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ABSTRACT 
A statistical  method is presented  for  detecting quantitative trait loci (QTLs), based  on the linear 

model.  Unlike  methods  able to detect a few well separated  QTLs  and to estimate their effects and 
positions, this method  considers the genome as a whole and  enables  the  detection  of  chromosomal 
segments  involved in the  differences between two  homozygous lines, and  their backcross,  doubled 
haploid, or F n  progenies,  for a quantitative trait. Genetic  markers must be codominant,  but missing 
markers are accepted,  provided  they are missing independently from the  experiment. Asymptotic 
properties, which are of practical  use, are developed. This method  does  not rely on strong  genetic 
hypotheses,  and thus does not permit any precise  genetic analysis of the trait under study, but it does 
assess which regions of the  genome are involved, whatever the complexity of the  genetic  determinism 
(number, effects and  interactions  among QTLs). Simultaneous use of several  methods,  including this 
one, should  lead to better efficiency in QTL detection. 

F OR a  long  time, geneticists and  breeders have 
been interested in the genetic analysis of quanti- 

tative  characters.  However,  traditional  quantitative 
genetic  methodology is based on  the statistical prop- 
erties of the total  effect of all  loci contributing to 
quantitative  variation, and not  their  number, locations 
and individual effects. The recent use of codominant 
molecular  markers  opens new perspectives for  the 
study of the genetic basis of quantitative  variation;  for 
it is possible to ascribe  a  fraction of the genetic basis 
of quantitative variation to several Mendelian loci 
(QTLs) having  major effects. Such studies are based 
on  the statistical associations between the “genotypic” 
variation of markers  and  the  quantitative  trait varia- 
tion,  among  a  population of segregating individuals 
where linkage disequilibrium is maximized (F2, back- 
cross,  doubled  haploid lines, recombinant  inbred 
lines). 

Different statistical methods  have  been  developed 
for locating and estimating  genetic effects of QTLs: 
the first ones use the information  from each individual 
marker  separately.  Among  methods  considering sin- 
gle marker  information,  the simplest one is the linear 
model analysis (SOLLER and BRODY 1976; SOLLER, 
BRODY and GENIZI  1979): the comparison of pheno- 
typic means at each marker leads to  the estimation of 
the effect of different QTLs (EDWARDS, STUBER and 
WENDEL 1987; STUBER,  EDWARDS and WENDEL 1987; 
TANKSLEY and  HEWITT  1988). However, in this 
method  both  the recombination  fraction and  the  QTL 
effect are confounded  and  the effects of QTLs  are 
always underestimated. WELLER (1  986) proposed  a 
maximum likelihood (ML)  approach, involving three 
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unknown parameters;  the estimates of the  parameters 
were  not  good. Luo  and KEARSEY (1  989) used a  more 
simple likelihood function with only one unknown 
parameter:  the  recombination  fraction; they con- 
cluded  from simulation studies with 500 Fz that this 
approach led to  accurate estimates of parameters as 
long as the heritability was not less than  0.10. How- 
ever, DARVASI and WELLER (1991) showed that  the 
last method led to  results  differing  from  those ob- 
tained with the  “true” ML method (in a seven-param- 
eter likelihood space), especially for  a  dominant QTL 
loosely linked to  the genetic  marker  considered. 

Recently, much more efficient methods  considering 
pairs of  successive markers  flanking  a  putative QTL 
have been developed. The interval  mapping  method 
is based on maximum likelihood parameter estima- 
tion,  and provides a test for QTL detection, based on 
the  ratio of likelihood functions, under  the following 
hypotheses: there is a QTL lying in the considered 
interval vs. there is no  QTL in the interval  (LANDER 
and  GREEN  1987;  LANDER  and BOTSTEIN 1989) (LB). 
The method is indubitably the best in  case of FZ or 
backcross populations, assuming only one QTL  and a 
Gaussian distribution  for the considered  character. 
Such a hypothesis may appear restrictive  for the study 
of quantitative  trait  determinism, for which one can 
imagine the  occurrence of several loci, each with  small 
effects, dispersed all over  the  genome or  grouped 
over specific chromosomal regions. In this case, when 
considering  an  interval  flanked by two markers,  the 
character  distribution is not Gaussian but is a  mixture 
of Gaussian  laws; the situation gets even more com- 
plicated when QTLs belong to  the same linkage 
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group.  Other flanking  marker  methods were pro- 
posed by KNAPP ( 1  99 1)  (K), essentially based on first 
and second order moments  comparison, and CARBO- 
NELL et al. (1992) (C). They  are probably robust and 
better suit non-Gaussian distributions.  However,  their 
purpose is still detection and characterization of indi- 
vidual QTLs.  The situation of several QTLs, each 
with a small effect and genetically linked, has not been 
addressed. 

This last problem is considered in the present  paper. 
We propose here a  method based on  the  linear  model, 
with the  genome  considered as a whole, which can be 
used in a very general  genetic  context. The purpose 
is to detect  the  regions displaying QTL effects, rather 
than  to  detect isolated QTLs  and  to estimate  their 
effects. Simultaneous use  of different  methods, each 
optimal for  a specific situation, is recommended  to 
improve the efficiency for QTL searching as well as 
the  understanding of the genetic basis of quantitative 
character  variation. 

STATISTICAL MODEL 

Consider that n genotypes are  obtained  independ- 
ently,  from  a cross between two homozygous lines A 
and B. The cross can be  a  hybrid  autofecondation 
(Fz), a backcross (BC), a testcross (TC),  or a  doubled 
haploidization (DH). Formally TC  and DH are not 
different  from BC and will no longer  be  mentioned. 
These genotypes are characterized  independently  for 
a  quantitative  trait of interest (Yi, i = 1, . . . n), and 
for  a set of m inherited  codominant  markers (Mt, i = 
1, . . . n). 

We may then write: Yi = E[Yi /M,]  + E, ,  where 
S [ Y i / M z ]  represents  the  conditional  expectation of Y, 
given Mi, Ei are independent  random variables sup- 
posed to  be identically distributed, with E [ E , ]  = 0; 
V[E, ]  = g z .  This assumption will be discussed later. 
Mi belongs to  the set of  all  possible configurations 

for  the m markers. The conditional  expectation, 
E [ Y i / M , ] ,  is a real valued function  on this set, usually 
very large (with 2" (BC) or 3"' (F2) elements).  In order 
to make it estimable, it must be considerably con- 
strained;  the following models will be  considered  here: 

+aj - 6, forMi(j) = A A  

"='+ j = l  '-1 -al-&, forM,(j)=BB 
1 + 6, forMi(j) = A B  + E, ,  for  an F2. 

M , ( j )  represents  the value taken by thejth marker  on 
individual i. Parameters a, and 6, are statistical effects 
associated with the markers,  their  interpretation in 
terms of additivity and dominance is obvious; no 
epistasis is assumed. 

The previous models can be  written foiiowing a 
matrix  notation: 

Y = RO + E E [ E ]  = 0 V [ E ]  = a2Z 

where, O is the vector of p unknown  parameters: 

@ = {P, . . . , am}, for  a  BC; 

0 = {p, a], . . . , am, al, . . . , am}, for  an F2 

R is a n X p matrix filled with ( -1 ,  + I  } or  {-I, 0, 
+ 11, depending  on  the cross-design (BC or Fz). This 
matrix is defined by the segregation of the markers: 
it is random  and usually uncontrolled. Estimation of 
O as well as tests are made  conditional on R ,  hence we 
have here a  linear fixed-effects model (SCHEFF~ 1959; 
COURSOL 1980). The statistical analysis of these 
models is  well known. The Gauss-Markov estimator 
for 0 is O and  the best estimator of g2 is 5': 

6 = (R'R)"R'Y,  6 w N(O, u * [ R ' R ] - l )  and, 

G2 = IIY - R6(12/(n - p )  
Tests are available for  testing the existence of any 

class  of effects. However, it is interesting  to place 
these tests in an asymptotic frame. If n is large enough, 
the  distributions of several statistics are well approxi- 
mated by their limits as n tends  to infinity. Here,  the 
limit distributions of estimators and test statistics pos- 
sess interesting  properties: as the  number of individ- 
uals n must be  large  enough with respect to  the 
number of parameters p ,  these  properties are of prac- 
tical  use. 

ASYMPTOTIC  PROPERTIES 

We suppose that  no selection is made  on  the  geno- 
types to be  taken  into  account in the analysis. The 
observed individuals are  obtained independently from 
the same cross-design; the R matrix is built up with 
independent  equidistributed  random rows (R,, i = 1, 
. . . n). Then: 

1 1 "  as .  
n n i = l  
- [ R ' R ]  = - 2 [RIR,] + E[R:R,] = u 

(strong law of large  numbers) 

and 

&. (6" - @ ) s N ( O ,  u2U") (central limit theorem) 

where 6" refers  to  the Gauss-Markov estimator of 0 
in an experiment with n different individuals, and U-' 
stands for  the inverse of U. Notice that Vn, E - I [ R ' R ]  
s E[(R 'R)"]  (in the sense of inequalities between 
positive semidefinite matrices) hence the asymptotic 
equ_ivalence above  for the variance-covariance matrix 
of 0 is,  with finite n, a lower bound  for  the  mean. 

Whatever the cross-design, the matrix U is calcula- 
ble from  the  genetic map. I t  is invertible, and  for  both 
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Fz and BC, its inverse has a simple structure: it is 
block-diagonal and tridiagonal. Results for these two 
crosses are presented in APPENDIX A. 

We get  the following asymptotic result: the partition 
of all parameters, following the chromosomes and  the 
type of effects (additivity or dominance), is orthogo- 
nal. 

The correlation  structure of 0 is simple: an esti- 
mator 6,, of an effect  attached to a marker, is corre- 
lated only with the estimators of the effects of the 
same type, for flanking  markers. We have: 

,. 

BC: 

V[Gj] = - 
U2 1 - e-4AJ-1,J+1 

n (1 - ed4'J-1.j )( 1 - e - 4 A ~ ~ ~ + l  ) 

and 

F2, for  additive effects: 

and 

F2, for dominant effects: 

and 

Where is the genetic  distance (in Morgans) 

between markers j and k. We have: 

V[Gj]  and  V[ij] 7 +a, as nA,-,,j I 0 

C[&j, Gj+l] and C[&,  & + I ]  L --OO as  nAj,j+l I 0 

GENETIC  INTERPRETATION 

This statistical model is empirical; since there is no 
precise genetic  model,  a  genetic  interpretation is not 
unique. We shall now examine  the genetic  interpre- 
tation, in the asymptotic frame, assuming that  the 
differences between the genotypes  (parent lines and 
their  progenies) are  due  to genes (QTLs) with no 
epistasis, distributed all along  the  genome (calcula- 
tions are developed in APPENDIX  B). 

Effects of QTLs: For BC and F2 crosses, the only 
QTLs which contribute  to &, or ij (additive or domi- 
nant effect in the linear model attached  to  the j t h  
marker) are those located between markers j - 1 and 
j + 1. Roughly speaking, each effect of a QTL is 
shared between its flanking  markers, in proportion 
with their probabilities of segregating with it, in case 
of recombination between them.  In fact the  modulus 
is slightly biased (underestimated)  due to the possibil- 
ity of multiple recombination between both  flanking 
markers. 

We can define,  for  the comparisons under study, 
two functions b and c along each chromosome  repre- 
senting  the  additive and  dominant effects of the  gene 
present at each locus belonging to this chromosome 
(see definition of b, and cq in APPENDIX B). These 
functions are very irregular,  taking in particular the 
value 0 when both  genes are identical,  but there is no 
obvious reason, in general,  to suppose the  number of 
QTLs (in this sense all polymorphic loci) to be small. 
With this global linear  model, we are estimating aj = 
J-21: b4, and 6, = J-2:; c$,, ( j  = 1, . . . m) a  discrete 
approximation of the functions b and c. I f  we neglect 
double  recombinations 4j is identical to $j and is the 
"Chinese hat" piecewise linear  function,  taking  the 
value 1 on  marker j ,  0 on its left and  right  neighbours, 
and outside this interval. Clearly, looking at  the vari- 
ance-covariance of 6, there is a conflict between fine- 
ness (marker  density) and precision (estimator vari- 
ance) in this attempt  to estimate the functions b 
and c. 

Homoscedasticity: The assumption of homoscedas- 
ticity (V[E,] = u2) is in this context artificial. If there 
are  QTLs lying between two markers,  recombinant 
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genotypes  between  these two markers will have a 
greater variance than  nonrecombinant ones. How- 
ever,  our aim was to  treat chromosome  segments,  not 
isolated QTLs. Without  a  detailed  genetic  model, it 
is impossible to solve this contradiction.  Furthermore, 
the fixed effect linear  model is sufficiently robust 
against heteroscedasticity. 

TESTING  QTL  ACTIVITY 

Consequences of the  orthogonality  property: Con- 
sider  a  partition (@,, . . . @,,) of @ into h ( h  d p )  subsets 
of components, the  related hypotheses H,,:(@k = 0) 
with their  alternatives H,;: ( @ k  # O!, pndAthe corre- 
sponding Fisher test statistics Fk = (@;v“[@k]6k)/mk to 
test H,, against H,;,-k = 1, . . . h ;  where @k is the  re- 
striction of 6 to ek, v”[&] the inverse of its variance- 
covariance matrix  estimator,  and mk the dimension of 
@k (here,  the  number of markers on  the  chromosome). 

Orthogonality  for such a  partition of 0 (COURSOL 
1980), means that  the  numerators of the Fisher test 
statistics Fk are  independent,  and  that  the distribution 
of Fk depends only on u2 and @k.  Fk is distributed as a 
Fisher-Snedecor F(mk, n - p )  under H,,, as an F’(mk, 
n - p )  with noncentrality  parameter @;v”[6k]@k un- 
der H,i. 

Asymptotically, testing H,, against H,;, is purely 
testing the additive (respectively dominant) QTL ac- 
tivity on this chromosome  without  being  influenced 
by the existence (or  not) of a  dominant (respectively 
additive) QTL activity on  the same chromosome, nor 
by the existence of any QTL activity on other  chro- 
mosomes. This would not  be  the case without  orthog- 
onality. 

Power  considerations: The power of a Fisher F test 
depends only on its noncentrality  parameter (JOHNSON 
and A KOTZ 1970; COURSOL 1980). Convergence of 
V ( 0 )  to  a block-diagonal matrix (see APPENDIX A) leads 
finally to simple asymptotic equivalences for  the  non- 
centrality parameter of Fk: 

n@:AkOk = n ~ . ( Y . U ? - ~ * ~ ~ J ’ / U ~  I 1  for a BC. 
j,j’Echromosome 

n - @LAkOk = n (-u.ff.re-2AJ5‘/2(T2 
2 j,j’Echromosome 

1 1  

for additive effects in an FP. 

n @ ; ~ ~ @ ~  = n 6 . 6 . 4 - 4 4 . ~ ’ / g ‘  
],j’Echromosome 

I 1  

for  dominant effects in an F P .  

More  accuracy in detecting QTL activity: 
SCHEFF~S S method (SCHEFF~ 1959; COURSOL 1980) 
provides  a simultaneous test, s k ,  for all h e a r  combi- 
nations of effects belonging to a subset @ k ,  which is 
coherent with the  corresponding Fisher test: if the Fk 
statistics is not significant at level a, no linear combi- 

nation of the  parameters  belonging  to @I will be  de- 
clared significantly non-zero by the s k  test at  the same 
level; on  the  contrary, if the Fk statistics is significant 
at level a,  there is at least a  linear  combination of the 
parameters  belonging to @k which is significantly non- 
zero in the sk test at  the same level. This test is based 
on the following theorem, which expresses that @k 

belongs with probability 1 - a to its confidence ellip- 
soid (constructed under  no particular hypothesis on 

Let mk be the  number of parameters belonging to 
@k (the  number of markers  on  the  chromosome). 

p ) ) ” ’ ]  = 1 - a where &,‘.s, = A c ’ F [ ~ k ] c  = G ~ C ’ ( R ’ R ) ; ~ C  
is the variance estimator of c’@h estimator of c ’ @ k  linear 
combination on Ok, ( R  ’R);’ the mk X mk matrix  restric- 
tion of ( R  ’R)-’ to rows and columns corresponding 
to @ k ,  andf(a; mk, n - p )  the a upper  quantile of the 
Fisher-Snedecor distribution with mk and n - p de- 
grees of freedom. 

Thus we can decide, simultaneously for all linear 
combinations  on @ k ,  and with a global level a,  c’Ok # 
0 iff(c’6,I > (G;+,kmk.f(a; mk, n - p)) ’” .  Asymptotic 
orthogonality  for  the  partition of 0 makes these sk 
tests asymptotically independent. 

This enables one, each time  a type of effect (additive 
or dominant) has been  detected  as significant on a 
whole chromosome (by rejecting  the  corresponding 
H,, null hypothesis) to identify, with a global con- 
trolled level, which linear  combinations of effects are 
significantly different  from  zero,  and  thus, which seg- 
ments  appear  to be responsible for  the  differences 
between both  parent lines and within their recombi- 
nation products  for the trait under study. 

Usually sums of additive (respectively dominant) 
effects of  successive markers are tested, because they 
are easy to  interpret,  one is testing the total QTL 
activity of the segment  covered by these  markers. I t  
can happen  that no individual effect is significant, but 
that  their sum is. More complex linear  combinations 
of such parameters can also be of interest. 

Suppose there  are two QTLs  on a  segment,  one 
with a positive effect, the  other with a negative one; 
the total effect can be low and  not significantly dif- 
ferent  from  zero,  but  the  difference (eventually 
weighted) between the effects attached to  the flanking 
markers can be significantly non-zero. Of course, such 
combinations contribute little to  the  difference be- 
tween the  parent lines, but  do  contribute  to  differ- 
ences between recombinant  genotypes  for  these 
QTLs; they are  therefore not easy to  detect.  Here, 
the variance of a  linear  combination with negative 
coefficients is greater  than  the variance of  the linear 
combination with the same coefficients but all  of the 
same sign, because of the negative covariances be- 
tween effect estimators on  neighbour  markers,  and 

@ A )  : 

va, P [ V C  E R m q C ’ 6 k  - C ’ O k l  s ( + j , m k . f ( a ;  mk, n - 
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thus the power of the S test is  less for  a  difference 
than  for  a sum. 

MISSING DATA 

Missing data are always encountered in such exper- 
iments. Unlike the  methods based on sequential 
screening of intervals, it is impossible here  to simply 
discard individuals for which there  are missing mark- 
ers  on  the  examined  segment. Even with a small 
proportion of missing markers,  as we are considering 
here all markers simultaneously, the  proportion of 
individuals for which there would be at least one 
missing marker, would be  too high. 

In  our model, missing markers  are unobserved 
terms of the R matrix. We can calculate the  joint 
distribution of these missing terms, given the observed 
ones, which depends  on  a  recombination model (we 
assume Haldane’s  recombination  model, with no dif- 
ference  between male and female  recombination). 

Let Mobs be the set of observed  markers. We define 
Rexp = EIR/Mobs], the n X p matrix  corresponding  to 
R where missing terms are replaced by their  condi- 
tional expectation given all known markers; it will be 
supposed to be full rank (calculation of Rexp is detailed 
in APPENDIX c). We define: 

6 = (R:x,,Rexp)-lR:xpY. 

The following result holds. If we assume that  mark- 
ers  are missing at random  (independently  from  their 
value and Y ) ,  given Mobs, 6 is an unbiased Gaussian 
estimator of 0. 6 is consistent, and bas the same 
asymptotic orthogonality  properties as 0 (for  the par- 
tition of 0 following chromosomes and additive and 
dominance effects). 

Conditional  moments of 6: 
E[B/Mobs] = (R:xd iexp)”R:xpE[Y/Mobs ]  = 0. 

V [ ~ / M o ~ ] =  (~&&xp)”R&E[(R - R,,,)BO’(R - Rexp)’ 

+ EE ’/Mob,]R,,,(RI.,pR,,p)” 

= + (R:xpRexp)-’R:xpE[(R - Rexp) 

@@’(R -Rexp)’/Mobs]Rexp(R’expRexp)-’. 

The term (i,i’) o f D  = E [ ( R  - Rexp)OO’(R - Rexp)’/  
Mobs] is: 

E[C - rexpi,j)ejej’(ri’,j’ - rexpi’,j’)/Mobs] 
I’ 

= C C ejej‘C[r,,jr~’.j’/Mob~]. 
j 3’ 

As the  different  genotypes are obtained  independ- 
ently,  and  markers missing independently  from  their 
value and  from each other, C[ri, jrIr, j . /Mobs] = 0 for 
i # 2’; D is diagonal, positive and easily computed 

with the genetic  map. Finally, we get 

V[G/Mobs] = u‘( R:xpRexp)-’ 

+ (R:x&xp)-lR:xpD(map, @)Rexp(R:x$exp)-’* 

Notice that E[(R’R)”/Mobs] C (R:x,,Rexp)-’ (in- 
equality between positive semidefinite matrices: 

u‘((R:xpRexp)-’ - E[(R’R)”/Mobs]) 

+ (RLx,,Rexp)-‘R:xpDRexp(R:x~exp)-’ 

represents (in terms of variance) the expected cost of 
missing markers given Mobs. 

Asymptotic  properties of 6: Asymptotic properties 
of 6, rely on the following remark:  the  term ( j ,  j ’ )  of 

RLxpDRexp is CkC~edlCi rexprjrexpi,j’C[rr.k~i,l/Mobs], 
1 a.s. 

n l  
- rexpi, jrexpi. j’C[rt .kri , l /Mobs] - 

E[rexpi.jrexpij’C[ ri,kri,l/Mobs]]* 

Thus Z/n RLxpDRexp converges to some positive matrix 
W function of the map, 0, and  the distribution of 
missing markers. Also converges to some 
positive definite  matrix V function of the map and  the 
distribution of  missing markers.  Hence, 

A(& -0) 3 N(0, vwv + U’V) 

where Gn refers to  the estimator of 0, with  missing 
markers, in an experiment with n different individ- 
uals. It  is shown in APPENDIX c,  that  Wand V have the 
same block-diagonal structure as E [ R ’ R ] ,  thus the 
asymptotic orthogonality  properties  observed  without 
missing data are kept  (but the tridiagonal structure of 
E ” [ R ’ R ]  is lost). 

Estimation of u2 and V[~/M,I , , ] :  11 Y - Rexp611‘ = 
I(M((R - Rex,)@ + E)l(’, where M = (I - Rexp 
(R:xpRexp)-lR:xp). This is the squared  norm of the 
projection of Y on  an (n - p )  dimensional subspace of 
Iw”, hence, given R ,  it is distributed as a U‘X&, with 
non-centrality  parameter IIM(R - Rexp)OJI ‘/a’. Thus 
E[IIY - ReXp6~( ’ /~ , ,b , ]  = (n - p ) ~ ‘  + @’E[(R - 
Rexp)’M(R - Rexp)/Mobs]@. This last term equals: 
Cj,j,ej8j,Cimi,iC[ri,jri,j,/Mobs]; it can be  computed as a 
function of Rexp, the  map  and 0. From this formula, 
we can define  an  estimator of u‘, 

a’ = (11 Y - Rexp61( ‘ 
- 64’ mi,iC[ri,jri,j’/h/l,bs])/(n - p )  

j , j ’  z 

whose  bias is  in o( l/n) and is thus  consistent. 
v[6/Mobs] is estimable,  replacing a’ and 0 by a’ and 

6 in its expression. This  estimator, c [ 6 / M o b s ] ,  is 
biased, but its bias is again in o ( l / n )  and  thus, it is 
consistent. Practical computations are developed in 

Tests  with missing data: Given Mobs, ~ h ,  

N ( o ~ ,  V[&/Mobs]). Hence, (6k - @k)’v”[6k/Mobs] 

APPENDIX C. 
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( 6 k  - 0 k )  is distributed as a x:,, where K is an index 
for  the  orthogonal  partition of @ and v"[6k/M,$r] the 
inverse of the variance-covariance matrix of 0,. Be- 
cause of the block-diagonal structure of VWV + &', 
these x2 variables, corresponding to  the  orthogonal 
partition  of 0, are asymptotically independent. 

We can use this decomposition to test the  different 
hypotheses Huh: = O} against  their  alternatives Hut: 

are  independent stochastic variables given Mobs,  

f i k  distributed as an F(mk, n - p )  under H,,, as an 
F'(mk, ,n - p )  under flu; with non-centrality parameter 

( @ k  # o}: asymptotically, $k = ( 6 r ~ - l [ 6 k / ~ o b s ] 6 k ) / m k ,  

@rv"[@k/hfob,]@k.  

Notice that: @~(E[V"[6k] /Mobs]  - v"[6k/M0b,]) 
0 k  3 0. It  represents  the asymptotic expected loss of 
power due  to missing markers. 

Extension of the S test to this situation can be as 
follows. If H,, is rejected, we can test simultaneously 
all linear  combinations of @ k ,  deciding, Vc E [w",, c'Ok 

These & tests are asymptotically of level a and inde- 
pendent. 

# 0 iff: Ic'6kl > ( c f ~ [ 6 k / M 0 b , ] c m k I f ( a ;  mk, 72 - p))l'*. 

DISCUSSION 

The major  interest of this method is the possibility 
to make global tests, recovering the whole or a part 
of a  chromosome. In  doing so, we are able to detect 
the existence of  a  set of QTLs, all belonging to  the 
same linkage group  and having small individual, or 
opposite effects. Of  course, our method  does  not give 
precise information referring  to  the  number, locations 
or effects of these QTLs,  but it enables the user to 
select genomic segments of interest with a relatively 
high security with respect to  the genetic  determinism. 
As its asymptotic statistical properties are explicitly 
known, this method  constitutes also a  good tool for 
the design of an  experiment. 

The common  characteristic of  all existing two- 
marker  methods is their  sequential nature.  This is the 
reason why they are  not so well suited for  the detec- 
tion of linked QTLs. But the advantage of such a 
procedure is enormous in  case  of isolated QTLs;  the 
power of their tests increases until a limit with the 
number of markers. On  the  contrary with our global 
method,  the estimation precision and  the power of 
the tests decreases with the density of the map  (the 
proximity between markers  belonging to  the same 
chromosome,  not  their  total number) as it can be seen 
on  the  asylrptotic  structure of the variance-covariance 
matrix of 0. 

If there is only one  QTL, it is clear that sequential 
methods are always much better. If there  are several 
QTLs, even belonging to  different linkage groups, 
the comparison is not  evident. We expect to  reduce 
residual variance, by taking  into  account at  the same 

time the effects of all QTLs.  In such a  situation, this 
method  should  be used with a  reasonable amount of 
markers, eventually sampling available markers, but 
keeping  markers on all linkage groups. 

This  remark  opens  a new perspective. I t  is possible 
to analyse the observations with this multimarker 
method,  keeping  markers on all chromosomes but 
one,  and  then to use a  sequential  method on  the 
residuals, screening with a  higher density of markers 
the chromosome left in the first analysis. This can be 
done successively on all chromosomes.  Independence 
of  chromosome  segregation makes this iterative two- 
step  procedure asymptotically correct. 

Anyway, the limits of our method will only be 
precised by extensive simulations and real  data  stud- 
ies. 

Comparison between results obtained by our 
method  and  sequential  methods  can give an  interest- 
ing insight especially on  the  number of QTLs;  but if 
the purpose is a precise dissection of the genetic 
determinism of the  trait  under  study, this can  not  be 
achieved with only one  experiment:  the  search  for 
QTLs must be an interactive process. The multi- 
marker model enables the  experimenter  to focus on 
the interesting  segments  detected. New experiments 
must be  made, with more  markers  on  these  segments 
and  more individuals in order  to get  more  recombi- 
nant  genotypes between these  narrower  markers. 
These new experiments can be analyzed with more 
complex models (involving possibly epistatic effects); 
certainly, the analysis of such costly experiments is 
much improved, using different models and methods 
adapted  to  different  situations  and  purposes. 

In order  to  reduce  environmental variance, one can 
collect the  data in a field experiment. For instance, 
the  products of a cross can be grown in blocks with a 
reference  constituted by the  parents or  the F1, and 
the  differences  between individual performances and 
that of the  reference analyzed. More sophisticated 
designs are possible when the studied  genotypes can 
be  repeated  (doubled haploids). Such data are not 
independent raw measures, but estimations of the 
genetic values given by the statistical analysis of this 
field experiment; they are  therefore  not  independent, 
but have a known covariance structure. It is very  easy 
to take this structure  into account in the linear  model, 
whereas this is generally impossible in the LB method. 
The reason is that  the log-likelihood, at each interval, 
contains  a sum on  the  elephantine set of  all  possible 
joint genotypes at  the putative QTL lying in this 
interval,  and is therefore of no practical use. Of  course 
one can disregard  the  covariance  structure; conse- 
quences depend on this structure itself; in some cases 
(with heavily unbalanced  experimental designs), they 
could  be  important. 

The study of F, lines, derived  from BC or F2 pop- 
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ulations and  then selfed for (n - 2) generations, is 
possible. But genetic  interpretation will be modified; 
even  without  interference in the recombination at 
each meiosis, there is an  “apparent”  one in the F, lines 
with n > 2. Sequential  methods are in this case not so 
well justified, since, the  genotype  at a  putative QTL, 
given the  state of its two flanking  markers, is no longer 
independent  from  other  markers linked with it. 
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APPENDIX ,. 
A. Asymptotic  variance-covariance  matrix of 8 

In this appendix, rij represents  the  generic  term of 
matrix R (ith row and j t h  column). 

A*, represents  the  genetic  distance  between  markers 
j and j‘; it is expressed in Morgans and  refers  to 
Haldane’s  recombination model (without  interference 
or sex linked effect). 

Backcross: Remember  that ri,j = + 1  if M i ( j )  equals 
A ,  and -1 if it equals B .  

We have 

1,  and,  for j # 1, r,,l = j P [ r i j  = +1] = ‘/2 
p [ r i , j  = - 1 1  = ‘/2 

E [ r 3 ]  = 1; E[rj,Jr;,j] = 0; E[$ j ]  = 1 

F o r j  # 1 ,  j ’  # 1 , j  # j’, 

i 

u =  [I ;2 :A; q 

when markers are 

when markers are 
+’ ’  inherited  from  the  same  parent 

-’’ inherited  from  different  parents 

[ ri.jri,j,] = 

Considering  that the recombination probability be- 
tween two markers j and j’ is pj,’, this is the probability 
for  the 2 markers to be  inherited  from  different 
parents. 

so, 
E [ r .  ‘,J .r. 1.J . . ]  = 1 - 2pjj,. 

We have in  all  cases: E [ T ~ , , T ~ , ~ , ]  = e-”JJ’. 

so, 
1 0 0 . . .  

I s [  chromosome 
2”d chromosome 

. .  ith chromosome 
0 0 0 . . . A h  K t h  chromosome 

where A,  = [e”’n’] (for  the ith chromosome). 
Fq: Remember  that if Mi(j) equals AA (respectively 

AB,  BB),  rij = + 1 (respectively 0, - 1) for  an additive 
effect, and r,,j = -1 (respectively + 1 ,  -1) for a  dom- 
inance  effect. 

~ i . 1  1, E[rzl] = 1. 

Considering j as an  index for additive effects, 

q r i j  = + I ]  = % 

P[r t , j  = 01 = !h 

P[rj,j = - 1 3  = ‘/4 

P[r,,j = + I ]  = !A E[ri,Jri , j]  = 0 

P[ri,j = - 1 3  = 54 E [ r z j ]  = 1 .  

E[r i .~r , , j ]  = 0 

E[Tf j ]  = %. 

Considering j as an index  for  dominance effects, 
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Considering j and j’ as  indexes  for  additive effects, 

P[r,,jri,f,=+l]=PIM,(j)/Mi(j’)=AA/AAorBB/BB] 

= (1  - P j 7 ) 2 / 2  

P[ri,,r,,j,=o] = P [ M , ( j ) = A B o r M , ( j ’ ) = A B ]  

P[ri.jr,j,=-l]=PIMi(j)/Mi(j’)=AA/BBorBB/AA] 

= p,:/2. 

so, 

E[ri,jri,j‘] = (1 - 2PjJ,)/2. 
Considering j and j’ as  indexes  for  dominance 

effects, 

P[ri,,ri.j,=+I]=P[Mi(j)/M,(j’)=AA/AAorBB/BB 

orAA/BB or BB/AA  orAB/AB]  

= (1 - 2pjjp + 2 p 3 )  

P[r,.,r,,y=- l]=P[M,(j)/M,(j’)=AB/AAorAB/BB 

or AA/AB or BBIAB] 

= 2p,4 1 - pjj ,)  

so, 
E[ri,jriJ] = (1 - 2pjj.y 

Considering j and j’ as  indexes  for  additive and 
dominance effects, we have the following table for 
ri,jri,J, values: 

Mi( j ’ )  AA  AB  BB 
M:(j) 

AB 0 0 0  
BB +1 - 1  +1 

AA -1 + 1  -1 

and we know that: 

P[Mi(j)/Mi(j’)=AA/AA]=P[Mi(j)/M,(j’)=BB/BB] 

P[Mi(j)/M,(j’)=BB/AA]=P[Mi(j)/M,(j’)=AA/BB] 

P[Mi(j)/Mi(j’)=AA/AB]=P[Mi(j)/Mi(j’)=BB/AB] 

So, 

E[r*,jri,j.] = 0. 

We have in  all  cases: (1 - 2pj,,)/2 = 1/2e - z A ~ ~ ;  

(1 - 2p..,)’ = e-4AJJ’. 
JI 

So, 

U =  

with A, = [e-2A~’] and Bi = [e-’”~,]  (for the  ith  chro- 
mosome). 

Explicit  inverses: These matrices have explicit in- 
verses; in fact,  considering that A and B have the 
following structure: 

I 
Their inverses have a tri-diagonal structure: 

“ 
1 -al 

1-a:  1-a: 0 . . .  0 

1 -a: (1 -u?)(I -a ; )  1 -a; 0 
-a1 1 - a:a; -a2 ... 

0 1 
1 -ai-, 

. . .  - 

B. Connexion between effects attached to the 
markers  and  true QTL effects 

We suppose here,  there  are  no missing data. Re- 
member: 

In this appendix, E[y/m, = a ]  represents  the  condi- 
tional expectation of the  performance of an individ- 
ual, given that its j t h  marker equals a. 

Suppose the  existence of a set of genes  (QTLs) 
distributed all over  the  genome, with no epistasy and 
additive effects b, and  dominant effects cg, whose 
definition is as follows. 

Let G, be the genotype of individual i at all these 

1 st chromosome  additive effects 
2nd chromosome  additive effects 

1 st chromosome  dominance  effects 
2nd chromosome  dominance effects 
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QTLs,  then, we define  these effects through  the  for- 
mulas: 

E[ Yi/G;] 

I+b, for Gi(q) = A 
= ' + .\ -b, for Gi(q)  = B' for a BC. 

E [ Yi/ct] 
qmax I +b, - c, for Gi(q) =AA 

="':I -\-bq-cq forGi(q)=BB. 
+ c, for Gi(q)  =AB, for  an F2. 

This is not  the classical definition of additive and 
dominant effects in quantitative  genetics, since these 
effects are corrected  for linkage, and, in this sense, 
"absolute effects" (but  relative to  the cross under 
study). 

Backcross: 
r P 1 

- [R 'Y]  2 1 1 ... 
n 

L 
?h (E[y/mj = A ]  - E[y/mj  = B ] )  

I . .  1 
Then, 

with p,,, = P[qthqtl = A/mj = A ]  = ?h( 1 + e-"qJ), where 
Aq,, is the genetic  distance between qthqtl and jth 
marker. 

Thus, z, = Cqb,e-2Aqsj. From this formula, it is evi- 
dent  that  QTLs located on other chromosomes do 
not  contribute to SI. Now consider the subset of all 
QTLs located left from  marker j - 1 ; their  contribu- 
tion to ;Yj is: 

Now consider the subset of all QTLs located be- 
tween markerj - l and  marker j ;  their  contribution 
to Sj is: 

which can be written J:-] b$, and whose first order 
approximation is: ~qbq(Aq,j-l/Aj-l,j), which is also the 
first order  approximation of ~,b,P[qthqtl = A/mj-l = 
B and m, = A ] .  

We  may  also calculate the  contribution  to + SI 
of  all QTLs located between markerj - 1 and  marker 
j ,  which  is: 

bq(e-2Aq.J-l + e-zAqd)/(l + e-2AJ.J-1) 

q 

= b,(l - 2P[qthqtl = B/m,-l = A and m, = A ] )  
9 

whose first order approximation (in A,,,-]) is zqbq. 

Then obviously, for  additive  terms, we have exactly 
the same results as for a backcross. 

For  a  dominant  effect, we have: 



with g,,, = P[qthqtl = AB/mj = A B ]  = P[qthqtl = A A  
or BB/mj = A A ]  = P[qthqtl = BB or AAlm, = B B ]  = 
P X j  + (1 - Pq.j)’-  

Thus, zd, = Cqcq(l  - 2Pq,j)* = Cqcqe-4Aq,~. From this 
formula, it is evident that QTLs located on  other 
chromosomes do not  contribute  to 5,. Also, the same 
argument as  for  the backcross shows that QTLs lo- 
cated left from  marker j - 1 do not  contribute  to $,. 

Now consider the subset of  all QTLs located be- 
twe_en marker j - l and  marker j ;  their  contribution 
to tij is: 

which can be  written j’s-, c+j and whose first order 
approximation is: &cq(Aq,j-l/Aj-l,j). 

C. Variance-covariance  matrix of 6 and  its 
asymptotic  structure 

Let 

vl:j, = E[rexpi.jrexpi,j’] 

wJ,j’ = eke&[ rexpi,lrexpi,j’C[ ri,krt,l/Mobs]] 
k l  

be the ( j ,  j ’ )  terms of V” and W, respectively. 
Common  features: Suppose  that the jth marker is 

missing on individual i ( M i ( j )  missing). Let pl and pr 
be the recombination probabilities with the nearest 
left and  right  observed  markers  on  the same individ- 
ual, Mi([)  and Mi(r),  and pt the recombination  proba- 
bility between them (special cases where  either M i ( l )  
or M,(r)  do not exist are  obtained  putting PI  or pr and 
Pf = ‘/2 in the  formulas,  and if both  are missing, the 
individual is not  informative  for this chromosome, 
and has to be discarded). 

We have the following conditional  distribution  for 

M i ( j )  given M,(l)  and Mi(r): 

Now consider two missing markers  on the same 
individual, M i ( j )  and M i ( k ) ,  their  conditional distri- 
bution given Mobs, depends only on  their  neighbour 
(left and  right) observed  markers. If M i ( j )  and M i ( k )  
belong to  different  chromosomes, or if they belong to 
the same chromosome, and if there is an  observed 
marker  between them,  then they are  independent 
given Mobs. 

So, we only have to consider the case where the two 
missing markers Mi( i )  and Mi(k)  are  not  separated by 

nearest  observed  flanking  markers, ~ 1 ,  P b ,  pr, the  re- 
combination probabilities between these four markers 
(from left to  right in this order),  and Pf the recombi- 
nation probability between Mi(l)  and Mi(r) ( p f  = P I  + 
~b + P~ - 2 ( P / P b  + P b P v  + PrPl) + 4 P / P b & ) ,  (special cases 
where  either M,(l)  or Mi(r) do not exist, are obtained 
putting ~1 or pr and pf = 9’2 in the  formulas, and if both 
are missing, the individual is not  informative  for this 
chromosome, and has to be discarded). 

We have the following.joint conditional  distribution ” 
any observed mark&. Let i i ( l )  and M,( i )  be  their  for M i ( j )  and M i ( k )  giv&-M,(l) and M,(r) :  

missing: M , ( j ) ,  M,(k)  A ,  A 

observed: M,(l) ,  M , ( r )  

A ,  B B ,  A B ,  B 
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Backcross: 
Computation of D: 

P[Mi ( l )  = U l ,  Mi(?-) = a,] 

= P[M,(1) = a:, Mi(r)  = a ? ] ,  and 

P [ M i ( j )  = a l ,  M , ( k )  = ~ 2 / M i ( l )  = al, Mi(r) = a , ]  

= P [ M i ( j )  = UT, M : ( k )  = u;/M,( l )  

= a:, Mi(?+) = a?] 

where a E ( A ,  B ) ,  and A* = B ,  and B* = A.  
Remember  that ri.] = + 1  if M , ( j ) ,  equals A ,  and -1  

if it equals B.  The two first conditional  moments for 
missing terms are immediately obtained  from  the  pre- 
ceding tables. 

E [ r:J/Mi(  l)Mi( r )  = AA ] 
= -E[rl,,/M,(l)Mi(r) = B B ]  = 2Wj, - 1 

V [  rt,j/Mi(  l)Mi( r )  = AA ] 
= +v[r, ,J/M,(l)Mi(r) = B B ]  = 4Wj1(1 - $,I) 

C [ r:,]rt,j,/Mi( l)Mz( r )  = AA 3 
= +c[r : j r : J , /Ml (~ )M:( r )  = B B ]  

=(TI1 + ~ 4 1 ) - ( ~ 1 2 + ~ 4 2 ) - ( ~ 1 1 - ~ 4 1 ) 2 + ( ~ 1 2 - ~ 4 2 ) 2  

E [  ri,J/M:( l)Mi( r )  = AB]  

= -E[r, , j /M:(l)Mi(r) = B A ]  = 2W12 - 1 

V[ri,j/Mt(l)Mi(r) = A B ]  

= +V[ri,JMZ(l)Mi(r) = B A ]  = 45j2(1 - W j p )  

C[ri.,ri,,,/Mi(l)Mi(r) = A B ]  

= +C[ri,jri,j,/Mi(l)Mi(r) = BA]  

= ( r 2 1  + a31)  - ( x 2 2  + r 3 2 )  

- ( r 2 1  - T31)* + (x22 - '.32)2 

Structure of V and W: If j and j '  are indexes for 
missing terms  corresponding  to  different  chromo- 
somes, informative  markers for j and j '  belong  to 
different  chromosomes, and  are  therefore  independ- 
ent.  Thus, conditional  expectations are independent. 
u;;I, = E[r~~pi,j]E[rexpi,j,] = 0. Also, C [ ~ i , k ~ i , i / M ~ b ~ ]  = O if 
k and 1 are indexes  for  terms  corresponding to  differ- 
ent chromosomes, and E[rexpi~rexpi~'C[ri ,kri , l /M~bs]l  can 
be non zero only if j and j '  are indexes  for  terms 
corresponding to  the same chromosome (as k and AI). 
Thus V and W do conserve the block-diagonal struc- 
ture  chromosome by chromosome. 

F2: 
Computation of D: 

P[Mi( l )  = al, Mt(r) = a,] = P[Mi( l )  = U P ,  M,(r )  = a:], 

and 

P [ M , ( j )  = a,, Mi@) = U k / M i ( l )  = U l ,  M;(r )  = a,] = 
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Structure of V and W: If j and j ’  are indexes  for 
terms  corresponding to different  chromosomes, the 
same argument as for  the backcross proves that 
vj:j# = 0 and w, ,~ ,  = 0. Now, consider j and j ’ ,  two 
indexes for  terms  corresponding  to  different classes 
of effects (additive and  dominant)  on  the same chro- 
mosome, without  observed  marker  between  them. 
The antisymmetry for  an additive  effect, the invari- 
ance  for  a  dominant  effect, of the conditional  expec- 

tations, and  the invariance of the probabilities, 
through  the * transformation, make vjyj, = 0. Also, 
C [  r,,kri,l/Mobs] is antisymmetric, and rexp,,jrexpi,j, invar- 
iant  through  the * transformation,  therefore, W,J = 
0. Thus, V and W do conserve the block-diagonal 
structure chromosome by chromosome, and, within 
each chromosome,  between  additive and dominance 
effects. 


