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Strategies to Configure Image Analysis Algorithms
for Clinical Usage
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A b s t r a c t Medical imaging informatics must exceed the mere development of algorithms. The discipline is also
responsible for the establishment of methods in clinical practice to assist physicians and improve health care. From our
point of view, it is commonly accepted that model-based analysis of medical images is superior to other concepts, but
only a few applications are found in daily clinical use. The gap between development of model-based image analysis
and its routine application can be addressed by identifying four necessary transfer steps: formulation, parameteri-
zation, instantiation, and validation. Usually, computer scientists formulate the model and define its parameterization,
i.e., configure a model to handle a selected subset of clinical data. During instantiation, the algorithm adapts the model
to the actual data, which is validated by physicians. Since medical a priori knowledge and particular knowledge on
technical details are required for parameterization and validation, these steps are considered to be bottlenecks. In this
paper, we propose general schemes that allow an application- or image-specific parameterization to be performed by
medical users. Combining noncontextual and contextual approaches, we also suggest a reliable scheme that allows
application-specific validation, even if a gold standard is unavailable. To emphasize our point of view, we provide
examples based on unsupervised segmentation in medical imagery, which is one of the most difficult tasks. Following
the proposed schemes, an exact delineation of cells in micrographs is parameterized, validated, and successfully
established in daily clinical use, while automatic determination of body regions in radiographs cannot be configured to
support reliable and robust clinical use. The results stress that parameterization and validation must be based on
clinical data that show all potential variations and artifact sources.
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In the context of biomedical imaging and computer-assisted
diagnosis, image analysis is an intense field of research and
development. According to our experience, the most difficult
part of medical image analysis is unsupervised segmentation,
i.e., the automated localization and delineation of coherent
structures of interest. Since relevant structures in biomedical
images strongly differ in brightness, texture, and shape, so-
phisticated approaches include a priori knowledge. In order
to incorporate this knowledge, model-based image analysis
is frequently applied.

For segmentation, such a model provides the geometry for
structures of interest and incorporates a priori knowledge on
plausible geometry. The individual instance of the model
best explaining the given imagedata isdeterminedas a segmen-
tation result. Here, plausibility can be determined, e.g., by
laws of physics, or by probability density functions observed
for large numbers of structures. The snake model, which was
introduced in 1987 by Kass et al.,1 is one of the first models
applied to segment medical images. In the succeeding 15 years,

numerous models for image analysis have been developed
and published. In our opinion, shape-basedmodels2 and active
contours3 are superior concepts for solving the localization and
the delineation tasks in medical imaging, respectively.

Currently, a variety of research applications have been re-
ported for the detection and measurement of tumors, vessels,
and organs in a diversity of clinical indications such as diag-
nostics, treatment planning, and living organ donations. A
fewcompanies alreadyprovide some formofmodel-based im-
age analysis (e.g., ImageChecker, R2 Technology, Sunnyvale,
CA), while others integrate less sophisticated algorithms into
their workstation software (e.g., syngo, Siemens AG Medical
Solutions, Forchheim, Germany). Regardless of the complex-
ity of themodels used for image analysis, integration currently
reaches only a semiautomatic level, where difficult and time-
consuming interaction with physicians is still required.

For instance, the workflow for syngo Volume Evaluation,
whereby the system ‘‘diagnoses’’ the volume of interest, is de-
scribed in five steps in which the configuration ( place seed
points for a region-growing segmentation) of the segmenta-
tion algorithm as well as the validation and improvement
of the result (mark and link unconnected regions of interest)
is performed manually.4 As a result, the volume is quantified
by the system. In computer-aided detection (note that
computer-aided diagnosis and computer-aided detection
are fundamentally different concepts providing the physician
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with qualitative assistance and quantitative measurements,
respectively), the digital image is analyzed and annotated
by the computer. For example, in the R2 software for mam-
mography, most of the suspicious locations are marked in a
so-called prompt image of lower resolution. After an initial
(unprompted) search of the original mammogram, the reader
consults this prompt image. Stepping through all the
prompts, he or she checks the regions of the original mammo-
gram, where mass and microcalcifications are delineated by
the computer automatically, andmodifies his or her judgment
about the mammogram accordingly.5 This ensures that all
significant regions of the mammogram are verified.

In summary, a variety of successful algorithms for computer-
aided diagnosis by means of medical image analysis are pre-
sented in the literature, but robust use in clinical practice is still
a major challenge for ongoing research in medical informatics.6

It is currently under discussion whether available models can
solve clinical problems. However, this cannot be decided as
long as various systems’ models are not validated in clinical
applications.7 In particular, unsupervised segmentation is
not available for general use in the biomedical context,8 and
fully automated image analysis is unlikely to provide a solu-
tion in the short term.5 Hence, medical image segmentation
largely remains an unsolved research problem rather than a
useful clinical tool. The discrepancy between intensity of re-
search and lack of robust applications is striking. From our
point of view, the transfer of models from algorithmic devel-
opment into clinical application is the major bottleneck. We
consider four steps to establish an application for medical im-
age analysis:

1. Formulation means to define the data structures repre-
senting relevant biomedical objects and the algorithms de-
termining a valid instance for given image values. Here,
generality and robustness are the main criteria.9 Sufficient
generality ensures that a model is applicable to different
tasks and adaptable to various circumstances in routine
use. Robustness is important because biomedical data
are noisy, and artifacts are mostly inevitable.

2. Parameterization means to choose meaningful values for
all technical parameters of the data structures and the algo-
rithms and, therefore, to configure such a method to operate
on specific clinical data. Hence, it is usually performed by
the programmer. Specificity and target-group orientation
are important. Themodel has to offer variables that can later
be filled with application-specific information. However,
this essential knowledge can be obtained only from bio-
medical experts, and most programmers are not experts.

3. Instantiation means to run the algorithm with the chosen
parameters to find the individual model instance that
best explains the input image.10 Here, the automated and
reproducible detection of the solution instance is impor-
tant. Model-based approaches that do not rely on continu-
ous user interaction are preferred.

4. Validation has to be applied to ensure a trustworthy result
from an unsupervised segmentation algorithm even if a
gold standard is unavailable. This requires reliable compu-
tational measurements rather than a qualitative inspection
by a human observer.

Configuration of model-based segmentation is crucial. For
the family of active contours, which is evolved from the clas-
sic snake,1 relevant parameters include the weighting of

image influences against smoothness constraints and an op-
tional driving pressure, the number and distance of vertices,
and all parameters of the various edge filters applied to com-
pute image influences. For level sets, the model to determine
the interface velocity requires configuration.11 Parameters
need to be selected properly to determine the interface veloc-
ity relative to local shape properties, the location in the image
domain, and the extension speed dependent on image values.
Active shapes12 and all further development of such shape
knowledge–based models require configuration regarding
the number of landmarks in each shape, the number of con-
sidered modes of variation seen in training, the weighting
of shape knowledge against image influences, and the deter-
mination of image influences for each landmark.

In all these examples, computer scientists are regularly in-
volved in the development of the model and its parameteriza-
tion, whereas the resulting instances are validated and used
mostly by physicians. In contrast, a combination of technical
and medical a priori knowledge is required for both steps.
This transfer bottleneck is reflected also in the literature. In
the majority of published papers, only the formulation and
the instantiation of models are presented, but both parameter-
ization and validation are not considered in serious detail. In
this paper, we suggest schemes that are applicable in general
to guide the transfer of model-based image analysis into par-
ticularly supporting biomedical applications. These schemes
can serve as a road map for the difficult and complex tasks
of parameterization and validation.

Classification of Existing Methods
In medicine, a novel diagnostic procedure is validated against
the true diagnosis, which is termed the gold standard. Based
on a definition from Wenzel and Hintze,13 a true gold stan-
dard in image processing must be reliable, i.e., its generation
must follow an exactly determined and reproducible proto-
col; equivalent, i.e., it must equal real-life data with respect
to structure, noise, or other relevant parameters; and indepen-
dent, i.e., it must rely on a different procedure or another
image than that to be evaluated.14

Such a gold standard is unavailable for many issues. There-
fore, it is difficult to develop robust parameterization and
appropriate validation schemes. These problems continuously
plague medical image analysis research. Figure 1 gives an
overview of the methods that have been suggested for param-
eterization and validation ofmodel-based image analysis. The
classification terms are adopted from Lehmann et al.9,15

Strategy of Parameterization
This class determines the point of time when the parameters
for a model are set. Therefore, it addresses the flexibility of the
model to operate on different image material.

Unspecific
Often the parameterization of a model is completed before it
is transferred into a biomedical context. Such a strategic
parameterization is characterized by a static choice of values
for a parameter for all applications.

Application Specific
The parameterization is performed completely during the
transfer of the model. It is the main step to adapt a model
for the given task or to readjust it after the protocol of image
acquisition was altered.
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Image Specific
For several modalities, images can differ strongly in appear-
ance and automated analysis requires an image-specific pa-
rameterization.16 Hence, at least some of the parameters are
adapted individually to every image processed during appli-
cation.

Iteration Specific
Even more crucial, parameters may be altered during the pro-
cess of instantiation. For example, the optimal value of a cer-
tain parameter is made dependent on the number of
iterations,17 properties of the model such as the size,18 or local
image characteristics.19

Type of Parameterization and Validation
Beside the time of choice, we have observed and classified the
sources fromwhich the parameterization and validation orig-
inate (Table 1).

Theoretical
Especially in combination with unspecific parameterization,
the theoretical approach is preferable. For this type, param-
eters are set only based on theoretical properties of the model.
Regarding validation, neither experiments on synthetic or
real data are performed nor is a gold standard applied. For in-
stance, Haralick20 has proposed a theoretical scheme for the
validation of image-processing algorithms. Note that in con-
trast to the terminology used in this paper, theoretical valida-
tion is also referred to as the analytical approach.21

Manual
In most applications, the parameters are adapted manually
until model-based analysis for exemplary data conform with
the subjective visual impression of an observer. Using this ap-
proach, even experienced users just guess the initial param-
eters and try to fight perceivable errors. Since reproducible
rules for this type of parameterization do not exist, strong
observer dependencies are obtained. Consequently, this
method is called ad hoc22 or trial-and-error parameteriza-
tion23 as well as empirical goodness.21 Although experiments
are performed with an implemented model, neither a gold
standard nor a quantitative measure is used for guidance of
parameterization as well as validation.

Analytical
Similar to theoretical parameterization, the source of informa-
tion is based on mathematical properties of an optimal

parameterization but additionally includes exemplary obser-
vation data and computed measures. Analytical param-
eterization is based on the solution instance and additional
properties of the input image. Since a gold standard is not
used, it is also termed ‘‘parameter free.’’24 Analytical valida-
tion is most often applied to pixel-based segmentation
methods, but it has been also successfully used for the snake
model.25,26 It can be improved if competing segmentation
methods are available for comparison.27,28

Experimental
Experimental parameterization is based on the learning-from-
examples paradigm.22 At least one gold standard image is
needed. The paradigm states that if parameters are chosen
such that the reference is reproduced in this example, the pa-
rameterization is also suitable to process similar images from
the same series of acquisition. Experimental validation com-
pares computational experiments to the gold standard.
Note that in this taxonomy, manually created reference con-
tours are not considered as a gold standard20 and conse-
quently such strategies for validation are termed manual
but not experimental.

Context of Validation
Regarding the published evaluation techniques, two different
approaches have been proposed.15

Noncontextual
An algorithm is tested involving images with adjustable
properties or systematic changes of parameters. Usually,
they operate on synthetic images and quantify the quality
of results. Noncontextual tests give reproducible and quanti-
tative measures describing the behavior of a considered
model under variable known image characteristics and
changes in parameterization. Hence, this type of evaluation
is directly related to the algorithm but not to its application
in daily clinical use.

Contextual
The suitability of an algorithm is evaluated only for a certain
application. Such validations rely on results of the target ap-
plication. Usually, contextual tests directly apply a proposed
model to an image analysis task from clinical research or rou-
tine. However, the lack of a gold standard often limits the ex-
periments.

Proposition on Schemes for Parameterization
Although unspecific parameterization, i.e., one choice for all
applications is desirable for model-based segmentation, it
is unavailable for biomedical images because of the great
variety in imaging modalities and object appearances due

F i g u r e 1. Categorization of methods for parameterization
and validation applied to model-based image analysis.

Table 1 j Nomenclature for the Type of Param-
eterization and the Type of Validation

Parameterization/Validation Is Based on

Type Implementation
Quantitative
Measure Gold Standard

Theoretical - - -
Manual d - -
Analytical d d -
Experimental d d d

Bullet or hyphen denotes used as input or not considered, respec-
tively.
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to inter- and/or intrasubject variabilities. Iteration-specific
parameterization results in exhaustive computation and dra-
matically increases the complexity of automatic image analysis
without the guarantee that it will improve a result. Therefore,
we believe that application- or image-specific parameteriza-
tions are preferable strategies in biomedical imaging.

Furthermore, our viewpoint is that theoretical or analytical
parameterization is not suitable for biomedical imaging
informatics because the nature of biomedical data inhibits
mathematical approaches in general. Manual parameteriza-
tion is insufficiently reproducible. Technical experts are often
unavailable when needed to adjust a model for a new set of
images. Consequently, the necessity to combine technical
knowledge in the model as well as medical knowledge in
image content requires experimental schemes for parameter-
ization.

Application-specific Parameterization
Figure 2 shows the proposed scheme for application-specific
parameterization. Since the instantiation of the model cannot
take place until technical parameters are set appropriately, the
task of instantiation is connected to the parameterization by
an interface (Fig. 2, shaded in gray). The input side of this in-
terface is the choice of one image from the image set while the
output side contains the required set of parameters. During
parameterization, a manual segmentation is created by the
physician. Since a manual reference comprises high inter-
and intraobserver dependence, it is used only indirectly by
the learning-from-examples paradigm.22 The resulting pa-
rameters are passed back to the instantiation via the interface
and then allow unsupervised segmentation of all images in a
homogeneous set. We refer the reader interested in more tech-
nical details to an exemplary implementation for a general-
purpose active contour model.29

Image-specific Parameterization
Image-specific parameterization changes the parameters of
the model according to the appearance of each actual image.
Again, a set of images and amodel for segmentation are given
and model-based image analysis is applied to yield unsuper-
vised segmentations (Fig. 3, upper row). For the interface, a
set of exemplary images is chosen by the physicians incorpo-
rating task-specific knowledge. These images must represent
the variety of the object’s appearances. For each exemplary
image, a reference segmentation is required, and a param-
eterization is created using the learning-from-examples para-
digm. User interaction for reference segmentation is reduced

substantially using computer-assisted methods such as live
wires.30 Global image features are extracted automatically
from the references (Fig. 3, bottom row). These features de-
scribe the overall appearance composed from all structures
in the image. For our purposes, texture features that allow
computation of a quantitative measure of similarity between
images are used.31 During application, unsupervised segmen-
tation is enabled by first extracting the global image features
for every image. Then, the similarities of appearance between
the current image and all exemplary prototypes are com-
puted. The image-specific parameterization results from inter-
polation between the parameter sets of the prototypes16 or
from just adopting the parameters of the nearest neighbor
reference. An implementation of this scheme using a robust
co-occurrence–based global texture classification with a re-
spective interpolation of prototype parameter sets is given
in Lehmann et al.16

Proposition on Schemes for Validation
Figure 4 shows the proposed scheme for validation. The basic
idea is to support an informed decision of the physician about
the reliability and quality of image processing applied to rou-
tine data. Therefore, noncontextual experiments are related to
contextual validation schemes performed on data without a
ground truth or gold standard. Based on the selected bench-
mark collection of real data without known references, fea-
tures are extracted and used to generate a synthetic data set
with a priori known reference. This set is designed to be reli-
able and independent. Model-based image analysis is applied
to both data compilations and inspected visually, whereas
the manual decision is limited to acceptance or rejection.
The synthetic imagery is modified iteratively (e.g., by adding
noise) until the number of rejected samples is equal in both
data sets. This indicates reliably that the synthetic data are
equivalent to the real-life data. In other words, the synthetic
data now have similar properties as a gold standard. Note
that applying the scheme of Figure 4, interaction is reduced
to decide failure, but manual delineation is avoided. For the
required creation of realistic synthetic data, we refer to a
method based on Fourier decomposition and synthesis of
textures for contours extracted from clinical data.32

F i g u r e 2. Proposed scheme for automated application-
specific parameterization using the learning-from-examples
paradigm.

F i g u r e 3. Proposed scheme for image-specific parameter-
ization that is based on a priori extracted global image
features.
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Demonstration Example
To exemplify the process of scheme-guided parameterization
and validation, we use a balloon-based deformable model as
‘‘contestant.’’ We use a simplified planar version with fixed
topology of a general discrete contour model for topology-
adaptive multichannel segmentation in two, three, and four
dimensions.33 This contestant is transferred to different appli-
cations.

Delineation of Cells in Micrographs
Suppose a system designed for the automated quantification
of micrographs showing immunohistochemically stained mo-
tor neurons from the spinal cord of adult rats.34 In this system,
a segmentation of the cell soma is needed to quantify struc-
tures located next to the cell membrane. In routine applica-
tion, a series consists of several hundreds of similar
micrographs, each showing one cell for quantification. This
task is characterized by a basically reproducible imaging sys-
tem and is used to demonstrate application-specific param-
eter sets. To check the scheme proposed in Figure 2, the
following steps were performed:

d To test the reproducibility, 12 observers created a manual
segmentation for one example cell. Comparing all combina-
tions resulted in an mean overlap of 96.66 1.1% pixels and

the cumulative overlap given by the quotient of the inter-
section of all 12 segmentations divided by their union
was 90.1%. In other words, the observers agreed in the
overall location of relevant structures in the image but
showed disagreement in the precise delineation.

d Then, parameter sets were computed automatically for
each manual segmentation. Segmenting the input as well
as three other cells from this series with the resulting differ-
ent parameter sets, the automated segmentations showed a
mean overlap of 97.36 1.7%, 96.16 1.9%, 97.66 0.9%, and
98.3 6 0.6% (overall mean 97.3%). Therefore, we conclude
that an automated parameterization using the learning-
from-examples paradigm results in reproducible segmen-
tations and is even able to slightly decrease interobserver
variabilities.

d Following the validation scheme (Fig. 4), 200 synthetic im-
ages were created to obtain quantitative quality measures.
These images are composed of an object with varying con-
tours that copy real cell shapes, noisy image values with
textures similar to real micrographs, and blurred object bor-
ders to ensure failures in the segmentation (Fig. 5).

d The subjective visual validation identified three failures
(98.5% accepted). For the accepted segmentations, a mean
Cartesian distance from automated segmentation to the
known true contours of dC = 1.67 6 0.77 pixels was mea-
sured.

d In the respective benchmark set of 681 cells, 27 segmenta-
tions were rejected in the subjective visual validation
(96% accepted).

The acceptance rates are close enough so that secured quanti-
tative information results from this validation: Applied to mi-
crographs of motor neurons, the deformable balloon model in
combination with application-specific parameterization gives
accepted fully automated segmentations in 96% of all images
processed with this stain. The average distance between cell
border and segmentation result is then estimated to 1.67
pixels. The users participated in the acceptance and rejection
of the benchmark set segmentations and were additionally
provided with quantitative information regarding the sys-
tem’s quality and possible failures. In compliance with
Figure 4, this enabled an ‘‘informed decision’’ to use the sys-
tem in a study.34

Determination of Body Regions in Radiographs
Content-based image retrieval inmedical applications (IRMA)
is a challenging task of medical image analysis.35 Within the
IRMA project (http://irma-project.org), automatic categori-
zation of images with respect to the imaged body region is
one of the first processing steps. Model-based segmentation
is employed to delineate relevant structures in radiographs,

F i g u r e 5. To validate the model-based segmentation of immunohistochemically stained motor neurons (a), synthetic images
that mimic the appearance of these micrographs have been created (b–e).

F i g u r e 4. Proposed scheme for experimental validation of
application-specific segmentation.
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and the outlines are used for classification. A total of 1,616
plain radiographs were arbitrarily selected from clinical rec-
ords, differing in imaged body part and imaging direction.
The imaging properties varied strongly. Therefore, this retro-
spective analysis is an example of image-specific parameter
sets. To assess the impact of image-specific analysis and to
check the scheme proposed in Figure 3, the following steps
were performed:

d Synthetic phantoms were generated from sinusoid curves.
In addition to noise and unsharp object borders, the image
intensity and contrast was varied.16 One, four, and eight
different examples were used to set respective parameters
for the model.

d The results of unsupervised segmentation were compared
considering the mean overlap and the number of accepted
segmentations with O .85% (Table 2). Using eight proto-
types, the mean overlap as well as the number of accepted
images is about 90%. In comparison, only 33% of the seg-
mentations are accepted if fixed parameterization is used.

d In the benchmark set of radiographs, application- and im-
age-specific parameterizations were used competitively.
The segmentations were inspected visually by a trained
radiologist. Applying the application-specific parameter-
ization, only 496 (31%) results were accepted. With an
image-specific parameterization based on 19 prototypes,
the acceptance rate was increased to 71% (1,145).

These figures correspond to the tests on synthetic images
(Table 2). The potential of image-specific parameterization
was reproduced for clinical data (Fig. 6a,b). However, even
the acceptance rate for only four prototypes using synthetic
data (79%) is still too high in comparison to the 71% that
are obtained for the benchmark set of clinical images. The
reasons for the high rejection rate in the benchmark set
were identified. As a major problem, the segmentation is dis-
turbed by collimator fields in the radiographs that were not
manually cut after digitalization (Fig. 6c). These artifacts
were not contained in the synthetic images. In consequence,
further research and development activities were initiated
to automatically detect collimators in digitized film radio-
graphs.36 Based on the difference in rejection rates, the in-
formed decision was made to delay the application and
wait for the availability of the collimator detection.

As an important result for configuration strategies, this find-
ing stresses the imperative that all variations and potential ar-
tifact sources that can appear in clinical data need to be
considered during parameterization and validation of image
analysis algorithms.

Discussion
Since a priori knowledge on image characteristics and object
appearances is incorporated into each individual task, we
argue that model-based image analysis is the preferred con-

cept in biomedical image analysis. In contrast to the consider-
able improvements in the research field of image
analysis,2,3,37 we do not observe a similar number of robust
applications in the clinics. The stepwise transfer of the models
from development to application has been identified as the
main bottleneck. While generic schemes for the formulation
of models already exist,9 parameterization and validation
are still crucial. For instance, Ji and Yan38 have claimed that
there are no straightforward rules for parameter settings of
model-based segmentation and that most settings are
obtained by trial and error, which makes a model vulnerable
to inconsistencies assigned by users. Nonetheless, manual pa-
rameterization is principally proposed in the literature. As a
result, model-based image analysis is restricted to images
that are available for parameterization and validation during
development and often fails if slightly altered images are ac-
quired in clinical routine. In agreement, Chen and Sun39 have
emphasized the impact of automated parameterization of
routine applicability of model-based segmentation methods.
This bottleneck is widened by the proposed schemes for ap-
plication- and image-specific setting of model parameters,
which are designed for heterogeneous image sets and appli-
cable to different models for image analysis.

However, finding the optimal set of model parameters is not
the only problem of biomedical imaging informatics. Similar
to the information about the impacts and risks of a certain
procedure, which the patient is given by the physician before
he or she consents to treatment, the physicians routinely
using model-based image analysis must be informed about
the quality of automatic image processing. Hence, engineers
who want to transfer an image analysis system into daily clin-
ical use should act according to the suggestion of Feynman
(Hutchings et al.40) of how to communicate scientific discov-
ery: ‘‘The idea is to try to give all the information to help
others to judge the value of your contribution; not just the in-
formation that leads to judgment in one particular direction
or another.’’ In other words, careful evaluation of the param-
eterized model is required and must be communicated in de-
tail to the physician.

Furthermore, the validation must address the combination
of the model and its parameterization. To fulfill these
constraints, a gold standard is required.15,20,32 However,
in medical image processing, a gold standard frequently is
unavailable8 as it either requires invasive surgery to implant

F i g u r e 6. The image-adaptive configuration of previously
unsuccessful segmentation (a) gives a robust contour in most
radiographs of the test set (b). However, the system cannot
cope with shutters in the radiographs (c), which were not con-
sidered in the configuration and transfer of this application.

Table 2 j Noncontextual Validation of Image-specific
Parameterization

Method
No. of

Prototypes
Mean Pixel
Overlap

No. of Acceptance
(O .85%)

Application specific 1 45.1 6 38.5 27 (33.3%)
Image specific 4 83.7 6 22.7 64 (79.0%)
Image specific 8 90.9 6 9.3 72 (88.9%)
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secured markers or the extraction of the tissue shortly after
imaging. Applying the hybrid scheme proposed in this paper,
noncontextual tests allow the extraction of reproducible
quantitative measures for the quality of model-based analysis
methods, and these measures are reliably propagated to con-
textual tests, evenwithout a gold standard. In agreement with
Brown,41 our scheme avoids theoretical validation methods,
and we agree with Haralick20 that manual validation is also
inappropriate.

In biomedical image analysis, the users of model-based ap-
proaches are physicians rather than engineers, software de-
velopers, and image analysis scientists. Consequently, they
do not have sufficient technical knowledge to adapt parame-
ters. Using our schemes, user interaction is minimized. Even
for image-specific parameterization, the remaining interac-
tion is tolerable if a method for unsupervised segmentation
does not otherwise exist but a large set of images must be an-
alyzed. As a result, clinical workflow integration of image
analysis is massively supported. Once the parameterization
and evaluation is performed according to the schemes sug-
gested, a site-specific adaptation of the image-processing
algorithm is obtained, taking implicitly into account the
site-specific rules for image acquisition. Specialized to the
site, image analysis then operates automatically.

Although segmentation was selected as an example of a task
of biomedical image analysis, the proposed schemes are more
generally applicable. By the nature of applied sciences such as
medical informatics, general strategies are obtained induc-
tively but cannot be derived deductively. Consequently, the
usefulness of the schemes proposed in this viewpoint paper
is not ‘‘proven’’ by the two examples given. Nonetheless,
they demonstrate that the concepts for automatic parameter-
ization and validation are tenable. Also, they emphasize how
to adopt these schemes to establish other tasks of model-
based image analysis in a routine setting. Therefore, they
may contribute to establish biomedical imaging informatics
in health care.
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