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ABSTRACT 
In a finite  asexual  population  mean  fitness may decrease by a process  known as Muller’s  ratchet,  which 

proceeds if all  individuals  with  the  minimum  number  of  deleterious  alleles  are  randomly lost. If these 
alleles  have independent effects  on  fitness,  previous  analysis  suggested  that  the  rate of this  decrease  either 
remains  constant or, if accumulation of mutations  leads to the  decline of the  population  size,  grows.  Here 
I show that this  conclusion is quite  sensitive to the  assumption of independence. If deleterious  alleles have 
synergistic  fitness  effects, then, as the  ratchet  advances,  the  frequency of the  best  available  genotype  will 
necessarily  increase,  making  its  loss less and less probable. As a result,  sufficiently  strong  synergistic  epistasis 
can  effectively  halt the  action of Muller’s  ratchet.  Instead  of  being  driven  extinct, a finite  asexual  popu- 
lation  could  then  survive  practically  indefinitely,  although  with  lower  mean  fitness  than  without  random 
drift. 

I N an asexual population  random loss of  all individu- 
als free of deleterious  mutations is irreversible 

(MULLER 1964), ignoring back mutations. Drift can 
lead  to the successive extinction of  all individuals car- 
rying only one deleterious  mutation, two mutations, 
and so on. This process, called MULLER’S ratchet, can 
thus  lead to unlimited  accumulation of deleterious al- 
leles. The rate with which the  ratchet clicks ( i .  e . ,  the 
expected time between losses of all individuals with 
successive minimal numbers of mutations)  depends 
chiefly on the  expected  absolute number of individu- 
als  with the minimal number m of mutations, N, = 
q,N, where q, is their  expected  frequency and N is the 
effective population size.  If N, 1 or less, the  ratchet 
operates rapidly, if N, = 10 it acts slowly, and if N, 
100 or  more,  the time between clicks becomes very 
large (HAIGH 1978; STEPHAN et al. 1993). 

With one exception,  the  ratchet has been  studied only 
under non-epistatic selection where the fitness of indi- 
viduals with i mutations is w (  i) = (1  - s)’ (or e-” in  a 
continuous  approximation).  Then, if initially the best 
genotype available carries m 2 0 mutations, q, = e-”/’ 
regardless of m, where Uis the genomic  deleterious mu- 
tation rate (&MUM and MARWAMA 1966). Thus,  the 
ratchet advances with a  constant  speed.  This is caused by 
the fact that  the rate of the relative decline of w ( i )  is 
constant, because w (  i + l ) / w (  i) = 1 - s with any i, and 
the distribution of the  number of mutations  in  the ge- 
nome, p (  i ) ,  in an infinite  equilibrium  population is  Pois- 
son with the  parameter U/s,  shifted to  the right by m. 
Thus, p (  m) = q, = e-’/’. 

For U - 1 (MUM et al. 1972; HOULE et al. 1992) and 
s = 0.1, qm c 0.00005, while if s = 0.02 (CROW 1979), 
q, - lo-“. Even in  the first case mutations  accumulate 
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rapidly in obligately asexual populations with N < lo6. If 
accumulation of mutations due to MULLER’S ratchet 
leads to the  decrease of N, the  ratchet is facilitated fur- 
ther  and  the population can rapidly go extinct  (muta- 
tional meltdown; LWCH and GA~RIEL 1990; GABRIEL et al. 
1992). 

Some data (MUM 1969; MALMBERG 1977) suggest that, 
rather  than  acting  independently,  deleterious alleles 
may act synergistically in the sense that  each  additional 
mutation causes a  larger  decline of relative fitness (see 
SHNOL and KONDRASHOV 1993). The only investigation of 
the  ratchet  under such selection was so far  made by 
CHARLESWORTH et al. (1993, Table 6). Using computer 
simulations they observed that weak  epistasis slows the 
ratchet down, but  that  the  rate of decline of the mean 
fitness remains essentially the same, because under ep- 
istasis each successive  click leads to a  larger  decline of 
fitness. 

Obviously, stronger epistasis can lead to an even more 
pronounced  effect.  In  the  extreme case  of truncation 
selection ( w (  i) = 1 for i 5 T, and w (  i) = 0 for i > T )  
after selection all individuals in an equilibrium  popu- 
lation have  exactly T mutations, so that m = T and q, = 
1. Thus,  the  ratchet  does not  operate, unless the  popu- 
lation is  very small, where one click leads to immediate 
extinction because every member of the  next  generation 
has acquired  at least one new mutation. 

In this report I will study MULLER’S ratchet  under  more 
moderate,  although still strong, synergistic  epistasis. I 
will use deterministic  iterations to find q,, which should 
be sufficient to determine qualitatively the rate with 
which the  ratchet  operates in a  population of a known 
size (see STEPHAN et al. 1993). A stochastic computer 
model will be used to check this. 
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FIGURE 1.-Selection (thick  line)  and  equilibrium  distribu- 
tions#,( i) and q,  (circles)  for m = 0, 1, . . . under U = 0.5 and 
w ( i )  = exp(-0.01i2) (A) or w ( i )  = 1 - 0.056i (B). 

MODEL 

Consider an infinitely large asexual population with 
discrete generations and  the following  life  cycle: muta- 
tion and  reproduction, followed by selection. All muta- 
tions are equally deleterious, so that  the  population is 
described by p (  i) . An offspring receives k new mutations 
with probability p( k )  = e-"uk/k!. Relative fitness w (  i) is 
non-increasing and w ( 0 )  = 1. 

Mutation and selection cause the following changes in 
p(i): 

1 

p ' ( 4  = E A i  - j ) p o )  

Ffi) = p'(i)U(i)/ W 

j = O  

where P( i) denotes  the distribution in the  next genera- 
tion and Wis the  population  mean fitness (KIMURA and 
MARUYAMA 1966; Equation 3.1). This allows  us to find  the 
equilibrium distribution j (  i) numerically. An analytical 
approach based on the assumption that $( i) is Gaussian 
(CHARLESWORTH 1990) will not be used here, because it 
significantly overestimates j (0) when its mean Mp is 
large. 

RESULTS 

Populations with different initial values of the mini- 
mal number of mutations m reach different equilibria 
$,( i )  . Since an offspring never has fewer mutations than 
its parent, $,( i) = 0 for all i < m. On the  other  hand, if 
w (  m + 1) < w (  m),  q, = $,( m) > 0. Figure 1 shows the 
families of jm(i)  for m = 0,  1, . . . under Gaussian  se- 
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lection w ( i )  = exp(-ai - ( P / 2 ) i 2 )  and  linear selection 
w (  i) = max( 1 - ai,O). 

The equilibrium mean fitness W, of a population with 
the distribution in( i) equals w (  rn)e-" (KIMURA and 
MARUYAMA 1966). Figure 2 presents the ratio W m /  W o  = 
w (  m) and q, under various m, w (  i) , and U. 

COMPUTER SIMULATIONS 

A stochastic computer model of an asexual popula- 
tion of N individuals with discrete generations was stud- 
ied to check the conclusions of the deterministic analy- 
sis.  After reproduction, each organism produces many 
offspring, each of which carried all the mutations of its 
parent  and k new ones with probability p( k )  (see above). 
During selection an offspring carrying i mutations sur- 
vives with probability w (  i). Then exactly N survivors 
were chosen randomly to start a new generation. The 
program, written in MacFORTRAN, is available on 
request. 

Each run was started from mutation-free individuals. 
If at some moment  during  the first 100 generations all 
mutation-free individuals were extinct, the  number of 
mutations in the  genome of one randomly chosen in- 
dividual was artificially set to zero. Thus,  the  ratchet did 
not  operate  during this initial period, which  allowed the 
population to equilibrate. After  this the actual experi- 
ment was started. 

Figure 3 presents data on the  amount of time pre- 
ceding the mth click of the  ratchet ( i . e . ,  between ran- 
dom losses of the last individuals with m - 1 and m 
mutations) and  on  the mean fitness between mth and 
( m  + 1) th clicks. We can see that  the  ratchet initially 
proceeds very fast, but later drastically slows down. 

Comparison with Figure 1 shows that  the expected 
absolute number of individuals with the minimal num- 
ber of mutations N,  = q,N indeed allows one to predict 
the rate at which the  ratchet advances. This process 
markedly slows  down when, in the course of accumula- 
tion of mutations, N, become larger than 30.  After the 
minimal number of mutations becomes 19, 13 or 9 
(Gaussian selection, N = 100,300 or 1000,  respectively) 
or 15, 14 or 11 (linear selection, N = 100, 300 or 1000, 
respectively), no  further clicks  of the  ratchet  occurred 
in the  computer  runs which lasted 5000 generations 
each.  In all these cases N, is  of the  order of 100, and  the 
actual number of individuals with the minimal number 
of mutations is  very close to N,  (data  not  presented). 

DISCUSSION 

The data from Figures 1 and 2 show that under strong 
synergistic  epistasis qm grows rapidly as m increases. The 
reason for this is the following. The processes in an 
asexual population with m > 0 which is under selection 
w (  i) are identical to those in a  population with m = 0 
under selection wm( i) = w (  i + m ) / w (  m). The equilib- 
rium distribution Pm( m) in the first case differs from that 
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FIGURE 2.-Ratio of equilibrium  mean  fitnesses of the  populations  where  the  minimal  numbers of mutations  are m and 0, W o  
(decreasing lines) and q m  (increasing lines) for  different m with Gaussian (A) (a = 0; p = 0.001, 0.002, 0.004, 0.008 and 0.016, 
corresponding lines are of increased  thickness)  or  linear (B) (a = 0.01, 0.02, 0.04, 0.08 and 0.16, corresponding  lines are of 
increased  thickness) selection under U = 0.25, 0.50 and 1.00. 

in the second case only by the shift by m to the right. Under Gaussian selection with LY = 0, wm( i )  = 
Under  both Gaussian and linear selection, synergistic exp(-mpi - ( p / 2 ) i 2 ) .  If LY > 0 a smaller m results in the 
epistasis  causes an accelerating decline of wm( i) when m same selection, so that W, which corresponds to a par- 
increases. This leads to a smaller Mp - m and higher qm. ticular q, is higher  (data not presented).  Under  linear 
In  contrast, under multiplicative selection, wm( i) = selection wm( i) = 1 - (a / (  1 - am)) i. With m = l / a  this 
(1 - s)’, Me - m = U/s,  and q, = under any m. leads to strict truncation and to qm = 1. Here qm grows 
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FIGURE 3.-Results of computer  simulations.  Mutation rate 
and  selection in (A) and (B) are  the  same  as in Figure 1, A and 
B, respectively.  Population  size N is 100 (circles), 300 (dia- 
monds), and 1000 (triangles).  The time  between  successive 
clicks of the  ratchet  (increasing  curves)  and  the  mean  popu- 
lation  fitness  during this time  (decreasing  curves)  are  pre- 
sented. Each point  represents  the average of five runs. Each 
run  lasted 5000 generations, so that events  which  took longer 
were not  observed. 

exponentially with m (Figure 2B), although  I do not 
have an analytical proof of  this. 

How this can be related to MULLER’S ratchet, which 
operates only in finite populations? I assume that  the 
distribution of the  number of mutations in a finite popu- 
lation is close to that in an infinite population. Then, if 
initially m = 0,  such a  population reaches a quasi- 
equilibrium which is close to $,,( i) . If in some generation 
individuals with 0 mutations  are lost by chance and m 
becomes 1, the new quasi-equilibrium is close to 

(2). This process goes on indefinitely, as long as N,  is 
not so large as to  preclude  the loss  of the best genotypes 
by drift. As a  rough  guide such loss  is  unlikely if q, be- 
comes larger than  100/Nunder some m. Then  the next 
click of the  ratchet takes a very long time and in fact the 
population distribution remains close to $,( i) . 

Let us roughly estimate when this happens. For ex- 
ample, with N = lo6, then q, must be  greater  than 
to arrest  the  ratchet.  Under multiplicative selection, 
q,, = exp (- U/ ( w ( 0 )  - w (  1) ) . With  synergistic  epistasis q m  
is even larger  than exp(-U/ ( w,(O) - wm( 1)) because 
w,( i) declines faster as i increases. Thus,  for U = 1 the 
ratchet is arrested if m is so large that ( w (  m) - w (  m + 
l ) ) / w (  m) > 0.1. With  Gaussian selection and CY = 0,  this 
requires m > 1/( lop) (a smaller m is sufficient if CY > 0 ) ,  

while  with linear selection this requires m > l / a  - 10, so 
that  the  population is only 10 clicks from extinction 
(Figure 2). 

Computer simulations confirm this analysis (Figure 
3). Of course,  further clicks  of the  ratchet would be de- 
tected in longer  runs, but  the time between them con- 
tinues to grow rapidly and becomes unrealistic if N,  > 
1000 (STEPHAN et al. 1993). This confirms that  the  de- 
terministic estimates of qm are sufficient to make quali- 
tative predictions about  operation of the  ratchet in a 
finite population of a known  size. During the first  clicks 
of the  ratchet  the  mean  population fitness seen in the 
simulations was slightly higher  than  that  predicted ana- 
lytically, perhaps because the time between  clicks was 
small, and  the  population  did  not have time to reach 
equilibrium. 

Thus, in old asexual populations under epistatic se- 
lection, selection against each new deleterious mutation 
is strong due to  their previous accumulation. The value 
of q m  under a given m decreases with U, which means 
that  it takes a larger minimal number of mutations to 
have a given frequency of individuals carrying this num- 
ber (Figure 2). However, in an asexual population where 
the  mutation load is  always 1 - e-” (KIMURA and 
MARUYAMA 1966), U cannot be much  higher  than 1. 

The relative mean  population fitness W m / W o  corre- 
sponding to a particular q, increases when epistasis is 
stronger (and equals 1 in the  extreme case  of truncation 
selection) or u is smaller. If w (  m + 1) / w (  m) < 0.9, W m  

is no more  than exp(-l/ (200p)) or 10a under Gaussian 
and linear selection, respectively. Thus,  further clicks  of 
the  ratchet can be prevented without too large a decline 
of W m  if p > 0.005 or a > 0.05 (Figures 2 and 3). 

The consequences of the decline in W m  caused by 
the increase of m depend  on the population ecology 
(LYNCH et al. 1993). If N declines more slowly  with  grow- 
ing m than qm increases, N, = qmN will become larger 
than 100 under some m, which may arrest  the  ratchet. 
Otherwise, it continues to act and  the  population goes 
extinct. 

In  a  quasiequilibrium  population after m clicks of the 
ratchetwe can define  agenetic load (CROW 1970) caused 
by the action of the  ratchet. This “ratchet  load” is L, = 
( W0 - W , )  / Wo = 1 - w (  m) . This may be  compared with 
the increase of the load caused by stochastic processes 
in a sexual population ( K ~ M U R A  et al. 1963). Thus, even 
if the  ratchet is eventually arrested, it can maintain 
sexual reproduction if L,> 0.5, which  offsets the twofold 
cost of anisogamous sex.  However,  even a slow rate of 
recombination or outcrossing is enough to recreate 
mutation-free genotypes and reverse the  ratchet, pro- 
vided that  normal alleles exist at all loci (CHARLESWORTH 
et al. 1993). Obviously, there is a negative trade-off be- 
tween the applicability of mutational stochastic (based 
on MULLER’S ratchet)  and  mutational deterministic (see 
KONDRASHOV 1993) hypotheses on the evolution of sex: 
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synergistic  epistasis interferes with the first  mechanism 
but is essential for the second one. 

The ratchet can  be  dramatically  slowed  down  in a 
population of size 1000 even under linear selection, 
which represents a rather moderate form of  synergistic 
epistasis, and  the ratchet load  which is  necessary for this 
may be  only about 0.5 (Figure 3B). Asexual populations 
often have much larger sizes, and may  have fecundities 
sufficient to tolerate much higher loads.  Thus, the effect 
reported here may be  biologically important. 

This study was stimulated by a discussion  with  DEBORAH  CHARLES 
WORTH and MICHAEL LYNCH. I am  also indebted to DAVID HOULE and BEN 
NORMARK for many  useful comments. The work  was supported by the 
National Institute of Health grant GM 36827 to MICHAEL LYNCH. 
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