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ABSTRACT 
Many derivations of  effective population sizes have been suggested in the  literature; however, few 

account for  the breeding structure and none can  readily  be expanded to subdivided populations. 
Breeding structures influence gene correlations through  their effects on the  number of breeding 
individuals  of each sex, the mean number of progeny per female, and  the variance in the number of 
progeny produced by males and females. Additionally, hierarchical structuring in a population is 
determined by the  number of breeding groups and the migration rates of  males and females among 
such groups. This study derives analytical solutions for effective sizes that can  be applied to subdivided 
populations. Parameters that encapsulate breeding structure  and subdivision are utilized to derive the 
traditional inbreeding  and variance effective sizes.  Also, it is shown that effective sizes  can  be 
determined  for any hierarchical level  of population structure  for which gene correlations can accrue. 
Derivations of effective sizes for  the accumulation of gene correlations within breeding groups 
(coancestral effective size) and  among  breeding groups (intergroup effective  size) are given. The 
results converge to traditional, single population measures when similar assumptions are applied. In 
particular, inbreeding and  intergroup effective sizes are shown to be  special  cases  of the coancestral 
effective size, and  intergroup  and variance effective sizes will be equal if the population census remains 
constant. Instantaneous solutions for effective sizes, at any time after gene correlation begins to 
accrue, are given  in terms of traditional F statistics or transition equations. All effective sizes are 
shown to converge upon a common asymptotic  value  when breeding tactics and migration rates are 
constant. The asymptotic effective size  can  be expressed in terms of the fixation  indices and  the 
number of breeding groups; however, the  rate of approach to  the asymptote is dependent upon 
dispersal rates. For accurate assessment  of effective sizes, initial, instantaneous or asymptotic, the 
expressions must  be applied at  the lowest  levels at which migration among breeding groups is 
nonrandom.  Thus,  the expressions may be applicable to lineages  within  socially structured populations, 
fragmented populations (if random exchange of  genes  prevails  within each population), or combina- 
tions of intra- and interpopulation discontinuities of gene flow. Failure to recognize internal structures 
of populations may lead to considerable overestimates of inbreeding effective size,  while  usually 
underestimating variance effective size. 

T HE effective size of populations is a  concept of 
paramount  importance  to biologists. The im- 

portance of accurate effective sizes  lies  in their utility 
for  predicting  the dynamics of genetic variation within 
and  among populations of organisms. Effective pop- 
ulation size can be  operationally  defined as the size  of 
an ideal population that would undergo  the same 
amount of genetic  change, via random  union of ga- 
metes, as the actual  population (WRIGHT 1969; LANDE 
and BARROWCLOUGH 1987).  Traditionally, two types 
of effective size have been  recognized; one  that  re- 
flects the accumulation of gene  correlations within 
individuals (inbreeding effective size, Ne[) and  one  that 
reflects effects of gene-frequency  drift  (variance effec- 
tive size, Ne"; CROW 1954; CROW and KIMURA 1970; 
CROW and DENNISTON 1988). The concept of effec- 
tive population size is central  to  much of population 
genetics theory primarily because it incorporates  those 
characteristics  that affect the conservation or loss of 
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genetic diversity within and  among  populations or 
subdivisions of populations (WOOD 1987; CHESSER 
199 1 b). 

Numerous mathematical treatments, involving vari- 
ables such as the  proportions  and ages of males and 
females within populations, the mean and variance in 
reproductive  contributions by each sex, and  the co- 
variance in male and female progeny  contributed by 
each sex have been used to provide realistic formula- 
tions with  which to calculate NeI and Ne" (KIMURA and 
CROW 1963; CROW and KIMURA 1970; CROW and 
DENNISTON 1988). Models for estimation of effective 
population size often  differ in their  treatment of gen- 
eration  interval as either  discrete or overlapping 
(CHOY and WEIR 1978; HILL 1979). Further models 
have been derived to account  for systems  of mating 
between relatives (POLLAK 1987; CABALLERO and 
HILL 1992a,b).  It is not surprising, therefore,  that  the 
various estimates vary  in complexity, information con- 
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content,  and  interpretability (WOOD 1987; HARRIS 
and ALLENDORF 1989). 

A common shortcoming of  most existing formula- 
tions, beyond the  general lack  of convergence  (HARRIS 
and ALLENDORF  1989), is their  failure to address 
population  organization (CHESSER 199 1 b). There is 
evidence that many organisms are  arrayed  into com- 
plexes of breeding  units or subpopulations (EHRLICH 
1965;  SELANDER  1970; CHESSER 1983a). For the  pur- 
poses of this paper we will define  a  population as a 
network of  social units,  breeding  groups, or subpop- 
ulations ( e .g . ,  CHESSER 199  la,b)  and genetic  exchange 
may take place within and  among  the groups.  Regard- 
less  of geographic scale, subdivided populations can 
be  maintained by means of intrinsic factors, such as 
behavioral segregation, or extrinsic  factors, such as 
geographic distance and habitat  fragmentation. Given 
the impact of structure  on  the  gene diversity of breed- 
ing  groups or subpopulations  (CROW and KIMURA 
1970; CHESSER 1991a,b), the  importance  to  inbreed- 
ing  and variance effective population sizes  is irrefuta- 
ble. 

Changes in Ne[ and N,v under conditions of incom- 
plete  migration by males or females have been previ- 
ously  assessed  (CHESSER 1991b). Models used to ap- 
proximate values for N,I and N,v were based on pop- 
ulations composed of varying numbers of  social units 
and  incorporated  the  number of breeding females 
within each unit,  the rates of migration by each sex, 
and potential polygynous breeding tactics. This work 
demonstrated  that Ne[ and Nev were approximately 
equal under conditions of complete  migration by 
males or females and  that N,I and N , V  differ  markedly 
under various conditions of incomplete  migration by 
both sexes. 

The present work adds  to  the original models of 
CHESSER (1991a,b) by integrating  the  concept of ef- 
fective population size into  a  theoretical  framework 
for  the assessment of genetic variation in subdivided 
populations. Specifically, we will extend  the  formulas 
of CHESSER (1  991b)  to  include variance in progeny 
numbers,  random sex of progeny, and  the mean and 
variance in the  number of mates per male. We also 
provide solutions for Ne[ and Ne" when breeding 
groups  are changing in  size and a new derivation of 
WRIGHT'S (1  969) island model that is appropriate  to 
any scale. Throughout  the  text  the  terms  breeding 
group  and subpopulation will be defined as the lowest 
level  of structure  at which nonrandom  exchange of 
genes occurs. 

TRANSITION OF GENE CORRELATIONS 

The expressions needed to derive  equations for 
effective population sizes will be  developed through 
methods similar to those presented in  CHESSER 
(199  la,b). To circumvent  restrictive assumptions, 

however, it will be necessary to rederive  the following 
variables: 

F = average  correlation of genes within in- 
dividuals (inbreeding coefficient) 

19 = average  correlation of genes between 
random  progeny within breeding  groups 
(coancestry) 

CY = average  correlation of genes of random 
individuals from  different  breeding 
groups 

The parameters used to derive the state of the critical 
variables are: 

n =  

s =  

k =  

a: = 

dm and df = 

d , =  

number of breeding females within a 
breeding  group  for a given generation 
number of breeding  groups within the 
population 
average number of progeny, which sur- 
vive to  reproduce,  produced by each 
female 
variance in number of progeny/female 
surviving to reproduce 
migration  rates  for males and females, 
respectively 
probability that  random females within 
a  breeding  group  mate with the same 
male. 

CHESSER (1 99  la,b)  defined  the  parameter 4 as 

where m is the  number of males per  breeding  group, 
and bi is the  number of females mated by the  ith male 
(zi b, = n). This  parameter, however,  can  be  expanded 
to include the mean and variance of the  number of 
females mated by each male ( b  and a;, respectively). 
Because b! = m(a; + b'), the expression for 4 be- 
comes 

and b = (X, b,)/m = n/m. It should  be  noted that m 
may represent  either  the  number of mating or poten- 
tially mating males, provided 02 is determined  from 
the corresponding pool of  males. In  the instance when 
a single male mates with all of the females in a group, 
if the  number of potentially breeding males is used, 
then m = n, b = 1 and a; = (n  - 1) because n - 1 
males per subpopulation breed with zero females and 
one male in each subpopulation  breeds with n females. 
Such a  situation results in d, = 1. Alternatively, if the 
actual number of breeding males is used, m is set to 
one, b = n and a; = 0 because there is only one actual 
male breeder  per subpopulation that mates with n 
females. This scenario also results in 4 = 1. 
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CHESER (1991a,b) assumed that each female pro- 
duced exactly  two progeny, one male and  one female. 
This assumption dictated that two  variables  were  nec- 
essary to denote gene correlations (coancestry) within 
breeding groups, Om, for the correlation of genes 
among male progeny within breeding groups (which 
is identical to that among female progeny) and dmf for 
the coancestry  between  male and female progeny. 
However, if  we permit the sex  of the progeny to be 
determined randomly (each  sex produced with a  prob- 
ability of %), we find that B,, = 8, = dmf, and  there is 
no need to differentiate between the coancestries  of 
like-sexed and different-sexed progeny. Hence, we 
will designate the average coancestry  of progeny born 
within breeding groups as  simply 8. 

The average coancestries of progeny born within 
subpopulations (or breeding groups) can  be deter- 
mined from a triangular matrix. For example, if there 
are kn progeny born within a breeding group, then 
the average coancestry is the mean of the values for 
progeny pairs (eii denotes the coancestry  between the 
ith and jth progeny born within a subpopulation) 

8 1 , ~  O I , ~  * . o l , k n  

02.3 ' . fl2,kn (3) . . .  ... 

8kn- 1 ,kn 

The expected proportion of full siblings represented 
in this matrix is 

with ki denoting the number of progeny produced by 
the ith female within a subpopulation. Because 2 k? = 
n[u: + k2], Equation 4 simplifies to 

(sibs) = ui + k(k - 1) 
k(kn - 1) ' 

The expected coancestry of full siblings is 

c[B(sib~)]~+~ = - (1 +Ft + 2F,+,) 

(CHESSER 1991a, Equation 15) where t references the 
generation. The gene correlatio.ns among the remain- 
der of the progeny (non-sibs)  within the subpopulation 
will be equal to the average coancestry of their parents 
(y t ;  CHESSER 1991b). Therefore,  the expectation for 
the average coancestry  within subpopulations is 

1 
4 (6)  

[a:: + k(k - I)] [f (1 + R + 2Ft+1)1 et+] = k(kn - 1 )  
[u: + k(k - l)] 

k(kn - 1) 

(7) 
+[1  - 

The coancestry  of  non-siblings, y t ,  is determined using 
Equations  A.7 through A.9  of CHESSER (1991b, 
p. 583) and substituting &+I for Omm(t+l), 

CP(1 + Ft) 
Yt = 8 

7- 
4 

Ft+ 1 +-+ 
kns- 1 

2 4 fft. 

The expression for Ft+l can be derived from equations 
presented by CHESSER (1 991b, Equation A. 1) with the 
stipulation that now the sex  of progeny is randomly 
determined; 

F t + l = [  1 -( 1 -:)(dm+df-d.d,) Br 1 (9) 

Using  Equations 8 and 9, expression (7) can be ex- 
panded, giving the average coancestry among progeny 
born within a subpopulation, 

. 2 - 4 ) -  [ ( ~ kns- )(d.(l -4))+df)  (10) hn(s - 1) 11 [i' -:)(dm+df-dmdf) k2(n - 1 )  - u: 
+ aI 2 +( 4k(kn- 1)  ) 

Finally, the transition for  the correlation of genes 
among subpopulations can  be expressed as 

The transition matrix for the changes  in correla- 
tions  of  genes  within  individuals (F), within subpopu- 
lations (e), and among subpopulations (cy) can be con- 
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structed  from Equations 9, 10 and 1 1 

T =  

1 - ( 1  -3).  ( I  - $4 
0 

1 - (1 - : ) A  
kn(s - 1 )  

(2  - +)u: + 2k(k - 1 )  + +k2(n - 1) 2 
8k(kn - 1 )  

0 2A/s + - kn - 1 kn - 1 
( d m  + 4 )  4 - 2A/s - - kns - 1 kns - 1 

4 4 

( d m  + d ~ )  

with A ,  B ,  and G denoting (dm + d f -  d,df), (d,(l - 4) 
+ df ) ,  and [k2(n - 1) - ui]/(4k(kn - 1)) respectively. A 
constant  vector, 

L 0 1 
must be included such that a,+I] 
= TIF,, Of, a,) + C .  

EFFECTIVE  POPULATION  SIZES 

Eigenvalue solutions to  the matrix T would provide 
implicit solutions to  the transitions of gene  correla- 
tions. A single eigenvalue solution is possible, how- 
ever, only if the  population  remains in a steady state. 
When the population is either  growing (k > 2) or 
declining (k < 2) the  numbers of breeding females (n) 
and males (m) change  each  generation. Given an  equal 
sex ratio of breeding individuals, n and m would 
change  according to 

Likewise, if R represents  a  constant  proportion of 
males  in the subpopulations, R = m/(m + n), then 

n,+l = n,k(l - R); m,+l = mfkR (1 5) 
n, = no[k(l - R)] , ;   m,  = mo[kR]'. 

With changing  population size, unique eigenvalues 
would be  found  for each generation. Additionally, 
numerical solutions would necessarily incorporate  the 
changes of n and m each iteration. 

The derived eigenvalue solutions for steady state 
population sizes are extremely lengthy and complex 
and will not  be  presented  here. We will derive  expres- 
sions for effective numbers in three stages. First, the 
initial effective numbers will be  presented and our 

results will be  compared  to  formulas  derived  for sin- 
gle, isolated populations with random  mating. COCK- 
ERHAM (1970), however, showed that with nonran- 
dom  mating, the values for effective population size 
change  over  generations. COCKERHAM (1 970) and CA- 
BALLERO and HILL (1992b) derived expressions appli- 
cable to  the asymptotic value of effective population 
size. Therefore, we subsequently will derive instanta- 
neous effective numbers  that are accurate  for any 
generation,  whether or not  asymptote has been at- 
tained. Last, we derive  approximations  for the asymp- 
totic effective population size. 

Initial effective numbers: Using the constant value 
of coancestry transition in the vector C (Equation 13) 
the  recursions  for F and a are 

L \ s/ J I + ( I -  

(2  - +)u: + 2k(k - 1 )  +gk2(n - 1) 
8k(kn - 1 )  I I 

and 

4 

(2  - +)u: + 2k(k - 1) + +k2(n - 1) 
8k(kn - 1) 

+ I -  

Furthermore, because F,+, = I/zN,I + (1 - l/zN,,)F1 
Equation 16 can  be  alternatively  expressed in terms 
of the initial inbreeding effective size as [using the 
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expanded expression ( 2 )  for 41 
4k(kn - 1) 

26: + 2k(k - 1) + m(ab' + b(b - ')) [k2(n - 1) - a:]] [ 1 - (1 - :)(dm + df  - dmdf) 
n(n - 1) 

Equation  17 can likewise be  expressed as the  "inter- accumulation of gene  correlations among  breeding 
group effective size," Ne,, which reflects the overall groups, 

~~ 

Figure  1  depicts  some  general effects of male ( d m )  
and female ( d f )  migration  rates  on the relative values 
of  ne^ and Ne,. Regardless of the  number of breeding 
groups, when dm and df  are small, the  inbreeding 
effective size is much smaller than  the  intergroup 
effective size (NeI/Nc, << 1). The two sizes attain nearly 
equivalent values (NeI/Nc, = 1 )  only when migration 
of one  or  the  other sex is very high,  but  under  no 
conditions is N,I greater  than Ne,. 

Although the expression for Ne, in (1 9) is equivalent 
to  that  defined  as variance effective size (Ncv) by 
CHESSER (1  991b), this equivalence holds only under 

certain circumstances. For  example, because Ncv de- 
pends  on the  number of progeny, whereas Ne, de- 
pends  on the  number of parents (4. CROW and 
KIMURA 1970, p. 361), the relative values of Nev and 
,VC, will be  affected by changing  population size. When 
this occurs, the value of Ne, is readily determined 
from expression ( 1  9) by substitution of nt+l and mt+l 
for n and m. Assuming that sex ratio of breeding 
individuals (m/n)  is not changing  over  generations, its 
value can be  represented by R/(1 - R). Substituting 
R/(1 - R )  for m/n and nk(1 - R )  for n in Equation 
19,  the variance effective size is determined  to be 

4k[k2n( 1 - R)  - 11 
Nev = ( 2 0 )  

( 2  - @)a:: + 2k(k - 1) + - Rk2 [[ab' + b(b - l)] 
dm + d f -  d d (k%( 1 - R) - l ) ( d m  + df)  f +  

1-R 4(k2n( 1 - R)s - 1) 

If the population is rapidly growing (k >> 2) or declin- 
ing (k << 2)  Ncv may be considerably different  from 
Ne, (larger or smaller, respectively). 

CROW and DENNISTON (1988)  determined  inbreed- 
ing and variance effective numbers  for single, isolated 
populations as (using our parameter symbols) 

and 

Our equations for initial effective sizes can be  ex- 
pressed in terms  that  are consistent with those used 
by CROW and DENNISTON (1988). The variance in 
numbers of progeny  produced by females, a:, is ex- 
plicitly included in  all measures of effective numbers 
whereas variance in progeny  sired by males is not. 
However, it can  be shown that  the variance in progeny 
produced by males is 

a:(m) = &2(n - 1) + ( 1  - $)a: ( 2 3 )  

and  the variance in progeny number  produced by 

parents  (regardless of sex) is 

d T =  d ( m )  + + 2ah,k(m). ( 2 4 )  

If the covariance (ah,,+(,)) of sire and  dam  progeny 
numbers is assumed to be  zero [a reasonable assump- 
tion (CROW and DENNISTON 1988, p. 491)],  then 

0.984 

0.657 

0.329 

FIGURE 1 .-Three-dimensional  diagram depicting the influence 
of migration  rates by  males (d.) and  females (dr) on the ratio of 
the inbreeding effective size to the interpopulation effective size 
(N,,/N,-). The graph  was generated using 15 females  per  breeding 
group, 20 breeding groups, and  values of 2, 2, and 0.1 for k, ui, 
and 6, respectively. 
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Equation 24 can  be  expressed as Substituting  Equation 25 into our measures of pri- 
aL = (2 - $)a: + 4k2(n - 1). (25) mary effective numbers 

Nea = 
4k(kn - 1) 

[a&-+ 2k(k - l)] [dm+d,f,fd d f+ (kn- 
4(kns - 1) 

dm + df- d d (k%( 1 - R)  - l)(dm 

+ df)] ’ 4(k2n(l - R)s - 1) 
[&+ 2k(k - l)] f+ 

These  equations can be  compared to those of CROW 
and DENNISTON (1988) by assigning s = 1 (a single 
population), dm = df = 1 (all individuals disperse back 
into  their native population), and  random mating 
(thus m = n, b = 1, and 0% = 0). With  these  stipulations 
a& = 2a:, and  our equations  become 

2k(kn - 1) 
a:: + k(k - 1) N,I 

2k(kn - 1) 
Ne,  = Ne, = 

a: + K(k - 1) 

Remembering  that 2n = N ,  it can be seen that Equa- 
tions 21 and 29 for Ne, are identical whereas those  for 
‘Nev, (22) and (30), are convergent  as N becomes large. 
Furthermore, when k = 2, indicating  constant  popu- 
lation number,  then Equations 21, 22,  29 and 30 
become 

Thus,  our expressions for  primary effective numbers 
are  either equal to  or  are close approximations of 
those of CROW and DENNISTON (1  988) when applied 
to a single isolated population. Our results also con- 
firm  that CROW and DENNISTON’S (1988) equations 
are relevant to initial rather  than ultimate effective 
population sizes (e$ CABALLERO and HILL 1992a,b). 

The large number of parameters in Equations 18- 
20 makes it difficult to discern clearly the relative 
importance of male and female  contributions to effec- 
tive population sizes. It could be  argued  that because 
the distribution of possible values for a: is bounded 
for  particular values of n and k, and  the value of ab2 is 
limited by m and b,  that we should not present all  of 
these as parameters.  Indeed, if we assign 4m as equiv- 
alent  to 4 (Equation 2) and 4f to Equation 5, the 

inbreeding effective population size can be repre- 
sented as 

Here 4m and 4f are defined as the probabilities that 
random  progeny were the  product of a  particular 
adult male or female, respectively, and each may  vary 
from essentially zero  (progeny  produced by many 
parents of a  particular sex) to unity (all progeny  pro- 
duced by a single mother or father).  Although Equa- 
tion 32 is operationally identical to Equation 18, the 
relative roles of male and female  contributions are 
more clearly envisioned by this reduced  expression. 
Figure 2 shows that  for a given number of subgroups, 
number of breeding females per  group,  and male and 
female dispersal rates,  the  inbreeding effective size is 

FIGURE 2.-Three dimensional  diagram  depicting the influence 
of the probabilities  that  random  progeny  are a product of a partic- 
ular adult  male (6,) or female (&/) on inbreeding effective size (Ne,). 
The graph  was generated using 5 females  per  breeding group, 20 
breeding groups, and d, = d l  = 1 .  The graph  for N ,  is essentially 
identical  (because  migration  rates  are  unity)  and will not be  shown. 
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smallest when either & or &f is large and increases 
dramatically as  both & and & approach zero. Simi- 
larly, the  intergroup effective size can be  reduced  to 

16s 
Nm = 

[2& + $ m ( l  - cbf)][S(dm + df) - 2dmdfl 
(33) 

if it is assumed that (kn - l)/(kns - 1) GZ l/s.  Unfor- 
tunately, such reductions are  not easily extended  to 
N,v when populations are growing or diminishing in 
size. 

Instantaneous effective numbers: Perhaps  the 
greatest utility of the effective sizes is for  the predic- 
tion of changes in gene diversity within individuals 
and within populations  over successive generations. 
Traditionally,  recursive  equations such as 

(34) 

would be used to estimate the value of inbreeding ( F ) ,  
correlations  among  groups (a) and genetic variance 
(V) for any generation. The solution for NeZ provided 
in Equation 18, however, is for  an initial rate of 
inbreeding  at any given beginning  time zero. It is 
clear from  Equation  9 that  the  rate of accumulation 
of inbreeding  over successive generations must also 
include the correlations among  groups (a)  as well. 
Thus,  the accumulation of inbreeding  over  genera- 
tions may be  represented  as 

which  may be  expanded using Equation 34 to 

Both N,I and Ne, must  be  taken into  account  for 
accurate assessment of the dynamics of inbreeding in 
subdivided  populations. Calculation of F from  expres- 
sion (36)  over many generations is only slightly less 
tedious  than  numerical  iterations of the matrices 
(Equations  12 and  13). 

COCKERHAM  (1970; also see CABALLERO and HILL 
1992a,b)  demonstrated  that  nonrandom  mating 

changes the  gene  correlations  over  generations and 
alters  the ultimate value of effective population size. 
As is demonstrated by equations 35  and  36, expres- 
sions for effective population  numbers  presented  thus 
far apply to the rates of change  at  the initial generation 
( t  = 0 to 1) of gene  correlations within individuals 
(Ne,) and  among  groups (Ne=); these  rates will be 
altered as gene  correlations  accrue.  CABALLERO and 
HILL (1 992b)  derived the asymptotic value of effective 
size as 

which would be  attained after several generations of 
consistent mating tactics (the "hat" is used to  reference 
asymptotic values). Their approach,  however, was 
considerably different  than  ours in that  breeding 
groups  and dispersal rates were not explicitly defined. 
As such,  CABALLERO and HILL'S (1992b) analyses 
could not  incorporate all  of the  gene  correlations 
necessary to  define asymptotic effective sizes. In par- 
ticular, lack of specific group definitions prevents 
inclusion of intragroup coancestry (e) values, the most 
predominant  gene  correlation  under many breeding 
and dispersal tactics in our expressions. The rate of 
change of inbreeding is defined as 

FALCONER (1989). Using Equation 9 to replace F,+] ,  
Equation 38 becomes 

where the  gene correlations (F,, O r ,  and at) are given 
in equations (9-1 1). The F-statistics given by CHESSER 
(1991a,b) 

(using subscripts I ,  S, and T refer  to individuals, breed- 
ing  groups,  and total  array of breeding  groups,  re- 
spectively) can be  substituted  into  Equation 39  to yield 

Because N,I = 1/(2AF), the  inbreeding effective num- 
ber is determined to be 
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Similarly, Aa = (at+l - at)/(l - at), and using Equa- 
tions l l and 40 the  rate of change of gene  correlations 
among  groups is 

and  the  intergroup effective population size is deter- 
mined as 

Equation 44 also suffices for Nev if there is a  constant 
census number.  Interestingly, group (n )  or total  pop- 
ulation size ( N )  and variance of progeny  number (cT:~) 
are absent  from the derivations of effective numbers, 
although they are important in determining  the ulti- 
mate values of the F statistics. 

Expressions (42 and 44)  for effective population 
sizes provide  exact fits for  the values obtained via 
iterations of Equations 12 and 13, as would be ex- 
pected.  Therefore, Equations 42 and 44 represent 
instantaneous effective population sizes  chat are appii- 
cable at any generation  (other  than t = 0). CHESSER 
(1991a,b) showed that with constant  breeding and 
dispersal tactics the  rates  of  change in gene  correla- 
tions (F, 8 ,  a) also become  equal, and  the F statistics 
attain steady-state values. When the asymptotic values 
of  the fixation indices are acquired,  the effective pop- 
ulation numbers will likewise become asymptotic. 

Asymptotic effective number: Although initial val- 
ues of Ne[ and NEv (assuming stable census number) 
may be dramatically different,  the  instantaneous val- 
ues of the effective sizes converge  upon similar quan- 
tities when there is even slight genetic  exchange 
among  breeding  groups ( d f  + dm # 0; Figure 3). The 
time  required  for  convergence is dependent upon the 
rates of genetic  exchange with low rates  requiring 
more  generations  until  convergence is achieved. 

The asymptotic effective population size can be 
estimated readily using Equations 42 and 44. Assign- 
ing D = dm + df - d,df in Equation 44, then 

At asymptote Ne] = N,,, therefore 
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FIGURE 3,"Changes in inbreeding (Ne,), variance (Nt"), and in- 
tergroup (N,) effective numbers over successive generations for 
two different breeding and dispersal scenarios. All converge on  the 
same asymptotic value and  the  rate of convergence is dependent 
upon the  rates of genetic exchange. Parameter values are explained 
in the  text. 

Solving Equation 46 for D yields 

4S(fST - f J T )  

Fsd4.5 -  FIT - 1) 
D =  4 A (47)  

which when substituted  into  Equation 42 or 45 results 
in the asymptotic estimate for effective population size 

THE ISLAND MODEL 

CHESSER (1 99 1 b) showed that WRIGHT'S (1 969) is- 
land model did  not  account  for variation at  intra- 
populational levels.  CHESSER'S (1 99 1 b)  solutions indi- 
cated that  breeding tactics may be much  more  impor- 
tant in determining  genetic  differentiation  among 
breeding  groups  than  gene flow over  short  geographic 
distances. The solution to the difference  equation 
presented  as expression (16) will result in a  more 
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complex form of the island model: 
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The value of F above is intended  to  represent  the 
steady state value of inbreeding  relative  to  the  genetic 
variation remaining among  groups  and may not  de- 
note  the value for  genetic  differentiation (FsT) among 
groups as originally intended by WRIGHT (1969; 
see CHESSER 1991b). If there is one  mate  per male 
( 6  = 1, uz = 0, and m = n), a very large number of 
subpopulations (1,’s z 0), a  constant  population size 
(k = 2; a i  = 0), and equal  migration  rates by males 
and females (dm = dr = d ) ,  the result of Equation 45 
will converge  on WRIGHT’S (1969, p. 291) original 
asymptotic solution 

(1 - d)’ 
2N - (2N - 1)(1 - d)‘ 

F =  (50)  

as n becomes large  (note  that N = 2n). The reason 
that Equations 49 and 50 will not  match exactly, given 
WRIGHT’S assumptions above [as did CHESSER’S 
(1 99 1 b)  equation], is that  not all progeny will have a 
sibling of the opposite sex as a  potential  mate. In 
WRIGHT’S original  derivations sex was not  taken 
into  account  (random admixture of genes) and in 
CHESSER’S (1 99 1 b) expressions each female  produced 
a male and female  offspring;  thus, there was  always a 
potential sibling mate. 

If mating is not  random  then  the island model will 
be biased by the accumulation of gene  correlations 
just as were the effective sizes. Thus, Equations 49 
and 50 represent  overestimates of the asymptotic 
value of inbreeding,  whereas  Equations 4  1 and 43 are 
unbiased estimators of asymptotic changes in gene 
correlations.  Rearrangement of Equation 44 presents 
an asymptotic estimate of the FST as 

Furthermore,  the total number of effective migrants 
per  generation in the population is determined as 

2s 
Nm[3(dm + d/) - 2(dmd/)J = 7 

FST 
(52) 

and  the  average  number of migrants per  breeding 
group is found by dividing  both sides by s (comparable 
to Nm of WRIGHT 1969). If dispersal is performed 
by only one sex (dm.df = 0), then Nc,d/s = 2/(3FsT) 
and if dispersal is performed equally by both sexes 
(dm = d f =  d )  yet is sufficiently low that  terms with d2 
can be ignored (e.g. ,  WRIGHT 1969), the  average 

number of migrants per  breeding  group (N,,d/s) is 1 /  
(3F.s~). 

DISCUSSION 

The expressions derived  herein  provide  for the 
delineation of initial and instantaneous  inbreeding 
and variance effective sizes for subdivided populations 
exhibiting varying degrees of isolation and with dif- 
ferent  mating tactics and progeny  production. Al- 
though  these  equations  include several parameters  not 
found in previous  derivations of NcI and Ncv (WRIGHT 
1922; CROW and KIMURA 1970; CROW and DENNIS- 
TON 1988), they permit  the  definition of critical values 
for complex population  structures. Previous expres- 
sions for Ne, and N,v were limited to single population 
values. 

Initial  effective numbers: Failure to recognize the 
contributions of incomplete  migration (by either or 
both sexes) and  nonrandom  breeding tactics can lead 
to considerable bias  in the estimation of inbreeding 
and variance effective sizes,  especially  in early gener- 
ations.  Consider, for example,  a  population  that is 
organized  into several breeding  groups. The breeding 
groups may be  characterized as harems  for polygnous 
males (6m > 0) and/or  the  groups may be some- 
what isolated from  other  groups in the population 
(dm&< 1). If such groups  are  ignored in the  deter- 
mination of Nef, as would be done using traditional 
equations,  the  resulting value would overestimate the 
inbreeding effective size. This overestimation is 
clearly depicted in Figure  4A, which shows the  ratio 
of a traditionally calculated N,I (CROW and KIMURA 
1970, p. 351) to that of equation (18). In this partic- 
ular example the traditional NcI may overestimate the 
true value by over sixty times. The ratio of the tradi- 
tional N,v (CROW and KIMURA 1970, p. 359) and  our 
expression (Equation 20) also shows a  large  potential 
bias (Figure 4B). The traditional Ncv is often  an un- 
derestimate of the  true value (ratio  approaches  zero). 
Traditional estimates have not  included the potential 
for conservation of gene diversity among totally or 
partially isolated breeding  groups. 

Breeding tactics ( 6 m )  and migration  rates (dm, d,) 
differ in their  influence on  the ratios  for initial values 
of inbreeding  and variance effective sizes (Figure 4). 
In instances of complete  migration (dm, df  z l), there 
is little bias of traditional and newly derived values of 
inbreeding effective size regardless of the value for 
$m. When  migration is complete there is little or no 
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Dispersal Rate 

FIGURE 4.-Three dimensional  diagrams  depicting the influence 
of dispersal  rate  and the probability  that  random  females  within a 
breeding  group  mate  with the same  male (6) on the ratios of 
traditionally  calculated  values for Ne, and N,v (CROW and KIMURA 
1970) to our  estimates for N,, (A) and N,. (B). The graphs  were 
generated  using 5 females  per  breeding group, 20 breeding groups, 
k = u: = 2, and 6 = 1.0. 

partitioning of genetic variation among breeding 
groups; that is, the population functions as a single 
unit and the  rate of inbreeding approaches that esti- 
mated by traditional methods. When groups become 
isolated (dm, df<  1) the influence of breeding structure 
takes on greater importance in the calculation  of NeI. 
In contrast, the effects  of breeding tactics are greater 
when migration rates are high if traditional N,v values 
are compared to those derived herein. As groups 
become isolated, Ne" approaches infinity regardless of 

the breeding tactics  employed  whereas traditional val- 
ues remain finite. However, if even minute levels  of 
genetic exchange persist among groups the effective 
numbers for N8, and Ne, will converge. 

The expressions for N,I,  Ne,, and Ne, are applicable 
at any  hierarchical  scale, including breeding groups 
within populations, among populations within regions, 
etc. As one progresses up the hierarchical scale, the 
effects  of breeding tactics  rapidly  diminish (n  increases 
while 6 and ub2 remain fixed) yet rates of exchange (dm 
and df) remain of paramount importance. It is impor- 
tant to note, however, that regardless of the scale at 
which  calculations are made, estimates will not be 
accurate unless  all  lower hierarchical levels exhibit 
random exchange of genes.  Discontinuities  in genetic 
exchange lead to relatively rapid rates of inbreeding 
within groups yet  conserve  variation among groups. 
Thus, calculations of inbreeding and variance  effec- 
tive population sizes need to be determined at the 
lowest  level at which these discontinuities take place. 

The concept of effective population size  can  be 
extended to any unit for which gene correlations may 
accrue. The number of random breeders that are 
necessary to produce expected intragroup gene cor- 
relations (coancestral  effective  size; N d )  in initial gen- 
erations can be defined as 

4k(kn - 1) 

( 2 - & 3 + 2 k ( k -  l)+-[ub2+b(b- l ) ]  

24f+ 4 4  1 - 41) 

Nee = mk2 
n (53) 

4 - - 
which is derived from the nonzero second term of 
Equation 13. With  this definition, the  ne^ and Ne, may 
be restated in terms of the Nd as 

Nee 
N,I = 

1 - (1 - (l/S))(dm + df - dmdf )  (54) 
Nd 

= (dm + d, - dmdf) + (An - l)(dm + df) * 
2 s  4(kns - 1) 

Instantaneous effective numbers: The progression determined from Equation 10 to be 
of gene correlation within groups over generations is 

As before, the instantaneous change in  coancestry  can noting that NeI and Ne, are for initial, rather than 
be represented as Ad = (e,,, - et)/( 1 - e,), which,  using asymptotic,  effective numbers. Therefore,  the instan- 
Equations 10,  18, and 19, becomes taneous coancestral  effective  size (1 /2A@ is 



Effective Population Size 1231 

The expressions  derived  herein document  that effec- 
tive population numbers  cannot  be expressed as con- 
stant values over  the  range of generations  commenc- 
ing with the initiation of a  population unless mating 
is completely  panmictic.  Although  effective sizes do 
eventually  attain  steady  state values, considerable ac- 
cumulation  of  gene  correlations may be transpired 
prior  to asymptote.  Complete  characterization  of 
Equations 12  and  13  into eigenvalues and eigenvec- 
tors would enable the dynamics  of gene  correlations 
to be  determined using parameter assignments rather 
than by resultant F statistics and  parameter combina- 
tions. Such  characterization is intractable unless sim- 
plifying assumptions are made.  Therefore,  the most 
feasible way to  depict accurately the dynamics  of all 
relevant  gene  correlations is to iterate numerically 
Equations 12  and  13 using a simple computer  pro- 
gram.  In this manner,  the F-statistics, inbreeding coef- 
ficients,  coancestry values, correlations  among  groups, 
and all effective  numbers, can be precisely tracked  for 
each  generation. 

The definition  of  effective  population sizes appli- 
cable to  interacting  breeding  groups  requires greater 
numbers  of  parameters  for  accurate description than 
traditional single population  applications. Many sim- 
plifying assumptions are included in our derivations 
such as random  migration  (when  present)  among 
groups,  discrete  nonoverlapping  generations,  and  a 
relatively large (210)  number of breeding  groups.  It 
is unlikely that substantial  deviations from  the  numer- 
ical values will result if extensions  of  these  scenarios 
are made to include  overlapping  generations (CHOY 
and WEIR 1978; HILL 1979). Other methods  such as 
migration  matrices and variance in group sizes can be 
used to  account  for specific scenarios that  deviate  from 
those  presented  herein. 

Asymptotic  effective  number: Our derivations of 
asymptotic values for variance (or intergroup) effec- 
tive population numbers were not consistent with 
those  of CABALLERO and HILL (1992b; our Equation 
37).  It  appears  that  the  reason  for the inconsistency is 
because CABALLERO and HILL’S (1 992b)  approach  did 
not  permit the incorporation  of  intragroup  coancestry 
(e). Although  they used the Frs to  account  for devia- 
tions from  random  mating,  their application is at  the 
population level rather  than  that of the  breeding 
groups;  thus,  their FIs = ( F  - a)/( 1 - a) (e.g., CHESSER 
1991a,b)  and  not ( F  - e)/( 1 - e) as defined  herein 
(their F I ~  is equal  to  the FIT in this  paper). Our deri- 
vations of Ne, include both  the FST and  the FIT and 
therefore  incorporate  gene  correlation values for 8, 
F ,  and a. Interestingly, our equations  for Ner,  Ne,, and 
N,v show that knowledge  of  population census ( N )  and 
means and variances of progeny  numbers are  not 
required if the F statistics are known. From a theoret- 
ical perspective,  however,  knowledge  of  these  param- 

eters is necessary to derive  the  expected F statistics 
(CHESSER 1991a,b). 

Nonrandom  mating  and  migration tactics have  been 
documented  both within and  among populations for 
a  large  number  of  taxa (SELANDER 1970; CHESSER 
1983a; RYMAN et al. 1980)  and it has long  been 
recognized that isolation of  populations may act  to 
conserve gene  frequencies while promoting  inbreed- 
ing (CHESSER, SMITH and BRISBIN 1980; CHESSER 
1983b). Furthermore, knowledge of gene  correlation 
values at various levels of  population  organization may 
elucidate the evolutionary significance of different 
breeding  and dispersal tactics (CHESSER et al. 1993). 
Despite the ubiquity  of  population subdivision and its 
importance  to  gene conservation and evolutionary 
processes, previous  models for effective  population 
size have not  taken  such  parameters  into  account. Our 
intent, in the  development of  expressions for popula- 
tion effective sizes, is to facilitate the inclusion of 
complex  population structures  into  programs  for ge- 
netic  conservation and evolution. 
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