
Copyright 0 1994 by the Genetics Society of America 

Precision Mapping of Quantitative  Trait  Loci 

Zhao-Bang  Zeng 

Program in  Statistical Genetics, Department of Statistics,  North  Carolina  State  University, 
Raleigh,  North  Carolina 27695-8203 
Manuscript  received June 30, 1993 

Accepted  for  publication  December 15, 1993 

ABSTRACT 
Adequate  separation of effects of possible  multiple  linked  quantitative  trait  loci  (QTLs)  on  mapping 

QTLs  is the key  to  increasing the  precision of QTL  mapping. A new method  of  QTL  mapping is pro- 
posed  and  analyzed  in  this  paper by combining  interval  mapping  with  multiple  regression.  The  basis  of 
the  proposed  method  is an interval  test  in  which  the test statistic  on a marker  interval  is  made  to  be 
unaffected by  QTLs located  outside a defined  interval.  This  is  achieved by fitting  other  genetic  markers 
in the  statistical  model as a control when performing  interval  mapping.  Compared with  the current 
QTL  mapping  method ( i .   e . ,  the  interval  mapping  method  which  uses a pair  or two pairs of markers  for 
mapping  QTLs),  this  method  has  several  advantages. (1) By confining  the  test  to  one  region at a time, 
it  reduces a multiple  dimensional  search  problem  (for  multiple  QTLs) to a one  dimensional  search 
problem. (2) By conditioning  linked  markers in the  test,  the sensitivity  of the  test  statistic  to  the  posi- 
tion  of  individual  QTLs  is increased,  and  the  precision of QTL mapping  can  be  improved. (3) By se- 
lectively and simultaneously  using other  markers in the analysis, the  efficiency of QTL  mapping can be 
also  improved. The behavior of the test statistic  under the null  hypothesis  and  appropriate  critical  value 
of the  test  statistic  for  an  overall test in a genome  are  discussed  and  analyzed. A simulation  study of 
QTL  mapping is also presented which  illustrates  the  utility,  properties,  advantages  and  disadvantages  of 
the  method. 

M ANYtraits in  plants and animals are quantitative in 
nature,  influenced by many genes. It has been,  for 

a long time, an  important aim in genetics and  breeding 
to identify those genes  contributing significantly to  the 
variation of traits within and between populations or 
species. With rapid  advancement of molecular technol- 
ogy, it is  now possible to use molecular  marker infor- 
mation to map major quantitative trait loci (QTLs) on 
chromosomes ( e . g . ,  PATERSON et al. 1988,1991; HILBERT 
et al. 1991; JACOB et al. 1991; STUBER et al. 1992). 

There have been several statistical methods developed 
to analyze mapping  data to search systematically for ma- 
jor QTLs in  experimental organisms ( e . g . ,  SOLLER et ul. 
1976; WELLER 1986; LANDER and BOTSTEIN 1989), among 
which the interval mapping of LANDER and BOTSTEIN 
(1989) has now become the  current standard  method 
used by many geneticists for mapping QTLs. Compared 
with the traditional  method (SOLLER et al. 1976), the 
interval mapping  method has a number of advantages. 
But it still has several problems, particularly in distin- 
guishing  multiple  linked QTL effects. When there  are 
two or more QTLs located on a chromosome,  the m a p  
ping of QTLs can be seriously biased, and QTLs can be 
mapped  to wrong positions (KNOTI. and HALEY 1992; 
MARTINEZ and CURNOW 1992). 

To increase the reliability and accuracy of QTL m a p  
ping,  the effects of possible multiple  linked QTLs on a 
chromosome  should be adequately  separated  in testing 
and estimation.  In this paper, a mapping  procedure is 
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elaborated with the aim to improve both  the precision 
and efficiency  of mapping multiple QTLs, using mul- 
tiple markers. The basis  of the  method is an interval test 
in which the test statistic is constructed to be unaffected 
by  QTLs located outside a defined interval. This is 
achieved by using the  properties of multiple regression 
analysis (ZENG 1993). Although multiple regression 
analysis has been used for  mapping QTLs ( COWEN 1989; 
STAM 1991), the  theoretical  properties of multiple re- 
gression analysis in relation to QTL mapping were ana- 
lyzed in  detail only recently by ZENG (1993) and also 
independently by RODOLPHE and LEFORT (1993). More- 
over, ZENG (1993) proposed  to utilize these properties to 
construct a composite interval mapping  method to im- 
prove the precision and efficiency  of mapping QTLs. 
Recently, JANSEN (1993) also proposed a procedure to 
combine interval mapping with multiple regression for 
mapping QTLs. There  are some similarities and also  dif- 
ferences between the  method analyzed in ZENG (1993) 
and  here  and  that proposed byJANSEN (1993). These are 
discussed at  the  end of this report. 

In this article, following a presentation of  back- 
ground  and problems and a summary of properties of 
multiple regression analysis, the  method is elaborated 
in detail  for a backcross design. Then  the statistical is- 
sue to determine  an  appropriate critical value for a 
test is discussed. Simulation examples of QTL m a p  
ping  are also presented to illustrate various properties 
of the  method. 
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BACKGROUND AND PROBLEMS 

Data type: Data for  mapping QTLs consist of marker 
information (marker types for a  number of polymorphic 
markers) and quantitative trait values for a  number  of 
individuals. Marker types for each marker can be re- 
corded in digital form, such as 1 and 0 for distinguishing 
the two marker types (homozygote and heterozygote) 
for a backcross population from two inbred lines, and 2, 
1 and 0 for distinguishing the  three  marker types (ho- 
mozygote, heterozygote and  another homozygote) for 
an F2 population from two inbred lines. Based on seg- 
regation analysis, these markers can usually  be ordered 
in linkage groups or are located linearly on chromo- 
somes. 

Traditional  method-simple  linear  regression: The sim- 
plest method of  associating markers with quantitative 
trait variation is to test for trait value differences between 
different marker groups of individuals for a particular 
marker ( e . g . ,  SOLLER et al. 1976). For example, if we let 
PM,/Ml and pM,/M, be the observed trait means of the 
groups of individuals with marker genotypes M , / M ,  and 
M , / M 2  for a particular marker in a backcross pop- 
ulation, we can test for significance between means 
pM1/*,, and PM,/,,,,, using the usual t test. The hypotheses 
under the test can be 

Ho: P M , / M ,  = P M , / ~ I ~  and HI: P M , / M ,  f PM,/M,. 

Statistically, this is equivalent to the simple regression 
analysis  with a model 

y I = b o +  bxI+ ej j =  1 , 2 ,  . . . ,  n (1) 

where y, is the trait value of the jth individual in a popu- 
lation, 6, is the  mean (a  parameter) in the  model, xj is 
a dummy variable for the jth individual, taking a value 
of 1 for marker type M , / M ,  and 0 for marker type M,/ 
M2, b = pMl/M, - P,,,,~~ is the simple regression coef- 
ficient, and ej is a  random residual variable for the jth 
individual. A test can be  performed in this model on the 
regression coefficient. 

To understand  the relevance of this test to QTL map- 
ping, we need  to know  what  exactly  is tested in genetic 
terms. Suppose that  there  are m QTLs contributing  to 
the genetic variation in a backcross population from two 
inbred lines. Genetically the  expected difference be- 
tween l-%” ,MI and P M ,  ,My is 

m 

&(PM,/M,  - P M l / M 2 )  = C. (1 - 2ri)at (2) 
1= 1 

ignoring epistasis, where E denotes expectation, ai is 
the effect of the  ith QTL expressed as a difference be- 
tween the  recurrent  parent homozygote and the  het- 
erozygote, and r, is the recombination frequency be- 
tween the  ith QTL and the marker. This means that 
essentially we are testing a composite parameter  that 

constitutes gene effects and recombination frequen- 
cies for (potentially) a  number of genes. Of course, 
many  QTLs may not be linked to the marker and  thus 
have 0.5 recombination frequency. The above hypoth- 
eses are  then equivalent to 

H,: all r, = 0.5 and HI: at least one ri < 0.5, 

because ai’s are assumed to be non-zero (i. e . ,  by ex- 
periment we  know that  there  are some genes which 
are segregating in the  population). If PMl/,+fl and 

are  found to be significantly different, it is indi- 
cated that  the marker is linked to  one  or possibly 
more QTLs. 

Although simple, this analysis captures the basic ideas 
of QTL mapping. Clearly there  are many problems with 
this simple approach (LANDER and BOTSTEIN 1989), such 
as: (i) the  method  cannot tell whether  the markers are 
associated  with one  or more QTLs, (ii)  the  method  does 
not estimate the likely positions of the QTLs, (iii)  the 
effects  of  QTLs are likely to be  underestimated because 
they are  confounded with the recombination frequen- 
cies and (iv) because of the  confounding effects, the 
method is not very powerful and many individuals are 
required for the test. 

LANDER and BOTSTEIN’S interval  mapping: If there is 
only one QTL on a  chromosome, LANDER and BOTSTEIN 
(1989) proposed  the use  of a pair of markers to disen- 
tangle r and a from the test statistic.  Specifically, for a 
backcross design they proposed  the following linear 
model to test for a QTL located on  an interval of markers 
i and i + 1 

y, = bo + b*xT + eI j = 1, 2 , .  . . , n (3) 

where b* is the effect of the putative QTL expressed as 
a difference in effects between the homozygote and het- 
erozygote, xTis an  indicator variable, taking a value 1 
or 0 with probability depending  on  the genotypes of 
markers i and i + 1 and  the position being tested for the 
putative QTL (Table 1). Statistically this is a mixture 
model (TITTERINGTON et al. 1985; MCLACHLAN and BAS- 
FORD 1988). By using the property and  procedures  of 
mixture model analysis, Lander and Botstein built up a 
likelihood ratio test based on the hypotheses 

H,: 6* = 0 and H,: 6” f 0 

assuming that  the putative QTL was located at  the  point 
of consideration. This test can be  performed at any po- 
sition covered by markers and thus  the  method creates 
a systematic  strategy  of searching for QTLs. The evi- 
dence of  QTLs  is measured by the likelihood ratio test 
statistic (the so-called likelihood profile) at any particu- 
lar location in the  genome. If the likelihood profile at 
a region exceeds a predefined critical threshold,  a QTL 
is indicated at  the  neighborhood of the maximum of the 
likelihood profile with the width of the  neighborhood 
defined by the so-called support interval (LANDER and 
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TABLE 1 

Specification of indicator variable x*  

Marker genotype 
Sample 

Group i i + l  size X*  

1 + + nl 1 

2 + - 
n2 { 
ns 1 

1 with probability 1 - p 
0 with probability p 

1 with probability p 
0 with probability 1 - p 3 

4 

- + 
- - n4 0 

+ denotes homozygote of the marker genotype and - denotes 
heterozygote. In analysis, p can be treated either as a parameter or as 
a constant with p = r ,q/rz( t+l) ,  where r,, is the recombination fre- 
quency between marker i and the position q being tested for a puta- 
tive QTL and ri(z+,) is the recombination frequency between markers 
i and i + 1. Double recombination within the marker interval is 
ignored. 

BOTSTEIN 1989). By the  property of the maximum like- 
lihood analysis, the estimates of locations and effects  of 
QTLs are asymptotically unbiased if the assumption that 
there is at most one QTL on a  chromosome is true. They 
also suggested methods to increase the power  of  QTL 
mapping, notably the selective genotyping of the ex- 
treme progeny. 

Compared with the traditional method,  the interval 
mapping  method has several advantages. These include: 
(i)  the  probable position of the QTL can be  inferred 
by the  support interval, (ii) the estimated locations 
and effects  of  QTLs tend to be asymptotically unbiased 
if there is only one segregating QTL on a  chromo- 
some and (iii) the  method  requires fewer individuals 
than  the traditional approach  for  the  detection of 
QTLs. 

There  are, however,  still  many problems with the in- 
terval mapping.  These  include  the following. (i) The test 
is not  an interval test (a test which could distinguish 
whether or not  there is a QTL within a  defined interval 
and should be independent of the effects  of  QTLs that 
are outside of a  defined  region). Even when there is no 
QTL within an interval, the likelihood profile on the 
interval can still exceed the threshold significantly if 
there is a QTL at some nearby region on  the  chromo- 
some. If there is only one QTL on a  chromosome, this 
effect, though undesirable, may not  matter because the 
QTL is more likely to be located at  the region which 
shows the maximum likelihood profile. However, the 
number of  QTLs on a  chromosome is unknown. (ii) If 
there is more  than  one QTL on a  chromosome,  the test 
statistic at  the position being tested will be affected by all 
those QTLs and the estimated positions and effects of 
“QTLs” identified by this method  are likely to  be biased 
(Won and HALEY 1992; MARTINEZ and CURNOW  1992;  see 
also below). (iii) It is not efficient to use only two mark- 
ers at a time to do the test, as the  information  from other 

markers is not utilized. These problems also apply to 
many other comparable QTL mapping  methods ( e . g . ,  
K.NAPP et al. 1990). 

Recognizing these problems, LANDER and BOTSTEIN 
(1989) proposed  to  extend  the  method to analyze  mul- 
tiple markers for multiple QTLs simultaneously by in- 
troducing  more b* and x? in the model (3). With this 
extension, some of above stated problems can be alle- 
viated. But as the search now becomes multidimensional 
(LANDER and BOTSTEIN 1989; KNOTT and HALEY 1992), 
there are some difficulties in parameter estimation and 
model identifiability. As genetic structures  for many 
quantitative traits can be very complex, a search in a 
space with unknown true dimension can be a  problem. 
Both effort and ambiguity can be multiplied. Also, since 
the  true  number of  QTLs on a  chromosome is unknown, 
estimates of locations and effects  of  QTLs can still be 
biased if wrong models are fitted and tested. In addition 
useful information from other markers is still not used 
simultaneously in  analysis by this method. 

PROPERTIES OF MULTIPLE REGRESSION ANALYSIS 

Ideally, when we test an interval for a QTL, we would 
like our test statistic be  independent of the effects  of 
possible  QTLs at  other regions of the  chromosome. If 
such a test can be formulated, we can simplify the proc- 
ess  of mapping multiple QTLs from a multiple dimen- 
sional search problem to an  one dimensional search 
problem, as the test for each interval is independent  and 
for each marker interval we can consider the possibility 
of the presence of  only a single QTL. This test can be 
constructed by using a combination of interval mapping 
with multiple regression analysis (ZENG 1993). Various 
properties of the multiple regression analysis  in relation 
to QTL mapping have been analyzed by ZENG (1993) 
and are summarized here. STAM (1991) has previously 
shown Property 1  for  a special case  in an  unpublished 
conference  paper. Recently, RODOLPHE and LEFORT 
(1993) also independently established many  of these 
properties. 

Suppose that we have a sample of n individuals from 
a backcross population with observations on a quanti- 
tative trait and t ordered markers, and suppose further 
that we analyze the  data by the following linear regres- 
sion model: 

t 

y,= bo + 2 b,x ,+  9 for j =  1,2 , .  . .  , n (4) 

where xji is the type of the ith marker in the jth indi- 
vidual. Definitions of other model variables and param- 
eters  are  the same as (1) except that here more markers 
are  included in the model. Note that b, (also denoted by 

where si denotes  a  set which includes all markers 
except  the  ith  marker) is the partial regression coeffi- 
cient of phenotype y on the  ith  marker  conditional  on 

*= 1 
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all other markers. For this analysis, the following prop- 
erties have been established. 

Property 1: In the multiple regression analysis (4), 
assuming  additivity of QTL effects between loci ( i .e. ,  
ignoring  epistasis), the  expected partial  regression coef- 
ficient of the trait  on  a  marker  depends only on those 
QTLs which are  located on the interval bracketed by the 
two  neighboring  markers,  and  is  unaffected by the effects 
of QTLs located on  other  intervals. This property es- 
sentially says that a conditional (interval) test can be 
constructed based on the partial regression coefficient 
and such a test would test the linkage effect of  only those 
QTLs  which are located within the  defined interval. 

Property 2 Conditioning  on  unlinked markers in  the 
multiple regression analysis  will reduce the sampling 
variance of the test statistic by controlling some residual 
genetic  variation  and  thus  will  increase the power of 
QTL mapping. This means that even unlinked markers 
contain useful information which can be used to in- 
crease the statistical  power  of the test and  the efficiency 
of the genetic mapping. This useful information has not 
been utilized in the  current QTL mapping  methods. 

Property 3: Conditioning  on  linked markers in  the 
multiple regression analysis  will reduce  the  chance of 
interference of possible  multiple  linked QTLs on  hypoth- 
esis  testing  and  parameter  estimation,  but  with  a  possible 
increase of sampling  variance. The first part of the sen- 
tence restates Property 1 ,  and the second part of the 
sentence says that  an interval test may entail a loss in the 
statistical  power of the test because the test is a condi- 
tional test (see ZENG (1993) for details). This summa- 
rizes the advantage and disadvantage of the interval test: 
that is, there is a trade-off between precision and effi- 
ciency of mapping by using an interval test. Effective 
balance on these two issues will be  the major consider- 
ation in practical mapping of  QTLs (see below). 

Property 4: Two  sample  partial regression  coefficients 
of the trait  value  on  two markers in  a  multiple  regression 
analysis are generally  uncorrelated  unless the two  mark- 
ers are adjacent  markers. This is related to  the correla- 
tion between two test statistics in two intervals for an 
interval test. It has been shown that, for an interval test, 
a test  statistic on  an interval is generally asymptotically 
uncorrelated  to  the test statistic on  another interval un- 
less two intervals are  adjacent intervals [Equation 13 of 
ZENG (1993) l .  Even when the two intervals are  adjacent 
intervals, the correlation between two test  statistics in 
two intervals is  usually  very  small. This property is related 
to the issue of determining  an  appropriate critical value 
of a test statistic under a null hypothesis for  an overall 
test covering a whole genome (see below). 

COMPOSITE INTERVAL MAPPING 

Direct use  of the multiple regression analysis (4) is 
not  an appropriate way for mapping QTLs, because a 
partial regression coefficient is generally a biased  esti- 

mate of the relevant QTL effect ( ZENC 1993).  As stated 
above, however, there  are several  distinctive features 
of a multiple regression analysis  which can  be used to 
design a more accurate and efficient mapping 
method. Based on the above properties of multiple re- 
gression analysis, an interval test procedure is devel- 
oped which combines interval mapping with multiple 
regression analysis to fully  utilize the information in 
mapping  data. This is illustrated here. For simplicity, 
let us consider data  from a backcross population. The 
population is assumed to be derived from two inbred 
lines which are fixed for  different alleles at m QTLs 
and t genetic markers. The  data consist of observa- 
tions on a quantitative trait and t ordered markers of 
n individuals. Suppose that  the t markers are  more or 
less  evenly distributed in a genome. 

Suppose that we want to test for a QTL on a marker 
interval ( i ,  i + 1 ) .  We can use markers i and i + 1 as an 
indicator for the genotype of the putative QTL  within 
the interval, and write the statistical model as 

y, = bo + b*xT + bkxjk + 5 
k # r , i + l  

(5) 
for j =  1,2,. . . , 12 

where y, is the trait value of the jth individual, bo is the 
mean of the  model, b* is the effect of the putative QTL 
expressed as a difference in effects between homozygote 
and heterozygote, x y i s  an indicator variable, taking a 
value 1 or Owith probability depending  on  the genotypes 
of markers i and j and  the position being tested for the 
putative QTL (Table 1 ,  ignoring  double recombination 
within the marker interval), b, is the partial regression 
coefficient of the phenotype y on the kth marker, xjk is 
a known coefficient for the kth marker in the jth indi- 
vidual, taking a value 1 or 0 depending  on  whether  the 
marker type  is homozygote or heterozygote, and e, is a 
random variable. The summation of other markers in 
the  model  depends on the balance of the trade-off of 
Property 3 and also on the consideration of degrees of 
freedom of the test (see below). 

Assuming that e,'s are identically and  independently 
normally distributed with mean zero and variance 2, 
the likelihood function is  given by 

n 

G = rI [P,(l)&(l> + Pj(O)&(O)I (6) 
]=I 

where p j (  1) gives a prior probability of x?= 1 (Table I ) ,  
p,(O) = 1 - p , ( l ) ,  f , ( l )  andf,(O) specifir a normal  den- 
sity function for the  random variable y, with a mean 

tively, and a variance d. By differentiating the likeli- 
hood function (6) with respect to individual param- 
eters, setting the derivatives equal to zero and  then 
solving the  equations,  the maximum likelihood (ML) 

bo + b" $- E k + , , i + l  b,xjk and bo + zh+, i+l  b k x j k ,  respec- 
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estimates of the  parameters b*, b,’s and c? are 
found  to  be  the solutions of 

6* = (Y - xs)’P/t (7) 

B = @‘x)-lxr(Y - l%*) ( 8 )  

8‘ = [(Y - rag)’(Y - xh) - &‘]/n (9) 

w h e r e Y i s a ( n x l ) v e c t o r o f y j ’ s , & i s a ( ( t - l ) X l )  
vector of the ML estimates of b,’s (including bo but ex- 
cluding b*) , X is an ( TZ X ( t  - 1)) matrix of xjk’s, is a 
( TZ X 1) vector with elements 4 specifjmg  the ML  es- 
timate of the posterior probability of x: = 1: 

and 

n 

ĉ = cp;. 
j=1 

The prime indicates transposition of a vector or ma- 
trix. Note that if p is treated as a  parameter,  the ML 
estimate of p is the solution of 

and  the above equations, where the summations 
Cy!, and indicate sums of those individuals be- 
longing  groups  2 and 3 of Table l. 

These estimates can be  found by iteration of the 
above equations via the  expectation/conditional maxi- 
mization (ECM) algorithm (MENG and RUBIN 1993) be- 
ginning with the initial estimate 6% = 0 or the least 
squares estimates of b* and B using x? = pj( 1). In each 
iteration,  the algorithm consists  of one E-step, Equa- 
tion 10, and  three CM-steps, Equations 7 ,8  and 9. The 
convergence of the algorithm to ML estimates has 
been proven by MENG and RUBIN (1993) as their condi- 
tion (3.6) is satisfied in this case. The advantage of this 
algorithm over the full EM algorithm (maximizing 6” 
and fi simultaneously in the M step) is that  the in- 
verse, (X’X)-’, does not  need  to  be  updated,  and thus 
the efficiency  of the  numerical evaluation is improved 
substantially. 

The hypotheses to be tested are H,: b* = 0 and 23,: 
b* # 0. The likelihood function under the null hypoth- 
esis  is 

j= 1 

with the ML estimates 

The likelihood ratio (LR) test statistic is found to be 

LR = -21n(L0/4) 

= n(ln 6‘ - In 6‘) 
nz 

j =  1 

where 

4. = [26*(y, - bo - xCk+ii+l $x,) - 6*’]/8‘. 

If there is no epistasis, estimates of position, p, and 
effect, b*, of a QTL  by this method are unaffected by 
other linked QTLs  if there  are markers which separate 
those QTLs from the QTL under consideration and 
these markers are  fitted in the  model as a  control [Prop 
erty 11. By the  property of maximum likelihood, these 
estimates also tend  to  be asymptotically unbiased (see 
Table 4 below). [However, if we estimate the effects  of 
QTLs conditional on that  the test for QTLs  is significant 
as we usually do in practice, the estimates of  QTL  effects 
can still be biased (Table 4).1 Thus by combining in- 
terval mapping with multiple regression, this method 
creates a  condition  that individual QTLs can be sepa- 
rated  for testing and estimation. 

There will be, however, some interference on testing 
and estimation between those QTLs  which are located 
in adjacent  marker intervals when using this composite 
interval mapping  method because two flanking markers 
are used for interval mapping. If there  are  indeed two 
major QTLs located in two adjacent marker intervals, 
depending  on  the positions of  QTLs on  the intervals and 
the sizes  of the intervals the likelihood profile may be 
very significant for  both intervals and some parts of their 
adjacent intervals, and in some cases  may  show bimodes. 
Under  the interval test, this may indicate the possibility 
of the presence of two QTLs in two adjacent intervals. 
In this case, if necessary, two variables may be fitted on 
the intervals to test for two QTLs together with other 
markers, but it may need very large sample size to test 
the hypotheses. 

BEHAVIOR OF THE  TEST  STATISTIC UNDER THE 
NULL HYPOTHESIS 

Like interval mapping, this test can also be  performed 
at any position in the  genome covered by markers. Thus 
the  method creates a systematic search for QTLs and 
reduces  a multiple dimensional search problem  for mul- 
tiple QTLs to a one dimensional search problem. Since 
this is a multiple test situation (for multiple locations), 
a practical question arises of determining  the critical 
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TABLE 2 

Mean,  variance (var.) and 95 percentile (95%) of the  test  statistics  for a particular  position,  for a marker  interval  and  for  the  whole 
genome  under  the null hypothesis 

Average for each position Average maximum for each interval Overall maximum 

M n Mean Var. 95% Mean Var. 95% Mean Var. 95% 

1 500 1.01 2.09  3.80  1.39  4.47 1.39 2.72  4.47 
5 500 

2.72 
1.03 2.11 3.93 1.63 3.19 5.15 3.43 5.59 7.99 

10 500 1.03 2.10  3.95  3.19 5.25 4.60  6.12  9.31 
20 

1.64 
500 

40 
1.05 

500 
2.14  4.03 1.70 3.41 5.35 6.07 6.79 10.91 

1.10 2.46  4.22 1.78 3.79  5.69  7.95  8.34 13.23 

1 200 0.99 2.03 
5 200 

3.88 1.38 2.70  4.65  1.38 2.70 4.65 
1.03 2.15  3.88 1.62 3.20 5.20 3.47  5.68 7.97 

10 200 1.06 2.24  4.04 1.70 3.49  5.42  4.79  6.69 9.63 
20  200 1.11 2.42  4.26  1.79  3.75 5.71 6.28  7.60  11.61 
30 200 1.18 2.98  4.50  1.91  4.94  5.97  7.65 9.52 
40 200 1.29 3.48 4.98  2.10 5.71 6.65 9.03 10.85  15.20 

13.64 

All markers are linked on  one  chromosome with 10 cM for each  marker interval. Replicates of simulations are 1000 for sample size n = 500 
and 2000 for n = 200. 

value  of the test statistic for the test performed in a ge- 
nome. To determine  an  appropriate critical value  of the 
test statistic for this testing method, we need to know the 
behavior of the test statistic under the null hypothesis, 
not only for  a particular interval, but for a whole ge- 
nome, because the  entire  genome is tested for the pres- 
ence of  QTLs. LANDER and BOTSTEIN (1989) discussed 
the issue of the critical value of the test statistic (using 
the LOD score) for the simple interval mapping. The 
threshold of the test statistic for the composite interval 
mapping is,  however, different.  The difference is that 
with multiple regression the test statistic is more or less 
uncorrelated for different intervals [Property 41. Thus 
to achieve an overall significance level a for the test with 
M intervals, a  nominal significance level a / M  may be 
used for the test in each interval, a situation correspond- 
ing to the sparse-map case of LANDER and BOTSTEIN 
(1989). 

However, the distribution of the maximum of LR over 
an interval ( i .  e., the distribution of the LR  of (13) taking 
p as a  parameter) under  the null hypothesis is not clear. 
This distribution will depend greatly on sample size, the 
number of markers fitted in the  model and the  genetic 
size  of each interval. To investigate the behavior of the 
test statistic, a series of simulations were performed  un- 
der the null hypothesis. Although our null hypothesis is 
that  there is no QTL on  the relevant interval being 
tested, no QTL in the  genome was simulated to examine 
the behavior of the test statistic in a  genome. This does 
not make much difference under  our model because 
segregating QTLs on  other intervals are  more or less 
controlled by conditioning markers in the model so that 
they  would not greatly influence the hypothesis testing 
on  the interval being tested (cJ LANDER and BOTSTEIN 
1989). Two extreme situations, linked and unlinked 
cases,  were simulated. In the linked case, M equally 
spaced marker intervals (with M+1 markers) are lo- 
cated on one chromosome,  and  in  the  unlinked case, M 

equally spaced marker intervals (with 2 M markers) are 
located on different chromosomes. For each replicate of 
simulations, n backcross individuals were simulated on 
M+l (or 2 M) markers (with the recombination fre- 
quency r for each marker interval) and  a quantitative 
trait (simulated simply  as a  normal  random  variable). 
Analysis  was performed as stated above, and LR test sta- 
tistic was calculated by (13) along the  genome  at every 
l-cM position. 

Results are  presented in Table 2 and Figure 1. Table 
2 gives the means, variances and 95 percentiles (over 
replicates) of  LR for a particular position [ i. e., LR of 
(1 3) taking a fixed value for $11, the maximum of  LR for 
a  marker interval [Le. ,  LR  of (13) taking p as a param- 
eter]  and  the overall maximum of  LR over a  genome 
under the null hypothesis. There is generally little dif- 
ference  among statistics of  LR from position to position 
and from interval to interval, so only  averaged  statistics 
(mean, variance and  95  percentile) of  LR over  all po- 
sitions and over  all marker intervals are  presented. Fig- 
ure 1 plots the 95 percentiles of the overall maximum of 
LR against the  number of intervals for sample sizes (n) 
500 and 200. 

These results strongly  suggest that, when the sample 
size  is large and  the  number of markers fitted in the 
model is  relatively  small, the LR test statistic for f i x e d  
tes t ing  posi t ion  ( i .e . ,  for fixed p )  is approximately 
distributed with 1 degree of freedom (with mean 1, vari- 
ance 2 and  95 percentile 3.84), as might be expected 
[but see  GOFFINET et al. (1992) for a special case]. When 
the sample size  is  relatively  small and  the  number of 
markers fitted in the model is large,  the observed LR 
deviates from x: distribution, most  likely due to slow 
convergence of the statistic to x: distribution. 

The maximum of the LR over a marker interval for the 
cases considered generally fall between x: and X:  (with 
mean 2, variance 4  and 95 percentile 5.99) distributions 
in the simulations (except for the cases for n = 200 and 
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/ FIGURE 1.-The 95 percentile of the  overall 
maximum of the  test  statistic under the null 
hypothesis is plotted against the number of in- 
tervals ( M )  from simulation. Three cases  are 
plotted. In  the unlinked case, all  marker  in- 
tervals (with 10 cM)  are on different chromo- 
somes. In the linked cases (one with  a  10-cM 
interval and one with  a 5-cM interval), all 
marker  intervals  are on  one chromosome. The 
values of x&,5,M,1 and x:,05,M.2 are also plotted 

X 0.05/&1 with 2000 replicates and 200 for graph B with 
" _  2 for reference. Sample size is 500 for graph A 

2 5000 replicates. 

0 5 10 15 20 25 30 35 40 

Number  of in te rva ls  (Ma> 

M = 30 and 40 in which the  number of degrees of free- 
dom  for  the test is reduced significantly). The distribu- 
tion depends  on  the sample size, the  number of markers 
fitted in the  model and  the  genetic size  of the interval. 
The correlations of maxima of  LRs between intervals are 
generally very  small (positive) [Property 41. (The aver- 
age correlations  for  adjacent intervals are generally less 
than 0.3 and  the average correlations for non-adjacent 
intervals are effectively  close to  zero.) The effect of 
marker interval size (comparing  the cases  of lOcM in- 
terval  with 5-cM interval in Figure 1) tends to be minor, 
compared with other factors such as sample size, num- 
ber of markers fitted in the model and  number of in- 
tervals tested. Thus it appears  that when the sample size 
is large and  the  number of markers fitted in the model 
is not too many, x : , ~ , ~  can be used as an  approximation 
for  the lOOa% critical value for  an overall test with M 
intervals in a  genome  for  the model (5) (Figure 1A). 
(Although only the  5% critical value is presented in 
Figure 1, other critical values such as 10% show similar 
patterns.) 

However, in practice, sample sizes  of mapping  data 
are generally not very large, and markers are unlikely to 
be evenly spaced in the  genome.  In  that case, it may not 
be appropriate  and desirable to fit too many markers in 
the model even when they are  unlinked  to  the interval 
being tested, because too many markers fitted in the 
model can substantially increase the critical value  of the 
test statistic [for example, comparing  the cases  of linked 
( M  + 1) markers with unlinked ( 2 M )  markers in Figure 
lB] , and thus reduce  the power  of the test. Many mark- 
ers in mapping  data  are also  usually clustered in some 
regions. If that is the case, it would be more  appropriate 
to use  in the  model as a  control only those selected mark- 
ers which are  more  or less  evenly spaced in the  genome 
or those preidentified markers ( e .g . ,  by stepwise regres- 

sion) which explain most of the genetic variation in the 
genome.  Other markers can still be used for testing 
QTLs at relevant intervals. For many data,  the above 
criterion may be used  as a  guide (not necessarily for 
a = 0.05). If necessary, computer simulations can be 
used to determine  an  appropriate critical value for the 
test for  a given data set. 

QTL MAPPING SIMULATION ANALISIS 

Methods: To illustrate the  properties, utility,  advan- 
tages and disadvantages of the  method,  a simulation 
study  of mapping QTLs was performed. Four "chromo- 
somes" each with 16 markers separated in 15 10-cM in- 
tervals  were simulated for  a backcross population. The 
trait is affected by 10 QTLs  with positions and effects 
given in Table 3 and  depicted in Figure 2. Together  the 
QTLs account  for 70% of the phenotypic variance in a 
backcross population. Sample size  is 300. The trait value 
of an individual is determined by the sum  of  effects  of 
the QTLs  which the individual possesses, plus a  random 
(environmental) variable  which is normally distributed 
with mean zero and variance scaled to give the  expected 
0.7 heritability of the  population. Both marker and QTL 
types  were simulated for each individual with the linkage 
map specified above. 

This data set can be fitted for analysis by numerous 
models. For the  purpose of illustration, three simplified 
models were fitted in the analysis  following the proce- 
dures  outlined above: 

Model I: Composite interval mapping with k in 
model (5) summed over  all other markers (solid 
curves  of Figure 2)  ; 
Model 11: Semi-composite interval mapping with k 
in model ( 5 )  summed over  all unlinked markers 
(long-dashed curves  of Figure 2 ) ;  
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TABLE 3 

Parameters and point estimates of  positions and effects of QTIS from one  replicate of simulation 
~ 

Chromosome I Chromosome 2 Chromosome 3 Chromosome 4 

Position (cM): 16 48  108  3 43 77 33 
0.42 

68 
Effect: 0.75 

129  26 
Parameters 

0.58  1.02  -1.23  -1.26 -0.46 1.61 0.88 0.74 
~~ 

Model I 
Position (cM) 48 
Effect 1.02 

Position (cM) 45 
Effect 1.18 

Position (cM) 45 
Effect 1.42 

Model I1 

Model 111 

Point estimates 

6 43 78  66 130 
1.29 -1.16 -1.18 1.68 1.39 

73 
-1.43 

65 
-1.46 

68 130 32 
1.67 1.52  0.69 

69 125 
1.60 1.83 

Point estimates of QTL effects are  made  at  the peaks of the likelihood  profile in  the regions  where the presence of QTLs is indicated  (see 
Figure 2). 
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Model 111: Simple interval mapping with model (3) 
(short-dashed curves  of Figure 2). 

The  dotted lines of Figure 2 give the simulated overall 
5% critical value, 16.5, for  the test of model I (based on 
a simulation with 5000 replicates under the null hypoth- 
esis), which is a little higher  than x:,05,60,2 - x ~ , ~ ~ ~ ~ ~ , ~  - 
14.2. The overall 5% critical values for models I1 and I11 
are smaller (12.6 for model I1 and 10.7 for model 111). 
Some point estimates of positions and effects of QTLs at 

- 2  - 

FIGURE 2.-A simulation ex- 
ample of QTL mapping on  an hy- 
pothetical backcross population. 
Likelihood ratio test  statistic is  cal- 
culated and plotted at every 1 c M  
position of the four “chromo- 
somes” to give a likelihood profile. 
The genetic length of each “chro- 
mosome” is 150 cM with markers 
at every 10 cM. Ten QTLs were 
simulated with positions indicated 
by triangles. The size of each tri- 
angle is in  proportion  to  the mag- 
nitude of the effect of the QTL 
(Table 3). Dark-sided triangles are 
used to indicate for QTLs  with 
positive  effects, and light sided tri- 
angles for QTLs  with  negative  ef- 
fects. Three curves (likelihood 
profiles) are plotted for the  three 
models fitted for analysis: model I 
(solid  curves) is the composite in- 
terval mapping, model I1 (long- 
dashed curves) is the semi- 
composite interval mapping and 
model I11 (shortdashed curves) is 
the simple interval mapping. The 
dotted line is the simulated 5% 
critical  value, 16.5, for the test  un- 
der model I. 

the peaks of the likelihood profile in the regions where 
the  presence of QTLs is indicated  are given  in Table 3 
for reference. Both Figure 2 and Table 3 depict results 
of mapping of a single replicate of simulation. 

To show the  general patterns of the results, 100 r e p  
licates of simulation were performed based on the same 
set of parameters  and  the same procedures of  analysis. 
Results are given in Table 4. In this table, means and 
standard deviations of estimates of positions and effects 
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of QTLs which are  indicated in Figure 2 are  reported. 
For each replicate, estimates were made  at  the distinctive 
peaks of the likelihood profile around  the relevant re- 
gions. Although Figure 2 is an analysis  based on a single 
replicate, the  general  patterns of mapping  among 100 
replicates conform to that of Figure 2. There  are, how- 
ever, a few replicates for which the  mapping under mod- 
els I1 and 111 indicates only one  rather than two QTLs on 
"chromosome" 3. In these cases, to make the results 
comparable with other replicates, the results were  still 
interpreted to indicate two QTLs and estimates of po- 
sitions and effects  of  QTLs  were made at relevant local 
maxima of the likelihood profile. Empirical estimates of 
the power  of the test (i. e. ,  the  ratio of the replicates that 
are significant at  the relevant regions over the total r e p  
licates) are also presented in Table 4. 

Results: In this analysis, neither model I1 nor model 
111 controls the effects  of  possible  QTLs located at other 
regions of the chromosome when testing for  a QTL at 
a particular chromosome position. Model 11, however, 
effectively  removes, from  the residual variance of the 
model, most  of the variation due to segregating QTLs 
located on unlinked chromosomes, so that  the LR test 
statistic on most intervals under this model is  signifi- 
cantly larger than those under the  other two models 
[Property 21. This model has the highest statistical 
power, among  the  three models, for  detecting marker 
and QTL linkages.  However,  as the test under model I1 
(as well  as model 111) is not an interval test, this model 
does  not necessarily  have high probability of locating 
individual QTLs accurately, because estimates of  posi- 
tion and effect of a QTL can be influenced by other 
linked QTLs.  Only model I provides an interval test in 
which the test  statistic on  an interval is unaffected by all 
those QTLs  which are located outside the interval being 
tested and its two adjacent intervals. This is an advantage 
of the interval test.  Model I also  effectively  removes from 
the model residual variance most  of the variation due to 
segregating QTLs.  However, because the test under 
model I is a conditional test [Property 3, see ZENC (1993) 
for  more detailed discussion on  the theoretical ground], 
the test  statistic on many intervals is smaller than those 
under models I1 and I11 (Figure 2). This is a disadvan- 
tage  of the interval test. 

Nevertheless model I correctly identifies the six  larg- 
est QTLs  with  relatively higher resolution in Figure 2, 
judged by the relatively accurate positions of the signifi- 
cant peaks  of the likelihood profile and also by the slope 
of the likelihood profile (see also Table 4). This increase 
of precision of mapping is gained by making the test 
conditional on nearby markers so that  the sensitivity  of 
the test statistic to the position of a QTL  is increased and 
the position effect of a QTL is emphasized in a  short 
region of the interval conditioned. This is another ad- 
vantage of the interval test. 

Models I1 and I11 give two significant peaks of the like- 
lihood profiles on "chromosome" 3 in Figure 2 which 
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correctly indicate the presence of two major QTLs (the 
third QTL is minor), because the two QTLs are sepa- 
rated by a sufficiently long distance. On “chromosome” 
2, however, the likelihood profiles of models I1 and 111 
seem to indicate the presence of a single QTL at wrong 
positions. This is due to  the presence of three QTLswith 
comparable (and  opposite) effects in  a relatively  close 
range. Should this occur, we could be deceived by using 
wrong models. Of course, these data can be fitted and 
analyzed for two or three QTLs simultaneously as  sug- 
gested by LANDER and BOTSTEIN (1989), but  the statistical 
tests for two QTLs us. one QTL, and  three QTLs us. two 
QTLs are not easy matters. In real applications, the  num- 
ber of  QTLs on a  chromosome (ie., the  true genetic 
model for testing) is unknown, and we can very  easily be 
deceived by fitting and testing the wrong models. Also, 
even when the  correct region of a QTL can be identified 
under models I1 and 111, the likelihood profiles under 
models I1 and 111 tend to be flatter ( i. e . ,  the  supporting 
intervals as defined by LANDER and BOTSTEIN (1989) are 
wider) (Figure 2) and  the precision of mapping is still 
relatively  lower (Table 4). 

It seems that only model  I is more likely to give un- 
biased estimates of position and effect of QTLs (Table 
4) .  However,  as  discussed above, model I1 has the high- 
est statistical  power for identifjmg possible QTL regions, 
and  the statistical  power of model I  for identifying QTLs 
is relatively  lower (and can be very low), because of the 
fitting of the closely linked markers in the model [Prop- 
erty 31. Only model I1 strongly indicates the presence of 
a QTL on “chromosome” 4 in Figure 2. In practice, with 
limited data, some combinations of models I and I1 (2. e . ,  
deleting  or inserting some linked markers as a  control 
in the  model) may have to be used to maximize the 
probability of detecting QTLs  while controlling the  pre- 
cision of mapping ( i .  e . ,  balancing the type I and type I1 
errors of the statistical test). This is illustrated, as an 
example, by a  further analysis on “chromosome” 1 of the 
simulation example given in Figure 2. On this chromo- 
some, both models I1 and I11  give a major peak of the 
likelihood profile in Figure 2, which  would indicate the 
presence of a QTL somewhere on the fifth interval. How- 
ever, model I1 also seems to suggest a second QTL 
roughly located between positions 70 and 110 cM for 
which the test under model I failed to show significance. 
To test this hypothesis, a test can be performed between 
60 and 150 cM using a model combining model I1 with 
six more markers located between 0 and 50 cM for back- 
ground  control. This would eliminate the effect of the 
QTL mapped on  the fifth interval (and also other pos- 
sible QTLs on the left of 50 cM position) in the test and 
estimation. Indeed this test strongly indicates the pres- 
ence of another QTL  with effect estimated to be 0.52 at 
position 100 cM (Figure 3).  

On  the accuracy of estimates of QTL effects, we have 
to distinguish two issues affecting the relative  accuracy 

20 I 
Chromosome 1 

0 20 40 60 80 100 120 140 

Testing position (cM) 

FIGURE 3.-A reanalysis  of Figure 2 for mapping for a QTL 
on the region between 60 and 150 cM of “chromosome” 1 .  The 
test for a QTL at each position is conditional on fitting 6 mark- 
ers located between 0 and 50 cM of “chromosome” 1 and all 
other unlinked markers. There is strong evidence for the pres 
ence of one more QTL on this chromosome by this analysis. 
The effect of the QTL is estimated to be 0.52 at position 100 
cM. 

of estimates: bias and sampling error. Estimates  of QTL 
effects under model I  tend  to  be less  biased compared 
with those under models I1 and 111, because the esti- 
mates under model I  are unaffected by  QTLs that  are 
located at  other marker intervals [Property 11 (Table 4). 
However, the estimates under model  I will have larger 
sampling variance than those under model I1 [Property 
31 (Table 4). If  we know that  there is at most one QTL 
on a  chromosome,  model I1 tends  to have both  higher 
statistical  power for the test of QTL and smaller sam- 
pling variance for the estimate of QTL effect (see, for 
example, chromosome 4 of Table 4); otherwise the test 
and estimation under model I1 (and also model 111) can 
be misleading and QTLs can  be  mapped  to wrong po- 
sitions (or intervals). 

Admittedly, in this analysis, we  may have used more 
markers in models I and I1 to  control genetic back- 
ground  than necessary. There are, in general,  three 
roles that  a  marker can play in mapping QTLs, depend- 
ing on the  chromosome position being tested. A marker 
can be used to construct the  indicator variable x* for 
interval mapping, can be used to provide a boundary for 
an interval test, and can also  simply be used to  control 
the residual genetic variation in test and estimation. For 
the  third  role,  a  marker is informative only when it is 
linked to QTLs. For each chromosome,  there  are prob 
ably  only a few markers which are closely linked to QTLs. 
(We do  not know, of course, how  many  QTLs are on a 
chromosome.) Given that  a few markers that  are closely 
linked to QTLs are  fitted in the  model,  other markers 
will not  be informative [Property 11 and  tend to be re- 
dundant for fitting in the model. Redundant fitting of 
markers can reduce  the power  of the test and increase 
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the sampling variance of estimates particularly when the 
sample size  is  small. In practice, we  may need first to 
select a few markers for each chromosome or some chro: 
mosomes by, for  example, stepwise regression and use 
those markers to control genetic background when 
mapping QTLs  by interval test. 

DISCUSSION 

For mapping QTLs, unbiasedness and accuracy 
should  be  more  important  than other issues  of mapping 
techniques, such as  ease  of computation. Because quan- 
titative trait variation is generally influenced by multiple 
genes, we have to take into  account effects  of  possible 
multiple (linked)  genes when designing a  mapping 
method. Effective control of individual gene effects is a 
key to increasing the precision of mapping. Every effort 
should  be  made in mapping to preserve the accuracy 
and quality of mapping and at  the same time to maxi- 
mize the  chance of finding  more QTLs. 

A new QTL mapping framework is proposed in this 
paper. The key feature of the  approach is the  idea of an 
interval test which tries to separate and isolate individual 
QTL effects when testing and mapping  for QTLs.  De- 
pending  on  data  and underlying genetic mechanisms, 
the precision of mapping can be significantly improved. 
The  method works better for traits with high heritability, 
because most  of the  genetic variation can be  controlled 
and removed from the residual variation in the model 
by conditioning on multiple markers. For traits with  low 
heritability, the gain of fitting multiple markers in the 
model as a  control may not justify the cost in losing sta- 
tistical  power  of finding  a QTL due to both increased 
sampling variation of estimates if closely linked markers 
are  fitted in the  model  for  an interval test [Property 31, 
which  would reduce  the test statistic, and increased 
threshold of the test (this is due to both increased num- 
ber of intervals tested and  reduction of degrees of free- 
dom of the  test).  In  that case, the first task might be to 
increase the  chance of finding anything in the  genome. 
In practice, the best strategy would be to fit data with 
multiple models to identify an  appropriate  model which 
balances both type I and type I1 errors of the test. 

In this study,  only the backcross population design is 
analyzed. Other population designs, such as F, popula- 
tions, and  dominant genetic models can readily be 
implemented in this framework, Epistasis  is,  however, 
ignored  here. With  possible epistatic effects  of  QTLs, 
this mapping  method can still be biased. Problems with 
analyzing epistatic effects  of genes in mapping QTLs are 
that  there  could  be many  types of genetic epistasis and 
that  the underlying genetic parameters  for epistasis are 
not well defined.  In  principle, epistatic effects can be 
fitted in the model for  mapping QTLs if the type  of 
genetic epistasis is identifiable ( e . g . ,  HAL,EY and mom 
1992). 

Regression  analyses  have been used for mapping 

QTLs in various ways  by HALEY and KNOTT (1992), MAR- 
TINEZ and CURNOW (1992), MORENO-GONZALEZ (1992), 
andJANSEN (1992,1993). Both HALEYand ~ O T T  (1992) 
and MARTINEZ and CURNOW (192) used the regression 
analysis  simply to approximate  the simple interval map- 
ping procedures,  although they  also suggested using a 
bivariate regression analysis to search the two- 
dimensional space along  the chromosome for  mapping 
two QTLs. MORENO-GONZALEZ (1992) proposed  a step 
wise multiple regression procedure  to fit multiple mark- 
ers (with multiple “QTLs” arbitrarily assumed to be lo- 
cated in the middle of each marker interval) in the 
model  for  mapping QTLs. It  appears  that this procedure 
is  very arbitrary and imprecise.JANsEN (1992) described 
a mixture model analysis in the framework of the  inter- 
val mapping. He, however,  gave a simulation example of 
using a  third marker as a covariable  in the  linear model 
as a  control, which has some similarity to the  method 
proposed  here. Very recently, JANSEN (1993) also pro- 
posed a  procedure for mapping QTLs  which combines 
interval mapping with multiple regression. There  are 
some similarities between the  method  of ZENC (1993) 
(and also here)  and that ofJANsEN (1993). But  clearly, 
there  are critical differences in concepts and  procedures 
to map multiple linked QTLs. The method used  in this 
paper is the interval test. The emphasis is to control  the 
precision of mapping as much as  possible. JANSEN 

(1993), however, used a  procedure of testing multiple 
markers on  a chromosome simultaneously to indicate 
possible multiple QTLs on a  chromosome, which seems 
to be very imprecise for mapping multiple QTLs.  More- 
over, many theoretical and statistical properties  and be- 
haviors  of their  method were not analyzed and discussed 
by JANSEN ( 1993). 

In summary, there  are  four advantages of  this m a p  
ping strategy. (i) First, by confining the test to one re- 
gion at  a time, it reduces  a multidimensional search 
problem (for multiple QTLs) to a one-dimensional 
problem,  and also estimates of locations and effects  of 
individual QTLs are likely to be asymptotically unbiased. 
(ii) Second, by conditioning on linked markers in the 
test, the precision of  QTL mapping can be greatly im- 
proved. (iii)  Third, by selectively conditioning multiple 
markers in the test, the  method simultaneously utilizes 
more information in the  data to make inferences and 
should be  more informative and efficient for mapping 
QTLs than  the  current methods. (iv) Fourth, it can still 
use the QTL likelihood map (the likelihood profile) to 
present  the  strength of the evidence for QTLs at various 
positions along  the  entire  genome,  and preserves the 
feature of interval mapping.  These advantages are 
brought  about by the realization that  a complete linkage 
map can be used not only to provide an anchor to fix a 
position to test for  a QTL  anywhere  in a  genome covered 
by markers (interval mapping),  but also to provide a 
boundary  condition  for  the test, and at the same time to 
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control  the residual genetic variation in  the rest of the 
genome  for  the test (interval test). 
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