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ABSTRACT 
We formalize the use  of  allele  frequency  and  geographic  information  for  the  construction  of  gene 

trees at the intraspecific  level  and  extend the concept of evolutionary  parsimony to molecular  variance 
parsimony. The central  principle is to  consider a particular  gene tree as a variable  to  be  optimized in 
the  estimation of a given  population  statistic. We propose three population  statistics  that are related 
to  variance  components  and  that are explicit  functions of  phylogenetic  information. The methodology 
is applied in the context of  minimum spanning  trees  (MSTs)  and  human  mitochondrial DNA restriction 
data, but  could  be  extended  to  accommodate other tree-making  procedures, as  well  as other data 
types. We pursue  optimal  trees by heuristic  optimization  over a search  space of more  than  1.29  billion 
MSTs. This very large  number of  equally  parsimonious  trees  underlines  the  lack  of  resolution of 
conventional  parsimony  procedures. This lack  of resolution is highlighted by the observation  that 
equally  parsimonious  trees  yield  very  different  estimates  of  population  genetic  diversity  and  genetic 
structure, as  shown  by  null distributions of the population  statistics,  obtained by evaluation of 10,000 
random MSTs.  We propose a non-parametric  test  for the similarity  between  any  two trees, based  on 
the distribution of a weighted  coevolutionary  correlation. The ability  to  test  for tree relatedness  leads 
to the definition of a class  of  solutions  instead  of a single  solution.  Members of the class share  virtually 
all  of the  critical  internal structure of the tree but  differ in the  placement of singleton  branch  tips. 

M ANY different  methods have  been  proposed to 
reconstruct phylogenies from molecular data, 

with the details depending  on  the type  of  data (dis- 
tances,  character states), or possible biases (homopla- 
sies, unequal  evolutionary  rates) in the evolution  of 
the molecules (FELSENSTEIN 1988; SWOFFORD and OL- 
SEN 1990). Several attempts have  been  made to incor- 
porate reasonable biological assumptions into phylo- 
genetic  reconstruction. Dol10 parsimony minimizes 
the  number of  restriction  site gains over losses, con- 
centrating  the resolution on  the  rarer (and thus  more 
telling) changes (TEMPLETON 1983).  Generalized  par- 
simony (SANKOFF 1983) associates costs with different 
types of  evolutionary  changes (ie., transitions,  trans- 
versions, restriction  site gains or losses, length  var- 
iants), approximately  proportional to the inverse of 
their probability of occurrence;  the aim is to choose  a 
phylogeny that minimizes the total  evolutionary cost. 
LAKE’S (1987)  invariant  method focuses on  interior 
branch substitutions in order  to  reduce  the effect  of 
highly unequal  evolutionary  rates among  distant lin- 
eages. Maximum likelihood techniques use a stochastic 
model  of neutral evolution to weight various  changes 
in proportion  to  their evolutionary  information  con- 
tent (LI 1986; SMOUSE and LI 1987; SMOUSE et al. 
199 1 ; FEUENSTEIN 1988, 1992). 

Traditional  methods  share a  pair  of  common fea- 
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tures: (a) they  concentrate  on  molecular  information, 
using one replicate  observation for each  molecular 
variant and discarding  information  on its population 
frequency  and  geographic location;  (b) the object of 
the exercise is to  obtain a single evolutionary  recon- 
struction  that is viewed as  optimal. The classical ap- 
proach is probably  reasonable when the object is to 
create a phylogeny of  duplicated  genes within a species 
or of  analogous  genes among species, but it is becom- 
ing increasingly apparent  that  additional information 
on  the frequencies and locations of the  different var- 
iants  can  be useful when studying  a collection of 
haplotypes from a single species. It is also becoming 
clear that  more  than  one solution  (perhaps  a great 
many) may be acceptable for a specific problem; we 
need  to define a class of acceptable solutions. 

There  are sound  theoretical  reasons why allele fre- 
quencies and  geography might  provide  important in- 
formation (CRANDALL and TEMPLETON 1993). There 
is a  direct  relationship  between  haplotype  frequencies 
and  the ages of the haplotypes (WATTERSON and 
GUESS 1975),  information  that may be useful when 
constructing  a  gene  genealogy.  High  frequency hap- 
lotypes have  probably  been  present in the population 
for a  long  time,  having  had  a  chance to achieve 
substantial copy numbers. As the vast majority  of new 
mutants are derived  from  common  haplotypes, we can 
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anticipate  that rarer variants, generally representing 
more  recent  mutations, are  more closely related  to 
the  common haplotypes in the  extant collection than 
they are  to  other  rare variants,  everything else being 
equal.  Geographic  information may also tell us some- 
thing useful about  the relationships among haplo- 
types, as the  immediate  descendents of a new mutation 
are  more likely to remain in the original  population 
than  to  emigrate  to some distant  population, unless 
high levels  of gene flow occur  between those popula- 
tions (SLATKIN and MADDISON 1989). As evolutionary 
time passes, opportunities  for  emigration  and  geo- 
graphic diffusion accumulate, and  the geographic  fre- 
quency pattern  (the  population  structure) of the full 
collection of haplotypes constitutes  a long-lasting sig- 
nature of the  evolutionary history connecting  those 
variants (THOMPSON et al. 1992). 

In our search  for  evolutionary truth, we have tra- 
ditionally concentrated  on  finding  the single best re- 
construction.  Quite apart  from  the impossibility  of 
evaluating a prohibitively large number of candidate 
trees, we have virtually no hope of designating truth 
with any degree of confidence,  even if  we could  be 
confident of exhaustive enumeration. Given any par- 
ticular phylogenetic truth,  the observed  data  repre- 
sent only one of an incredibly large number of possible 
outcomes, each of  which (looking forward)  had  a 
vanishingly  small probability of occurrence.  In  addi- 
tion,  a  huge  number of evolutionary truths could  have 
given us the results we actually see, and (looking 
backward) none of them has large likelihood. We 
should  not view any one solution, even the best, with 
any large degree of comfort. We need  to begin think- 
ing  about classes of acceptable solutions that allow us 
to bracket our estimates and  our ignorance. The 
dangers of focusing too closely on  one particular 
solution are illustrated by the  recent  controversy  over 
“African Eve” (MADDISON 199 1 ; VIGILANT et al. 199  1 ; 
HEDGES et al. 1992; TEMPLETON 1992),  but while that 
case  has generated  much  notoriety,  the  problem is 
both widespread and intrinsic to traditional  practice. 
In any effort  to  define  a class of credible solutions, we 
are led inevitably to a  consideration of  how those 
alternatives are  related  to each other. Is the class 
simply an otherwise unrelated collection of alterna- 
tives, all meeting some arbitrary  criterion, or  do mem- 
bers of the class share  anything else in common? We 
are led to develop some measure of the similarity of 
different  trees, choosing a  metric that can also be used 
to compare any particular tree with the original  data 
set. 

Empirically, it is not  uncommon to invoke fre- 
quency or locational information to justify  a  particular 
choice among  a set of equally parsimonious trees 
(EXCOFFIER and  LANGANEY  1989; QUATTRO, AVISE 
and VRIJENHOEK 199  1,  1992; VIGILANT et al. 199  1; 

CRANDALL  and TEMPLETON 1993),  but  no  one has 
explicitly included  frequency or locational informa- 
tion  into the  tree evaluation process itself. There is 
some attention now being  devoted to  the  range of 
alternative  trees (FELSENSTEIN 1988; LI and GOUY 
1990; MADDISON 199  1; HEDGES et al. 1992; MADDI- 
SON, RUVOLO and SWOFFORD 1992; TEMPLETON 
1992),  but  more work in this area is badly needed. 
Our intent  here is to recast the phylogenetic inference 
problem in an overtly population genetics context. 
The incorporation of such information  not only pro- 
vides us with an additional  criterion  for choosing 
among  a set of equally parsimonious solutions, but 
also provides us with a  framework  for  the comparison 
of plausible alternative  reconstructions. 

We rank  competing  trees  according to a set of 
criteria other  than  mere  tree  length, drawn  from 
population analysis  of variant  frequency and geo- 
graphic location. The overall strategy is to optimize 
some population statistic over  the choice of tree. We 
first translate  each  competing tree  into  a  matrix of 
evolutionary relationships (patristic distances) among 
haplotypes, one matrix per  tree. Using these  compet- 
ing distance matrices, we then  compute  a set of rele- 
vant population statistics. We propose three statistics, 
the choice of  which depends  on  the specific question 
under examination. Finally, we obtain empiric null 
distributions of these statistics by sampling from  the 
restricted space of minimum spanning  trees  (MSTs), 
the equally parsimonious alternatives  among which 
we can choose, but similar null distributions may be 
obtained  for  different  tree  reconstruction  methods. 
We then  introduce  an heuristic procedure  to find ever 
better trees,  searching  for the global optimum. Hav- 
ing  obtained some collection of excellent candidate 
trees, we relate  them to each other  and  to  the defining 
data  set, using a  cophenetic  correlation  analog  (SOKAL 
and ROHLF 1962). We will show that excellent trees 
are  both highly correlated inter se and highly corre- 
lated with the raw data; these correlations  decrease as 
we consider progressively suboptimal trees. 

As trees  are  often used directly to  interpret rela- 
tionships among  populations (CANN, STONEKING and 
WILSON 1987; EXCOFFIER and  LANGANEY  1989; SLAT- 
KIN and MADDISON 1989; VIGILANT et al. 1991; MAD- 
DISON, RUVOLO and SWOFFORD 1992), we find it  useful 
to  define  the similarity between two trees as a  function 
of both  tree information and haplotype population 
frequencies. We then apply this new methodology to 
a  data set of human  mtDNA  restriction haplotypes, 
the same set we used earlier  to illustrate the AMOVA 
(analysis  of molecular variance) technique (EXCOFFIER, 
SMOUSE and QUATTRO 1992), a  convenient way of 
cross-referencing the two sets of methods. 

METHODS 

Translating trees into distance  matrices: The 
standard  problem,  that of creating  the  tree  from 
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molecular distances, is the subject of many different 
phylogenetic reconstruction  methods (CAVALLI- 
SFORZA and EDWARDS 1967; FITCH and MARGOLIASH 
1967; SAITOU and NEI 1987; BULMER 1991).  It is the 
ultimate object of this paper  as well, but we begin with 
the converse  problem, that of defining  molecular dis- 
tances from  the  tree itself. For this paper, we use 
spanning  trees,  where the operational  taxonomic  units 
(OTUs) (mtDNA haplotypes) serve  both as nodes and 
branch tips of the  tree.  Spanning  trees  are  to be 
distinguished from  the  Steiner  trees  more familiar in 
phylogenetic inference,  where OTUs normally serve 
only as branch tips. There  are some useful graph- 
theoretic  features of spanning  trees that we employ 
and  that  are  not matched by analogs for  Steiner  trees. 
In  addition,  the  spanning  trees convey the flavor of 
the intraspecific evolution of haplotypes in a way that 
is more helpful for  our immediate  problem. 

We begin by translating  relationships among hap- 
lotypes, determined  from  a  particular  tree,  into  more 
mathematically tractable  form.  Consider  any  particu- 
lar tree linking H haplotypes. Let X, be a Boolean 
vector  representing  the j th  haplotype,  a  string of 1's 
and O's,  representing  the  binary  states of a series of 
positions along  the molecule. This  representation is 
most natural in the  context of a  restriction  haplotype, 
but with a little care, DNA sequences  can  be accom- 
modated as well. The dimension of Xj is set to be the 
number of independent  and  unique mutational  events 
(m) having occurred  along  the  tree, i.e., the  length of 
the  tree.  Once  an  arbitrary  haplotype in the  tree has 
been chosen as a  reference  point, any other haplotype 
can be encoded in vectorial form, by recording its 
observed  differences  from the  reference  haplotype 
along all m dimensions, as shown in Figure 1. 

With that  definition, we compute  the  squared evo- 
lutionary (patristic) distances between haplotypes j and 
k (f$k) along  the  tree as the Euclidean differences of 
their respective frequency vectors 

$4 = (Xj - Xk)' w (Xj - x$ ( 1 4  

where W is an m x m square  matrix of differential 
weights for  the various mutational events. Where W 
is diagonal (assuming that  mutational  events are in- 
dependent  but providing  different  amounts of infor- 
mation), the  squared patristic distance are rewritten 
as 

m 

6; = wf (xsj - %SA)' (1b) 
s- 1 

where the subscript s indexes the sites. The same line 
of reasoning can be  applied to DNA sequence  data. 
The DNA haplotypes located on a  particular phylo- 
geny may be  translated  into  a series of Boolean vectors 
if individual mutational  events  have  been  recognized, 

which is usually the case once  a phylogeny has been 
imposed (see Figure  1). The w:'s can  reflect the dif- 
ferential weighting of transitions versus transversions, 
or synonymous us. code  changing  mutations in coding 
sequences. For the  data in hand (EXCOFFIER, SMOUSE 
and QUATTRO 1992), we have shown that  unequal 
weights do not  change  the  outcome, so we simply  use 
W = I, the identity  matrix, weighting all mutational 
events equally. Our objective here is to illustrate  the 
importance of population  information  for  the con- 
struction of the  trees, so we suppress the nuances of 
unequal weighting. 

Defining  population  statistics  as  functions of the 
tree: In  order  to study population  genetic  structure 
with molecular information, we recently  developed  a 
methodology (EXCOFFIER, SMOUSE and QUATTRO 
1992)  that allows  us to convert  a Euclidean distance 
matrix D = ($) into  a  partition of molecular variation 
within and  among  populations, as well as a  set of 
estimated F statistic analogs (called statistics) of the 
sort  described by WRIGHT  (1 95  1, 1965; see also COCK- 
ERHAM 1969,  1973; WEIR and COCKERHAM 1984; 
LONG 1986; SMOUSE and LONG 1988). We will use 
some of these same statistics, derived  from this 
AMOVA,  as  alternative  criteria to be optimized over 
the choice of trees. One can imagine using other 
criteria, such as  nucleotide diversity, but  these  popu- 
lation structure measures conveniently incorporate 
the frequency and geographic  information. 

We  use here a simple hierarchical model of popu- 
lation genetic structure, with chromosomes collected 
in populations. We assume that  the j th haplotype 
frequency  vector  from the  ith  population is a linear 
equation of the  form 

xv = x + ai + wv. (2) 

The vector x is the unknown  expectation of xy, aver- 
aged  over the whole study. The effects are a  for 
population and w for chromosomes within a popula- 
tion, assumed to be  additive,  random,  independent, 
and  to have the associated variance components (ex- 
pected  squared deviations) uz and k ,  respectively. 
The total  molecular variance (u') is the sum of vari- 
ances due  to differences  among  chromosomes within 
a  population (d) and those due  to differences  among 
the P populations (rz). The differences  among  chro- 
mosomes are assumed to arise by point  mutations and 
not by recombination; for mitochondrial haplotypes, 
the assumptions are warranted.  For  nuclear  gene hap- 
lotypes, we must always be  concerned with recombi- 
nation,  and  consequently, with the possibility  of retic- 
ulated  evolution. The  tree making techniques  pre- 
sented  here are standard in these respects. 

The sums of squared deviations may be expressed 
as functions of haplotype  counts (n's) and inter-hap- 
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and 

SSD(AP) = SSD(T) - SSD(WP). 

where K i  and K ,  are  the  numbers of different haplo- 
types found in populations i and I ,  respectively, and 
nq is the copy number of haplotype j in population i. 

From the AMOVA layout presented in Table 1, 
estimates of variance components are  extracted  from 
the total sum of squared deviations, SSD(T), and  the 
within-population sum of squared deviations, 
SSD(WP), 

- SSD(WP) 
N - P  ' 

u: = 

6 2  = - (N-P)SSD(T)-[(N-  l)-(P- l)no]SSD(WP) 
( N -  P)(P - 1)"o 

( 4 4  

0 0 0 1  

0 0 0 1  

0 1 0 1  

1 0 0 1  

1 0  1 1  

FIGURE 1 .-A gene tree of restriction haplotypes 
or DNA sequences can be encoded as a series of 
Boolean vectors of occurrence of mutational events 
from an  arbitrary position on the  tree. In each case, 
haplotype 2 was chosen as the reference and  the 
elements of  its associated vector X2 are set to zero. 
The elements of the other vectors are set to one if 
their associated haplotypes differ by some muta- 
tional event (m,s) from haplotype 2, and to zero 
otherwise. Note that  the coding of haplotypes into 
Boolean vectors is independent of tree construction 
method but depends on the resulting tree topology. 

where N is the sum of  the P sample sizes and no is a 
weighted average sample size for a single population 
(Table 1). 

Finally, +ST, the correlation of haplotypes within a 
population,  relative to  that of random haplotypes 
drawn  from  the total collection, is estimated  as 

- ( N -  P)SSD(T) - ( N -  l)SSD(WP) - 
(N-P)SSD(T)-[(N- l)-(P- l)no]SSD(WP)' 

( 5 )  
We have thus  defined  a series of population statistics 
in (3), (4)  and ( 5 )  that  are functions of haplotype 
frequencies,  squared patristic distances among haplo- 
types, and possible geographic  partitioning of chro- 
mosomes into populations. It is important  to realize 
that  the  tree (distance matrix) is the variable of interest 
for this problem. 

TABLE 1 

General design for analysis of molecular  variance (AMOVA) 

Source of Variation d.f. MSD 
Expected 

MSD 

Among populations P -  1 MSD(A) d + nod 
Among chromosomes N - P MSD(W) d 

within populations 
Total N -  1 
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Defining the  search  space for optimum  popula- 
tion statistics: For  convenience, we consider only 
spanning trees in this study,  instead of the strictly 
bifurcating  trees used in  most phylogenetic represen- 
tations. Recall that OTUs may occupy internal  nodes 
in spanning  trees, whereas they occupy only terminal 
nodes in  classical phylogenies. Spanning  trees assume 
that  the  direct  common  ancestor of  all observed  hap- 
lotypes is itself present in the sample. Multifurcations 
are also allowed in spanning  trees, so a  reference 
haplotype may have given rise to more  than two other 
haplotypes. These assumptions are probably valid for 
intra-specific studies of large samples drawn  from 
related  populations but  are less tenable for  inter- 
specific studies,  where  longer  differentiation times 
lead to  random loss  of ancestral haplotypes. In  the 
latter case, non-spanning trees  (Steiner  trees)  should 
be used to depict  molecular phylogenies. 

We are looking for  the  tree  that optimizes an asso- 
ciated  criterion value, some particular  population sta- 
tistic. The only guarantee of finding it would be to 
conduct  an  exhaustive  examination of all possible 
spanning  trees. The number of spanning  trees for H 
haplotypes is given by CAYLEY  (1857) 

S ( H )  = HH - ’, (6) 

generally a very large number.  For example, with H 
= 20, S ( H )  - loz3;  there is no hope of exhaustive 
enumeration,  and we must somehow reduce  the  num- 
ber  of candidates. We can accomplish that by applying 
the concept of minimum  evolution (parsimony), con- 
sidering only that set of spanning  trees of minimum 
length,  the set of MSTs. Efficient algorithms have 
been  described to  compute MSTs (KRUSKALL 1956; 
PRIM 1957),  and we recall here  the principle of PRIM’S 
algorithm, as it can be  extended  to  enumerate all 
possible MSTs. (a) Start with H unconnected  nodes 
(haplotypes). Take any node A, and find  a  node B 
whose distance from A is shortest  and link node A to 
node B. These two connected  nodes  form  a  spanning 
subtree. (b) Find the unconnected node C closest to a 
member of the spanning  subtree, say A, and connect 
C to A. We  now have a  spanning subtree linking 
haplotypes A, B and C. (c) Repeat  step  (b) until all H 
nodes are connected to form  a  spanning  tree. 

Possible homoplasies in the evolutionary process 
lead to  more  than  one  MST,  but all  of these MSTs 
are subsumed by a  graph  obtained by modifying steps 
(a) and (b) of the agglomerative  Prim  algorithm.  In- 
stead of connecting only one closest node  to  one 
member of the spanning subtree, we connect all un- 
connected  nodes equally closest to that  member of the 
spanning  subtree to which C is connected,  and we also 
connect  C to all equally closest nodes of the spanning 
subtree.  Thus,  at each  step of the spanning subtree 
expansion, we establish a list  of equally minimal-dis- 
tance  connections. This modified Prim procedure 

leads to a  graph  defining  a  constrained  network with 
closed loops. With such a graph, it is possible to 
associate an incidence  matrix,  K = IkQ-f, called a Kir- 
choff matrix (ie., see GIBBONS 1985),  from which we 
can compute  the  number of spanning  trees. The ele- 
ments of K are defined as k, = - 1, if nodes i and j (i 
# j )  are connected and 0 otherwise, k,i = the  number 
of other nodes to which node i is connected. 

The number of different  spanning  trees,  T(K), con- 
tained in this graph (network) may then  be  derived 
from  the Kirchoff matrix as 

T(K) = det K,,, (7) 

where K, is an (H-1) X ( H - I )  matrix  derived  from K 
by deleting any one row r and its associated column r 
(GIBBONS 1985, p. 50). Note  that T(K) is an  upper 
bound  for  the  number of MSTs, because not all  of 
these  trees are minimum spanning if the connection 
lengths in any loop of the network are not all equal. 
On the  other  hand, if all permitted links are of the 
same length,  then  T(K) is the  number of different 
minimal spanning  trees.  In  either case, T(K) is gen- 
erally much less than  the  total  number of spanning 
trees, S(H) .  We illustrate with a simple example of 
five haplotypes, whose distance matrix is 

0 1 1 2 2  

D = [  i:!::] 
2 2 1   1 0  

The constrained  graph  found with the modified PRIM 
procedure  (Figure 2a) has all links equal to unity in 
length, and has the associated KIRCHOFF matrix 

K =  [-;:;;;-;I -1 0 3 - 1  -1 

The number of minimum spanning  trees is given by 
Equation 7 as T(K) = 11,  and these  trees are shown 
in Figure 2. 

Heuristic  search for minimum spanning trees: If 
the  number of spanning  trees given by (7) is simply 
too  large to review (say if T(K) > 100,000), we can 
adopt a  heuristic  approach to optimizing our popula- 
tion criterion  over  the choice of spanning  trees. The 
principle of the heuristic search is to  pursue  an opti- 
mum solution with a  partial  exploration of the solution 
space: We start  from  an arbitrarily chosen tree  and 
modify its topology by “subtree  pruning  and  regraft- 
ing” (SWOFFORD and OLSEN 1990). We evaluate the 
resulting  population statistic; if the population  crite- 
rion  exceeds  a  predetermined  threshold level, the  tree 
topology is further modified; otherwise we go one 
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6 5 

step backward and try another  subtree  pruning  and 
regrafting of the  former  tree.  This recursive  proce- 
dure stops when all possible modifications of the initial 
tree have been  evaluated. The set of all possible 
topological modifications is given by the alternative 
connection list obtained  during  the construction of 
the minimum spanning  network by the modified PRIM 
procedure. The obvious strategy is to  continue to 
explore only those modified trees  that  improve  the 
population  criterion.  With this greedy  algorithm,  the 
criterion will always improve, and  the algorithm will 
effectively climb the nearest peak of the solution 
space. The solution space might  be multi-peaked, of 
course, so there is no guarantee  that  the final solution 
will be the global optimum. Both the speed and  greed 
of the algorithm  depend on  the threshold value and 
the possibility of temporarily  tolerating  non-improve- 
ment of the chosen criterion. T o  reduce  the  proba- 
bility of finding  a sub-optimal tree,  one could either 
relax the  threshold  criterion  somewhat, using a sim- 
ulated  annealing  approach, or repeat  the  search sev- 
eral times, starting  from  different initial spanning 
trees [see SWOFFORD and OMEN (1990)  for  a full 
discussion of greedy  algorithms]. 

Generating  random  minimum spanning trees: To 
obtain the  approximate null distribution of the pop- 
ulation criterion  over  the MST-space, we can  generate 
a  large sample of random MSTs via PRIM’S procedure, 
applied to a series of randomly ordered sets of hap- 
lotypes. By definition, each MST will have exactly the 
same total  length,  but  the  connections will differ  from 
tree  to  tree. The procedure  for  generating  random 
MSTs simply assumes that all connections  between 
equidistant haplotypes have the same probability,  a 
more constrained but otherwise similar procedure  to 

FIGURE 2.-(a) A graph (network) 
connecting 5 nodes. The  other 11 
graphs are  the complete set of differ- 
ent spanning trees that may be de- 
rived from graph 2a. 

that used by MADDISON and SLATKIN (1991)  to  gen- 
erate  random  joining trees. There is no  guarantee of 
finding the global optimum  tree in this fashion, or 
even  a very good tree,  but it does  provide  a  convenient 
way to explore  the  MST space widely. In principle, 
one might use a  combination of random sampling and 
heuristic optimization techniques  to  search  for  alter- 
native peaks. Our purpose here is more  to  explore  the 
MST space than it is to find the global optimum, so 
we shall not  belabor the point further. 

Computing  and  testing  correlation  among  trees: 
At the intraspecific level, a molecular tree is rarely 
the real  object of the exercise; rather, it is used to 
address  a specific question at  the population or species 
level  (AVISE 1989; AVISE et al. 1987). Since there  are 
many competing  trees, each yielding (potentially) dif- 
ferent biological inference, it would be useful if  we 
could devise some way to characterize the relation- 
ships among  these  competing  trees. Any tree may be 
translated into a  unique  matrix of squared patristic 
distances, so an obvious way to compare any two trees 
is to  compute  the  correlation between their derivative 
distance  matrices, an analogue of the cophenetic corre- 
lation  coescient between the raw phenetic distance 
matrix and  that of a  particular tree (SOKAL and ROHLF 
1962),  a  construct we shall here  term  a coevolutionary 
correlation. The dimension of both matrices is N ,  
which is often  large  enough to be awkward for this 
sort of matrix  manipulation,  but we can finesse that 
problem by making use  of the fact that  the  number 
of haplotypes ( H )  is somewhat smaller than  the  num- 
ber of individuals ( N ) .  We  only need  the sums of 
squared deviations within each of the two matrices 
and  the sums of cross products between the matrices 
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to compute the correlation between them. If we de- 
note  the distances  of the first matrix by 6% and those 
of the second matrix by Ejk, then we can  write 

N 4-1 

where, nj and nk are  the observed copy numbers of 
haplotypes j and k, respectively. The weighted  coe- 
volutionary correlation between the two trees is then 
computed as 

The fit  of  any particular tree  to  the original data can 
be similarly obtained by measuring the cophenetic 
correlation coefficient i(0,X) between the phenetic 
distance matrix (no tree assumed) and  the patristic 
distance matrix from that particular tree. 

The significance  of the correlation between  two 
trees cannot be tested using conventional approaches; 
there are at least three reasons. (1) The N(N-1)/2 
pairwise  distances among  the N individuals are not 
independent, as a consequence of both sampling  real- 
ities and  a common evolutionary history. (2) Each tree 
connects H OTUs with H-1 linearly independent 
branches, which  can  be considered as H-1 linearly 
independent contrasts. It follows that  there cannot be 
more than H-1 uncorrelated trees. (3) The null  hy- 
pothesis cannot be the absence of correlation, because 
all trees are autocorrelated,  due in part  to  the fact 
that  the patristic distance between  identical  haplotypes 
is always zero and  that between different haplotypes 
is never zero. 

We must therefore test whether two trees are more 

correlated than the average background level. After 
having computed i(X,Y), we generate  a large number 
of random MSTs  (as described above) and compute 
the weighted  coevolutionary correlations between one 
of our  former distance matrices (say  X) and  a matrix 
Z different for each random tree, i(X,Z). An estimate 
of the probability  of i(X,Y) > i(X,Z) is then obtained 
by enumeration of the null (random) distribution of 
c(X,Z). The weighted correlation measure may be 
viewed  as a similarity index, so we can  test whether 
two trees are significantly  similar or different at  a 
certain confidence level,  assuming that we have ran- 
domly  sampled  within the whole  universe of solutions. 
We  have restricted attention to the set  of  all  MSTs, 
and  are  therefore testing whether a given  pair  of 
MSTs is more similar than a random pair of  MSTs. 

RESULTS FROM AN ANALYSIS OF HUMAN 
mtDNA RESTRICTION  HAPLOTYPES 

We illustrate these new developments with a human 
mtDNA restriction-site data set  described in EXCOF- 
FIER, SMOUSE and QUATTRO (1992). The restriction- 
site patterns of the 56 haplotypes encountered among 
the 672 individuals from 10 European, Asian, Afri- 
can, and Amerindian populations are shown  in Table 
5 (see APPENDIX). A total of 62 restriction-sites  were 
examined, 34 being  polymorphic. Population haplo- 
type frequencies can be found in Table  6 (see APPEN- 
DIX). An AMOVA of the haplotype data revealed 
significant differences among populations, differences 
that were more pronounced with a distance  metric 
that accounted for mutational divergence among hap- 
lotypes (EXCOFFIER, SMOUSE and QUATTRO 1992). For 
that earlier study, we employed a single  minimum 
spanning tree  (referred hereafter as the "published 
tree") to compute patristic distances (EXCOFFIER, 
SMOUSE and QUATTRO 1992). Here, we apply our tree 
evaluation procedures to that same data set, describ- 
ing differences between optimum spanning trees and 
the published tree. 

The number of equally  parsimonious trees ex- 
ceeds one billion: We present a modified  PRIM graph 
(Figure 3) that relates the 56 sampled  haplotypes 
shown in Table 5 (see  APPENDIX). All haplotypes may 
be related to each other by single restriction-site 
changes, except for haplotypes 29 and 1 1; 29 can  only 
be connected to 9 by means  of  an intermediate (but 
missing) haplotype; 1 1 can be connected to 2 1, 23 or 
46, but also requires an intermediate (but missing) 
haplotype in each  case. The graph thus requires two 
(missing) intermediates to connect all  haplotypes. The 
missing  haplotypes  have never been found in the more 
than 60 populations that have  now  been  sampled  with 
the same battery of  enzymes (MERRIWETHER et al. 
199 1). A set  of  minimum spanning trees is thus a very 
reasonable depiction of the situation. The number of 
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FIGURE 3.-A graph (network) relating the 56 
haplotypes defined in Table 5 (see APPENDIX) by 
minimum connection length. Any  two haplotypes 
are connected if they differ by a single restriction- 
site difference. 

spanning  trees given by Equation 7 is in  excess of 4.4 
billion (4,402,434,9 12). Not all these  trees are MSTs, 
because a tree with haplotype 1  1 linked to two missing 
haplotypes has a total length of 58, compared with a 
length of 57 for  an MST. I t  is nevertheless possible to 
compute the total number of MSTs as three times the 
number of spanning  subtrees  derived  from  a  graph 
where haplotype 11 and 82 have been removed. All 
spanning  subtrees  derived  from such a  reduced  graph 
would be minimum spanning, and  there  are  three 
possible minimum length  connections  for  haplotype 
11 on each of these  spanning  subtrees. Therefore  the 
total number of MSTs is in excess of 1.29 billion (3 X 
43 1,648,856), still far  too many to permit  an exhaus- 
tive search. One is forced to the conclusion that mu- 
tational parsimony is utterly useless as  a sole criterion 
of excellence or of the best tree. 

Null  distributions of criteria  over  the MST space: 
We  show the  approximate null distributions of 
SSD(WP), SSD(T) and @ST values over  the  MST space 
in Figure 4, plotted against the weighted cophenetic 
correlations, i(O,X), between patristic and phenetic 
distance matrices. The null distributions  for a: and 
t~i are not shown, inasmuch as they are  mere combi- 
nations of and  are highly correlated with the SSDs. 
The probability distributions were obtained  from 
10,000 random MSTs (of the 1.29 billion possible), 
among which 1,000 were randomly chosen and  their 
weighted cophenetic  correlations  plotted. The distri- 
butions of the population criteria are shown in Figure 
4 and  are highly irregular, with a series of peaks and 
valleys.  We have drawn four series of 10,000 random 
MSTs (results not shown), which  all  show the same 
major peaks at exactly the same positions, suggesting 
that these peaks reflect the major  features of the  graph 
in Figure 3. The distributions of the SSD criteria, 

with a  large  proportion of MSTs  close to  the  optimum, 
suggests that a  large  number of alternative  trees, all 
about equally good,  differ by a topological changes 
involving low-frequency haplotypes that do not fun- 
damentally alter  the “essential pattern” of the  tree. 

The null distributions  for SSD(T) and SSD(WP) 
present similar patterns  (Figure 4, a  and b), and  the 
two criteria are strongly correlated across trees (7  = 
0.988, Table 2). The modal value is very  close to  the 
optimal value; the null distributions are skewed to  the 
right  and  the weighted cophenetic  correlations, 
i(O,X), are strongly and negatively correlated with 
SSD(WP) ( r  = -0.886) and with SSD(T) ( r  = -0.879). 
suggesting that very good MSTs conform better  to 
the raw data  than do sub-optimal trees  (Table 2). This 
follows immediately from the fact that both cophe- 
netic  correlations and SSD criteria are derived directly 
from  the  underlying distance matrices among  the H 
haplotypes (CAVALLI-SFORZA and EDWARDS 1967; 
FITCH and MARCOLIASH 1967; BULMER 1991). 

The null distribution of asT (Figure 4c) is clearly 
different  from those of the SSD criteria;  three well 
differentiated peaks with high cophenetic  correlations 
are distinguishable. The first peak is centered  around 
0.15; the second and  third peaks are centered at  about 
0.185 and 0.225, respectively. The value computed 
on  the original phenetic distance matrix of restriction 
site differences is @ST = 0.227, embedded well within 
the  third peak. At  least some of the  trees in each peak 
have elevated cophenetic  correlations,  but  there is a 
low overall correlation  (although significant) between 
cophenetic  correlation and @ST ( r  = -0.291). The @ST 

criterion is not highly correlated with the SSD criteria 
either [ r  = 0.237 for SSD(WP) and r = 0.376 for 
SSD(T)]. All of these observations suggest that @ST 

may not  be suitable as an optimization criterion. We 
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would  suggest that +ST be  used  as characterizing out-  feature of these  null distributions is their wide range. 
put, rather than defining input; as such, it will prove They vary  between 319.279 and 1540.396 for 
useful  in relating variance components to differentia- SSD(WP) and between 410.914 and 2028.679 for 
tion times,  as  shown later. SSD(T), representing almost a five-fold range for the 

The null distributions of different population statis- inferred variances.  Equally  parsimonious trees can 
tics are described numerically  in Table 3. A striking thus yield profoundly different estimates  of  popula- 
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TABLE 2 

Correlations  among  population  statistics  over  the  minimum 
spanning tree  space 

Population 
statistics SSD(WP) SSD(T) 2 *ST 

SSD(T) 0.9875 
U 2  0.9849 0.9999 
@ST 0.2369  0.3758 0.3887 
i (0 ,X) -0.8858 -0.8790 -0.8772 -0.2907 

All correlation coefficients are significantly different  from  zero 
at level P = 0.00 1. 

tion genetic diversity and, collaterally, divergent esti- 
mates of population  mean  nucleotide diversity and 
differentiation times. The lower (P < 0.005) confi- 
dence limits for SSD(WP) and SSD(T),  among  ran- 
domly constructed MSTs, are 320.341  and  41  1.333, 
respectively (Table 3). The values for  the  MST pub- 
lished in EXCOFFIER, SMOUSE and QUATTRO (1992; 
Figure 5 )  were 320.25  and  41  1.02  for SSD(WP) and 
SSD(T), respectively. That earlier  tree (intuitively 
based on  frequency and geographic  information but 
without rigorous  quantification) is superior  to  the vast 
majority of MSTs that  emerge  from  a  random sam- 
pling. 

Optimal  trees  present  a  conserved  structure: 
Using SSD(WP) and SSD(T) criteria  for  optimization, 
we next  examine  the topological structures of the  100 
best trees,  recording  the  frequencies of each possible 
connection  between haplotypes. There  are 28  unam- 
biguous connections  that are common to all 1.29 
billion MSTs, connections that can only be  made in 
one way for  an MST. In  addition,  a  clear  common 
structure  emerges  from  the  100 best (1 %) trees,  a 
series of additional  (and  nonobligatory)  connections 
that  are nevertheless inevitably present.  Haplotype  2 
is always connected to haplotype 7 in the  100 best 
SSD(T) and SSD(WP) trees;  haplotype  10 is always 
connected to haplotype 7 in the  100 best SSD(WP) 
trees.  Moreover, some permissable connections are 
never used for  these best trees:  these are connections 
2-47 and 10-21 for  the  100 best SSD(WP) trees, and 
2-47, 8-9, and 22-31 for  the  100 best SSD(T)  trees. 
Other connections  (Figure  3)  appear  between  3 and 
97 times; their  presence or absence has less impact on 
the SSD criteria. 

Correlations  among  different  optimal  trees: 
There is much to  be  learned  from  a comparison of 
our previously published tree with these  100 best 
trees. The published tree (EXCOFFIER, SMOUSE and 
QUATTRO 1992;  Figure 3) is presented in Figure  5a; 
we present that which minimizes SSD(WP) in Figure 
5b.  This  latter  tree, which may be  considered as 
having considerable  geographic structure, differs 
from  that in Figure 5a at five points; haplotype 53 is 
connected to haplotype  28 in Figure  5b, instead of to 
haplotype 52 in Figure  5a;  haplotype 83 is connected 
to 75 instead of 36;  haplotype  31 to 22 instead of 2; 
haplotype  44 to 47 instead of 28; and haplotype 22 to 
47 instead of 21. These differences mainly  involve 
haplotypes that  are located at  the very tips of the  tree, 
found only once in the total sample. The exception is 
the connection of haplotype 22 to 47 instead of 21. 
The MST that minimizes SSD(T) is shown in Figure 
5c. There  are six topological differences between this 
tree  and  the published tree in Figure  5a (involving 
haplotypes 9,  36, 53, 64,  67  and  83)  and seven differ- 
ences  between this tree  and  the minimum SSD(WP) 
tree of Figure 5a (involving haplotypes 9, 22,  31,  36, 
44,  64,  and  67).  These topological differences also 
involve only the  rare haplotypes located at the  branch 
tips. 

The similarities among  these three MSTs are  better 
understood when comparing  them with a  randomly 
chosen MST having large sums of square deviations, 
an example of  which is shown in Figure 5d (SSD(WP) 
= 1009.901;  SSD(T) = 1398.905). This  latter  tree 
shows major topological differences  from the  trees in 
Figure 5, a-c: it has much  longer  branch  lengths, 
resulting in larger patristic distances among haplo- 
types and much  larger SSDs. Such topological out- 
comes are typical  of all the suboptimal trees we have 
examined,  and it is important  to recall that these sub- 
optimal  trees are all MSTs and molecularly parsimon- 
ious. Some parsimonious trees  are substantially better 
than  others. 

The weighted correlations  between  the  6 pairs of 
trees  from  Figure  5  are  reported in Table  4. The 
significance of these  correlations was assessed as de- 
scribed earlier, using 1,000  randomly selected MSTs. 
The only significant correlation ( P  = 0.016) is that 

TABLE 3 

Random  minimum  spanning  tree  distribution  statistics 

Percentile limits 
Population 

SSD(WP) 319.279 1540.396  445.847  (479.396) 319.729 320.341  320.677  321.856 
SSD(T) 410.914  2028.679 558.133  (606.238) 411.104  411.333 411.512  412.339 

statistics Minimum Maximum Mean (SD) 0.1% 0.5% 1% 5 %  

U 2  0.629  3.116 0.853 (0.927) 0.629 0.630 0.630 0.631 
@ST 0.122 0.429 0.202  (0.208)  0.128  0.137  0.137 0.147 
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FIGURE 5.-Four parsimonious trees having the same minimum length but implying different molecular variances at  the population level. 
(a) MST  previously published in EXCOFFIER, SMOUSE and Q U A ~ O  (1992) (SSD(T) = 41 1.82; SSD(WP) = 320.25). (b) MST  minimizing 
SSD(WP) (319.203) and u: (0.482). (c) MST minimizing SSD(T) (410.842) and u2 (0.629). (d) Random MST  with large associated  sums of 
square deviations values  (SSD(WP) = 1009.901 and SSD(T) = 1398.905). leading to considerably inflated molecular variances (u: = 1.526, 
u2 = 2.159). 

TABLE 4 

Weighted coevolutionary correlations among trees shown in 
Figure 5 
~ ~ _ _  

Optimum Optimum 
Published for for Random 

Trees 
tree SSD(WP) SSD(T) MST 

(Figure 5a) (Figure 5b) (Figure 5c) (Figure 5d) 

Published tree - 0.150 0.016 0.299 

Optimum for 0.9799 - 0.156 0.495 
(Figure 5a) 

SSD(WP) 
(Figure  5b) 

SSD(T) (Fig- 
ure 5c) 

(Figure 5d) 

Optimum for 0.9964 0.9767 - 0.249 

Random MST 0.6406  0.6310  0.6439 - 

Weighted correlations are shown  below the diagonal, and  the 
probabilities of getting a larger correlation by chance alone are 
shown above. 

between the published tree  and  the  tree minimizing 
SSD(T). Surprisingly, although  their topological dif- 
ferences are small, the correlation between the opti- 
mum SSD(T) and SSD(WP) trees  and  that between 
the published tree  and  the optimum SSD(WP) are not 
significant. The lack  of statistical correlation derives 
from the fact that  the mean autocorrelation level 
among all MSTs is extremely  high, due  to  the shared 
connections within the  entire set. Correlations be- 
tween the suboptimal MST (Figure  5d)  and  the other 
trees  are lower and less significant, reflecting pro- 
found  structural differences. 

In  summary, it would appear  that while there is an 
enormous  number of (equally) maximum parsimony 
trees, the situation is far from hopeless. If  we employ 
some other  criterion, in addition to molecular parsi- 
mony, there is a  great deal to choose among these 
alternative  trees. We have shown, using frequency 
and geographic  information, in conjunction with an 
AMOVA, that  there is a  tremendous  range of per- 
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formance  among equally parsimonious trees. There 
nevertheless remain many excellent  candidate  trees 
among which to choose, still too many to evaluate 
exhaustively. If they  shared  nothing in common, we 
would find ourselves in an awkward position, but we 
have shown that  the  excellent  candidates  share all of 
the critical internal structure of the  tree, differing only 
in the branch  tip placement of rare haplotypes. More- 
over, all members of the class have high cophenetic 
correlations with the phenetic  distance  matrix, and 
represent minimal distortions of the  data in the proc- 
ess of tree construction. All excellent MSTs are mem- 
bers of a single class of solutions that  conforms closely 
to  the raw data  and  that  protects this internal  struc- 
ture.  Interestingly, our earlier,  hand-drawn  MST, 
with some careful  attention  devoted to frequency and 
geographic  information, was a  superior  member of 
the class, suggesting that such a  construct  might easily 
identify that critical internal  structure  and provide  a 
departure point  for  a  heuristic optimization search. 

DISCUSSION 

Molecular  variance  parsimony: We have  pre- 
sented here a new technique  for  reconstructing  intra- 
specific molecular trees  that makes use of sampled 
haplotype  frequencies and geographic  information. It 
extends  the notion of conventional parsimony to “mo- 
lecular variance parsimony” in the sense that we not 
only minimize the total number of mutational  events 
having occurred in the past (the  length of the  tree), 
but also the population molecular variance (a function 
of both molecular differences and allele frequencies). 
Although specifically applied here  to minimum span- 
ning  trees, our methodology  could  be  applied to  other 
phylogenetic reconstruction  methods,  providing one 
or more  additional  criteria to  be evaluated. 

The  limits of conventional  parsimony: The distri- 
bution of different  population statistics (Figure 4) for 
equally parsimonious trees shows that  trees having 
exactly the same mutational  length may have very 
different  properties and may sometimes fit the origi- 
nal data  poorly.  It follows that  the parsimony is not 
adequate as a sole criterion  for choosing an  optimum 
gene  tree  at  the intraspecific level, as recently shown 
in the context of mtDNA  sequences (HEDGES et al. 
1992; MADDISON, RUVOLO and SWOFFORD 1992; TEM- 
PLETON 1992; VIGILANT et al. 199 l), where  the  origin 
of modern  humans was inferred  from  an  arbitrarily 
chosen phylogenetic tree. Two different  problems 
arise with the parsimony criterion in the presence of 
homoplasy: (1) it is often  not very discriminating, as 
attested by the very large number  (1.29 billion) of 
equally parsimonious MSTs, and (2) it does  not  lend 
itself well to  the definition of confidence  intervals 
around  the most parsimonious  state or to significance 
testing (FELSENSTEIN 1983, 1988). These two prob- 

lems are circumvented by the present  method, which 
imposes one or more additional  criteria, in an  attempt 
to define  a class  of excellent solutions and  then to 
characterize that class. 

The use of allele frequencies in phylogeny recon- 
struction raises the problem of the sample size  in 
molecular  population studies. Common belief is that 
sample size is not very important in molecular studies, 
because it does not affect the coefficient of variation 
of nucleotide diversity estimates as much as the num- 
ber of nucleotides  surveyed or  the  number of  loci 
(NEI  1987).  It follows from this view that  one  should 
usually prefer to study many loci on a few individuals, 
rather  than many individuals for  a few  loci. On the 
other  hand, inasmuch as  nucleotide diversity should 
be  computed  along  a given tree, this line of reasoning 
is only correct if one assumes that  the  true  tree is 
known. For the example given here,  the molecular 
variance can change over a fivefold range  (Table  3), 
depending  on which  of the 1.29 billion MSTs is con- 
sidered,  among which there is no choice in the absence 
of allele frequency or population  structure  informa- 
tion. That fact suggests the  need  for reliable allele 
frequency estimates for molecular population studies, 
which can only be obtained with large sample sizes. 

One  solution us. a  class of solutions: Although we 
may drastically reduce  the  number of plausible trees, 
relative to the total  number of MST  trees, our results 
suggest that it would be unreasonable to settle firmly 
on any single “best”  tree. There  are a  great many 
excellent trees  from which to choose, and  the choice 
depends to some extent  on which statistic is selected 
for  optimization. When population structure is rea- 
sonably well established, we might  prefer  a phylogeny 
that minimizes SSD(WP) and 2 ,  leading to minimum 
overall differences  among haplotypes from  the same 
population. This would be  a tree with the strongest 
geographic  coherence and with the smallest average 
coalescence time of chromosomes within each popu- 
lation. A tree maximizing ai [or SSD(AP) = 
SSD(Tota1) - SSD(WP)] would maximize divergence 
among populations, possibly proving useful in the 
context of population  discriminant analysis. On the 
other  hand, we might  prefer simply to minimize uz or 
SSD(T)  without regard  to population  structure. This 
would be  a  particularly logical choice if the point were 
to provide  a population-structure-neutral tree, along 
which one could simply measure  population diver- 
gence. Our example suggests that @ST may not  be  a 
useful criterion  to optimize. Although  a  large @ST 

value would indicate  a  high level  of population  differ- 
entiation,  trees associated with the highest @ST values 
sometimes distort  the  original  data.  In  other words, 
an optimization of population  structure (@ST) could 
lead to an  appearance of population  structure in a 
globally random  mating  population.  In  principle, any 
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other statistic based on patristic distances, like nucleo- 
tide diversity (NEI and TAJIMA 1983),  could  be  opti- 
mized as well, and lead to its own optimum.  Moreover, 
we do not have any evidence that  there is a single 
optimum  for  each statistics. In  the case of SSD(T), we 
were able to find at least two trees having exactly the 
same value, but with a single topological difference. 
We would therefore  recommend  repeating  the  heu- 
ristic optimization procedure  from several different 
starting  points, if the  computing time is not  prohibi- 
tive. 

Although the point of this study is more  to  examine 
the impact of the choice of a  particular phylogeny on 
the estimation of a  population parameter  than  to come 
up with a single resulting phylogeny, we are led to ask 
ourselves how close we are  to  the  “true tree”? As is 
the case for every phylogenetic  inference  method, we 
have no formal  proof that  our  procedure will always 
lead to the  true  tree;  quite  apart  from  the difficulty 
of discovering truth,  the  method is no  better  than  the 
underlying assumptions. For instance, parsimony as- 
sumes that  the  number of mutations during  the evo- 
lutionary process is minimized, whereas maximum 
likelihood methods assign probabilities to each muta- 
tion type, favoring the evolutionary process made  up 
of a series of  most  likely mutational events. One can 
imagine real  evolutionary processes departing  from 
either set of defining assumptions, but  one generally 
views those assumptions as  reasonable. O u r  methods 
impose additional assumptions; frequent haplotypes 
should be as close as possible on  the phylogeny, and 
if molecular variance within population is minimized, 
haplotypes found in the same population  should also 
be closely related. These additional assumptions make 
intuitive sense and have  been shown to be valid over 
a coalescent differentiation process (CRANDALL and 
TEMPLETON 1993). The frequency  assumption simply 
states  that there has been a single molecular  differ- 
entiation  center, while the within-population minimi- 
zation approach implies that  the migration rate  among 
populations has been reduced, relative to panmictic 
expectation. 

Choosing a single optimal tree is not  entirely satis- 
fying, as topologically similar trees  furnish similar 
solutions to  the underlying  population  problem. Some 
topological differences may have less influence on  the 
population statistics than do others, which is  why  we 
have proposed  computation of a similarity index (a 
weighted coevolutionary  correlation  coefficient) be- 
tween any two trees,  not only on  the basis of the  trees 
themselves, but also on population  information. The 
significance of such a  correlation is obtained  through 
its distribution  over the solution space, permitting 
definition of a class  of solutions based on a statistical 
criterion of those  trees  having the highest 1% or 5% 
coevolutionary  correlation coefficients with the opti- 

mum tree,  and we have seen that these  trees clearly 
share substantial (and all of the critical) topological 
structure. The solution class thus  represents  a confi- 
dence  statement  about  the  inference  neighborhood  of 
the  optimum solution. The size  of this class depends 
not only on  the  tree topology and  the population 
genetic structure,  but also on  the total number of 
available trees in the solution space. The class limits 
would certainly change if  we consider non-parsimon- 
ious trees  (non-MSTs). There could exist some trees 
of greater total  length  that would yield better popu- 
lation statistics than do some of the  poorer MSTs. We 
have arbitrarily chosen not to consider non-MSTs in 
the present  study, partly for simplicity but also because 
the parsimony criterion is reasonable qualifying cri- 
terion.  It is possible to be  more general, of course, 
optimizing strictly bifurcating  trees  instead, without 
any a priori ability to specify the minimum length. 

Minimizing  coalescence  times and migration 
events: By minimizing molecular variance, we also 
minimize population overall differentiation times, be- 
cause the molecular variance components can be ex- 
plicitely related  to mean coalescent times. This is a 
consequence of the fact that +ST is the  expected  ratio 
of mean coalescence times ( i ’ s ) ,  as shown by SLATKIN 
(1 993) 

- 
to  

tl 
@ST = 1 - -, (1 0) 

where io is the  average coalescence time of two genes 
drawn  from  the same population, and il is the average 
coalescence time of two genes  drawn  from two differ- 
ent populations.  Comparing Equations 5a and 10 
reveals that uz is proportional  to io and u2 to i,. 
Consequently, the  tree shown in Figure 5b not only 
minimizes SSD(WP) but also to, the mean coalescent 
time within each population. Similarly, the MST 
shown in Figure 5c minimizes t , ,  the mean coalescent 
time of genes  taken  from  different populations. 

The determination of geographical clustering of 
gene  trees,  denoted as “intraspecific phylogeography” 
by AVISE et al. (1  987), is of utility in describing  organ- 
imal histories (e .g . ,  AVISE 1989; QUATTRO et al. 199  1 ; 
VIGILANT et al. 19911, but the  interpretation of pop- 
ulation affinities from  a single gene  tree, even a 
unique best tree, is the subject of some ongoing dis- 
cussion (LANGANEY et al. 1992; MADDISON, RUVOLO 
and SWOFFORD 1992; PAMILO and NEI 1988). The 
tree minimizing uz will be  the  tree having the highest 
geographical consistency, as haplotypes found within 
the same population will tend  to be as close to each 
other as possible. A  method allowing computation of 
migration  rates  from phylogenetic information has 
recently been proposed (HUDSON, SLATKIN and MAD- 
DISON 1992; SLATKIN and MADDISON 1989),  a  method 
that uses the possible geographic inconsistencies of 
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any  particular tree that is viewed as  phylogenetic 
truth.  Our  procedure can be used to obtain an esti- 
mate of the maximum value of  a  geographic  clustering 
index or the minimum number of  migration  events 
required to explain the  current  distribution of haplo- 
types among populations, and  obtain  their null distri- 
butions  over the choice  of possible trees.  This would 
be  quite useful in the study  of gene flow patterns. 
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APPENDIX 

The restriction pattern and sample frequencies of 
56 human  mitochondrial DNA haplotypes  are given 
in Tables 5 and 6 (pp. 358 and 359), respectively. 
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TABLE 5 

Restriction  pattern of 56 human  mitochondrial DNA haplotypes 

No. designation 
Haplotype 

Restriction p a t t e d  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 

1 
2 
6 
7 
8 
9 

10 
11  
12 
13 
17 
I 8  
21 
22 
23 
27 
28 
29 
31 
34 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
56 
57 
64 
65 
66 
67 
68 
69 
71 
72 
73 
75 
76 
77 
82 
83 
95 

* Presence of a restriction site is 

11110111111000110101111101111010001010101001100111011011000110 
11110111111100110101111101111010001010101001100111011011000100 
11110111111000110101l11l0111l010000010101001100~11011011000110 
11110111111100110101111101111010001010101001100111011011000110 
11110111111000110101111101111010001010101000100111011011000110 
11110111111000110101l11l0l1110100000l0101000100111011011000110 
11110111111100110101111101111011001010101001100111011011000110 
11110111111000010101l11l01ll101l0010l0101001100111011011000111 
11110111111000110101111101111010001010111001100111011011000110 
11110111111000111101111101111010001010101001100111011011000110 
111101111110001101011l110lll10l000l010l010011001100110110001~0 
11110111111000110101111101111010001010101001100111111011000010 
11110111111000110101111101111011001010101001100111011011000110 
11110111111000110101111101111011001010101001100111011011000100 
11110111111000110101111101111010001010101001100111011011000111 
111101111110001101011l1l0111l01000l01ll01001100111011011001110 
11110111111000110101111101111010001010101001100111011011000010 
11111111111000110101111101111010000010101000100111011011001110 
11110111111100110101111101111011001010101001100111011011000100 
11110111111100110101111101111010000010101001100111011011000100 
11110111111000110101111101111010001010101001000110011011000110 
11110111111000110101111101111011001010101011100111011011000100 
11110111111001110101111101111010001010101001100111011011000110 
11110111111000110101111101111010001011101001100111011011000110 
11110111111000110101111101111000001010101001100111011011000110 
11110111111000110101111101111010001010101001100111011011010110 
11110111111000110101111101111010001010101001101111011011000110 
111101111111001101011l11011l10l0001010l01001000111011011000110 
1111011111100011010111110l11l01000l0101010011001110110~1000000 
11110111111000110101111101111010001110101001100111011011000110 
11110111111000010101111101111010001010101001100111011011000110 
11110111111000110101111101111010001010101001100111011011000100 
11110111111000110101111101111010001010101001100111011111000110 
11110111111000110101111101111110001010101001100111011011000110 
11110111111000110101111101111010001010101001110111011011000110 
11110111111000110101ll1l011ll01000l010l000011001~1011011000010 
11110111111000110111111101111010001010101001100111011011000110 
11110111111000110111111101111010001010101001100111011011000010 
11110111111000110101111101111010001010101001100111011111100110 
11110111111000110101ll110ll110l000l010l01001100111011011001110 
11110111111000110101ll110l1110100010l0l010010001111~1011000010 
11110111111000110101111101111010000011101001100111011011000110 
11110111111100110101111101111010001010101000100111011011000100 
11110111111000110101111101111010001010101001100111111011000110 
11110111111000110101111101111010001011101001100111011011000100 
11110111111000110101111l01ll10100110l0101001100111011011000110 
11110111111100110101111101111010001010101101100111011011000100 
11110111111100110101lll10l1110l0101010l01001100111011011000110 
11110111111000110101ll110111l01000l010l01001000111011011000110 
111101111110001101011l1l011l10100000l0101001100111~11011000010 
1111011111100011010111ll011ll0l000l01010100110011001101~000010 
111101111110101101011ll10ll110l000101010100110011101101~000110 
11110111111000110101ll11lll1101000l010l010011001110110110001~0 
11110111111000010101l1110l1110110000l0l0100110011101101~000111 
11110111111000110101111101111010001010101001000110011011000010 
110101111110001101011lll011l10l000l010l01001100111011011000110 

, coded by a zero and its absence by a one. 
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TABLE 6 

Sample  frequencies of 56 human mitochondrial DNA haplotypes in 10 populations 

359 

Populations samples” 

Tharu Oriental Wolof Ped  Pima  Maya Finnish Sicillian Israel Jews Israel  Arabs 
Haplotypes N = 9 1   N = 4 6   N =  110 N = 4 7   N = 6 3   N =  37 N =  110 N = 9 0  N = 3 9  N = 39 

2 
5 

4 

23 

3 11 
8 1 

2 
2 

1 

2 

1 

1 

5 1 2 

1 

2 

2 

4 2  5 

1 
2 

1 48 32 23 11 59  30 87 50  15 22 
2  39  19  3 1 
6 1 2 2 9 14 1 
7 29  12 1 
8  2 2 
9  4 

10 2 
11 
12  2 
13 2 
17 
18 
21 
22 
23 
27 
28 
29 
31 
34 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
56 
57 
64 
65 
66 
67 
68 
69 
71 
72 
73 
75 
76 
77 
82 
83 
95 

1 
1 
1 
1 
1 

1 
1 

3 

The original references of the population samples may be found in EXCOFFIER, SMOUSE and QUATTRO (1 992). 

6 

2 

2 
1 
1 
1 
2 

1 
1 


