  that these are  the first published esti- 
mators of migration  rates based on space-time rather 
than spatial sets of genetic  data. The relative efficiency 
of the  different types of estimators awaits thorough 
analysis. 

It is worth  noting  that Moran’s Z-statistic (CLIFF and 
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ORD 198 l) ,  a  popular  measure of spatial correlation, 
will differ slightly from  the theoretical  correlations, 
which are always positive. Moran’s I-statistic is based 
on the mean for  a finite set of subpopulations  (not the 
grand mean of an infinite,  stationary process), and 
may be negative for large spatial lags (BARBUJANI 
1987). The differences between the two sets of cor- 
relation measures, especially for  short distances, pre- 
sumably become trivial when large  numbers of sub- 
populations are sampled. 
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APPENDIX 1 

Transformation of migration-drift  models into 
STAR  representations: Homoscedasticity of stochas- 
tic error  terms is obtained by using the arcsine  square 
root transformation on the  gene  frequencies (BODMER 
and CAVALLI-SFORZA  1968). Let = arcsine (qk!?), 
yx,t = arcsine (q:,t1/2), and zm = arcsine (si/*). Then, 
i n  radians,  the  conditional variance of i., = 1/8N + 
O(1/N2),  and  the conditional  expected value of = 
yxVi  + O( l/N).  The approximations are close, and  the 
variances independent of yx,i for  a  region around qi , t  
= 0.5, which region  extends close to  1.0  and 0 as N 
becomes large (MOSTELLER and YOUTZ 1961).  After 
substituting  for qi, i  in text  Equation 1, we have 

$x& - m, sin2ix,i-l ) (AI) 
+ m,sin2z, + $x,b sin' &+b,r-l 

b#O 

Using a  Taylor series expansion about  a/4, it can be 
shown that 

sin'; = z" + 1/2 - a/4 - O(z" - a/4)'  (A2) 

which provides a close approximation as long as the 
gene  frequencies are not less than  about  0.1  or  greater 
than  about 0.9. Thus  the expectation of z"x,t (condi- 
tioned on ix,f-l for all x) is, 

= 1 - C $x,b - mm zx,f-l  + mmzm 
L o  ) -  (A3) 
+ $x.Gx+b,i-l + o(z" - a/4)3 

bfo 

and the conditional variance is approximately l/8N. 
As long as the stochastic variation is such that  the 
gene  frequencies in subpopulations are  not less than 
about 0.1 or  greater  than  0.9,  then  the  approximation 
errors in the  above  equations do not  accumulate sig- 
nificantly (BODMER and CAVALLI-SFORZA 1968).  Fur- 
ther studies are required  to  better  characterize  the 
approximation  near  these  bounds. The transformed 
process can also be  expressed  (dropping  the 0 ap- 
proximation) in the  form: 

zx,i - L  = 1 - C $x,a - m, + mmzm )- (A4) 
+ $x,Gx+b,i--l + a x , t  

b#O 

The random variable ax,t replaces the [x , i  of KIMURA 
and WEISS (1964),  and  the expected value of ax,t is 
zero; however a: = 1/8N  for all ax,*. The variance of 
the stochastic input or  error terms no longer  depends 
on the  gene  frequency  for the previous  generation in 
a location in time and space. The scale of migration 
rates and systematic pressure are unchanged,  and  the 
correlations between the  are  the same as those for 

qx,t by KIMURA and WEISS (BODMER and CAVALLI- 
SFORZA 1968). The variance of ix,i differs  from  that 
of qx,t because of the  difference in the variance of 
the stochastic inputs. BODMER and CAVALLI-SFORZA 
(1  968) showed that: 

Var(q) 4q(l - q)Var(z) (A5) 

where 4 is the mean (equilibrium)  gene  frequency. 
We will consider cases  in  which the system  has 

reached  frequency  equilibrium ( i e . ,  2 = E ix,i = zm). 
Thus if we subtract zm from  the  to  form 3 new set 
of (mean  adjusted) z,,~, then  at  equilibrium, 

zx,t = 1 - C bX,b - mm zX,t-1 (h#Q ) (A61 
+ $x,bZx+b,f-l + ~ X J .  

b#O 

This process is immediately identifiable as a  STAR 
process. 

Another advantage of the transformation is that  for 
large enough N, zx,f is approximately normal. For 
normal STAR processes, stationarity of the yariance- 
covariances (and  thus weak stationarity because the 
mean is constant  zero by assumption in equation A6) 
implies strict  stationarity  (BENNETT  1979). The vari- 
ance covariance structure completely specifies the 
probability density of zx,i for  arbitrary x and t. Con- 
ditions  for weak stationarity are presented in the  text. 

We consider in detail here only  cases where  the 
interactions  (migration  rates), $x,b, depend only on b, 
the set of spatial lags or integers of separation in each 
dimension,  not on x itself: i e . ,  absolute location is 
arbitrary. Thus  under  the assumption of spatially ho- 
mogeneous  migration we can write $b instead of 4x.b 

(HOOPER and  HEWINCS  1981). The present  paper is 
concerned only  with models in which the only time 
lag is that  for  one  generation  increments,  and it is 
simply noted  that  STAR models may have  arbitrary 
numbers of temporal lags [see, e.g. ,  HOOPER and  HEW- 
INGS (1981)l. With the assumptions that migration 
rates are constant  over  time and absolute space, the 
STAR representations are of the  form: 

z,,~ = 1 - C $b - mm zx,f-l (h#Q ) (A7) 
+ $bzx+b,t-l + ax,i. 

h#Q 

APPENDIX 2 

Results on stationarity  and  correlations  for  gen- 
eral  migration  patterns: Results on conditions  for 
stationarity and  on correlation structure  are readily 
developed through using backshift operators in time, 
Bt, and backshift operators, B,, in the negative ("back- 
ward") direction for each spatial dimension Xi (e.g., 
leftward and downward in Figure lb). The power bi 
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of each B; acts to index the lag bi of the  coordinate of 
the X ;  dimension from x. Thus: 

%x-b,f-n = B'ilB$ . . . BP B:zx,r (-48) 

where b = (bl,b2,. . . , b h ) .  Text Equation 7 is written: 
121 122 I21 

% X , I  = c c . . . C h l l ; b '  
bl=- l , l  b2=-l12 bh=-llh 

(A9) 
. . . B;~~B~Z,,~ + ax,, 

where again for  notational  convenience the summa- 
tion  also includes the  term & for  the resident  contri- 
bution. If we let 

h 122 

@(BxJt) = 1 - 
b l = - l l ,  bp=-l12 

(A 10) 

. . . 1 &B;b1B;b2 . . . BibkBB, 
IZk 

bk=- l lk  

then 

@(Bx,Bt)zx,t = a x , t  

This is important because for any finite  parameter 
(ie., finite  number of subpopulations  that  exchange 
migrants with any given subpopulation)  stationary 
STAR process the  inverse, @-'(BX,Bt), exists and 
equals \k(B,,Bt), the  generating  function  for  the coef- 
ficients for  different spatial and temporal lags of the 
infinite moving average (MA) representation of the 
process. Thus: 

zx , t  = *(&,Bt)ax,r. (A1 1) 

The form of *(B,,B,) can be  found  through  long 
division  of 1 by  @(B,,B,)  in separate  terms of powers 
of B, (TANEJA and AROIAN 1980; HOOPER and  HEW- 
I N G ~  1981). The MA generating  function can be used 
for  finding the individual moving average coefficients, 
1C/b,n, which represent  the  component  influence of a 
subpopulation with spatial lags b (toward the negative 
direction  from x) and  temporal lag n, on the value of 

In general, this may be done by finding for each 
n, the  functions of the $b for each combination of  Bf 
and (B;')'such that bi = k - I ,  and bi is the  ith  element 
of b. Details are shown below for some of the strict 
stepping  stone models. The moving average  represen- 
tation is useful in several ways. Finite sums of MA 
coefficients provide close approximations of zX,(, be- 
cause the go to zero as n + 03 or as the spatial lag 
in any dimension goes to infinity. Space-time covari- 
ances, cb,n, can be closely approximated by multiplying 
the MA representation of z,,~ with one of %,-b,t-n and 
then  taking  expectations. For stationary processes we 
have: 

m 

= c C $:,A (A12) 
m h=O 

C C 1 C / , 9  
m 

m k m+b,k+n 

m (A13) pb,n  = 
m h-0 

c c +:.k 
m k=O 

where  the summations form, in every case, are infinite 
i n  every direction  (AROIAN  1985). 

Stationarity  obtains  whenever 9(B,,Bt) converges 
for I B, I 1  for all coordinates (dimensions) X ; ,  and 
I Bt I G 1 (TANEJA and AROIAN  1980), and it can be 
shown that  these  conditions are generally met in  mi- 
gration  drift models when mm > 0 and all f#Jb 3 0. 

Equations for  the relationships between different 
space-time correlation coefficients can be obtained by 
multiplying equation 7 by zx-b,$-,, then  taking expec- 
tations, and  noting  that  for n > 0 E Z,-b,t-n ax,I = 0. 
Thus the  equations: 

pb,n = d'mpb+m.n-l (A 14) 
m 

(except  for n = 0, b = 0). The summation is taken 
over all spatial lags m which exchange  migrants, and 
including  m = 0 [Theorem 4.5 of AROIAN (1985)l. 
The set of above  equations  for all coefficients of the 
&, in Equation 7 (see text)  are known as the Yule- 
Walker equations and they provide the basis for  the 
Yule-Walker estimators of the  migration  parameters 
(&) from  the space-time correlations  from space-time 
data in real populations (see text). They also can be 
used for checking sets of theoretical pb,n obtained  from 
the MA representations. Multiplying Equation 7 by 
z,,~ and taking  expectations leads to  the  equation: 

( 
- 1  

d = d 1 - 4 b p b . l )  . (A15) 

(Recall that ai = 1/8N). Notice that  the p b , l  depend 
on  the  ratio of the process variance to the  error 
variance. 

Finite parameter  STAR models for one spatial di- 
mension and with temporal order  one of the  form of 
text Equation 13 have the form in terms of backshift 
operators: 

12 

@(Bx,Bt) = 1 - 2 4bBibBB: (A16) 
b=-1 I 

where l 1  and l 2  are limits defined under Equation 13 
in the  text,  and  the moving average  generating  func- 
tion is given by: 

*(Bx,Bt) = C C 48;*  Bf. (A17) 
d=O m ( l z  b=-ll r 

For the strict  stepping  stone model for  one spatial 



Space-Time Correlations 727 

dimension (see text  Equation 15, and  Figure  la), we 
have: 

@(&Fx,Bt) = 1 - (40 + @ - I &  + 41Fx)Bt (A18) 

where F, = B;'. The moving average  generating 
function can be  written: 

m 

*(BX,B;',Bt) = (40 + 4-1& + 4 1 B ; l ) ~ B f .  (A19) 
d=O 

Approximations  for calculating the spatial and space- 
time  correlations require finding the individual con- 
tributions, $b,n, to zX.( from  subpopulations b units to 
the left (or negative direction)  and n generations  ago. 
One way of calculating the $b,n by computer is to 
simply go through all  possible trinomic  combinations 
of all  possible I and k for  a given d = n, and  add  the 
contributions to $b,n, where b = k - 1. Alternatively, 
using Equation A19 it can be shown that, 

$b.n = d'O$b,n-l d'l$b+l,n-l  d'-l$b-l,n-l (AZO) 

for I b I < n. Using this and  noting  that $o,o = 1,  and 
a 1 1  other $b,O = 0,  provides  a  convenient  algorithm for 
cdkulating  the #b.n. Using the equations, 

Pb.1 = 4Opb.O + 4 1 P b + l , O  + d - l p b - l , O  

p -b .1  = 4Opb.O + d"lpb- l ,O  + 4 - l p b + l , O  

(A21) 

it can be shown that in general p b , n  = p - b , n  when 41 = 
+ - 1 .  

Two-dimensional  models with temporal order 1: 
Finite parameter  STAR models for two spatial dimen- 
sions, with temporal order  one  are of the  form in 
Equation 21  in the  text: 

k2 12 

&y,t - - C. 4b,a%x+b,y+a,t-l + Ux,y,t.  (A22) 
a=-kl  b=-l1 

Let Bx and By be the spatial backshift operators,  then 
kz 1, 

@ ( B x , B y , B t )  = 1 - d b , d ; b B ; a B : .  (A23) 
a=-k,  b=-ll 

The moving average  generating  function is 

and z , , ~ , ~  = *(Bx,By,&) U , , ~ J .  
For the strict  stepping  stone model migration occurs 

only from the  four  nearest  neighbors,  thus  (text Equa- 
tion 22): 

+ 4 0 , - 1 ~ x , y - 1 , t - l  + 4 0 . 1 ~ x , y + l , t - l  + ax.y.r. 

The MA generating  function can be written: 

m 

= c  c 
c 

d=O l+k+ 

r+u 

Individual $b,a,n (the relative effect on z , , ~ , ~  of the 
subpopulation at x - b,  y - a, t - n) can be found by 
first fixing n = d in Equation A27,  and  then  summing 
up all multinomial increments  for which b = k - s, 
and a = u - v .  (Note  that $b,a,n = 0 for I b I + I a I > 
n.) The MA coefficients can also be more easily  cal- 
culated by iterating  the  formula: 

+ d'l.O#b+l,a,n-l (A28) 

+ ~ O , - l $ b , a - I , n - l  

+ $O.I$b,a+l,n-l 

and  noting  that $O,O,O = 1 .O and, $b,a,O = 0 for all other 
a and b. 

Using the text Equations 27 and  the identities pb ,a ,n  

and AROIAN  1980;  AROIAN  1985), it can be shown 
that if4-1,o = 41 ,o  and 40,-1 = 40.1 then pb.a.1 = p - b , - a , I ,  

and finally that p b , a , n  = pb , -a ,n  = p-b ,a ,n  = p-b , -a ,n .  Thus 
the observations  on the p b , a , n  in the various anisotropic 
models described  above are as expected. 

- - p-b , -a , -n ,   po ,O ,n  = p o , o , - n ,  and fb ,a ,O  = P-b.-a,O (TANEYA 


