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ABSTRACT 
Genotypes  at a marker  locus  give  information  on  transmission  of  genes  from  parents  to  offspring  and 

that  information  can  be  used  in  predicting  the  individuals’  additive  genetic  value at a linked  quantitative 
trait  locus  (MQTL).  In  this  paper a recursive  method is presented  to  build  the  gametic  relationship matrix 
for  an  autosomal MQTL  which  requires  knowledge  on  recombination  rate  between  the  marker  locus  and 
the MQTL linked  to it. A method is also  presented  to  obtain  the  inverse of the  gametic  relationship  matrix. 
This  information  can  be  used  in a mixed  linear  model  for  simultaneous  evaluation of fixed  effects,  gametic 
effects  at  the  MQTL and  additive  genetic  effects  due  to  quantitative  trait  loci  unlinked  to  the  marker  locus 
(polygenes). An equivalent  model  can  be  written  at  the  animal  level  using  the  numerator  relationship 
matrix  for  the  MQTL and a method  for  obtaining  the  inverse of  this  matrix is presented.  Information  on 
several unlinked  marker  loci,  each of  them  linked  to a different locus  affecting  the  trait  of  interest,  can 
be  used  by  including  an  effect  for  each  MQTL.  The  number  of  equations  per  animal  in  this  case is 2m 
+ 1 where m is the  number of  MQTL. A method is presented  to  reduce  the  number of equations  per  animal 
to  one by combining  information  on  all MQTL and  polygenes into  one  numerator  relationship  matrix. 
It is  illustrated  how  the  method  can  accommodate  individuals  with  partial or no  marker  information. 
Numerical  examples  are  given  to  illustrate  the  methods  presented.  Opportunities  to  use  the  presented - 
model  in  constructing  genetic  maps  are  discussed. 

B EST linear  unbiased  prediction (BLUP) methods 
are  currently used for  the  prediction of breeding 

values of animals in a large number of countries and 
species. The prediction of an animal’s breeding value 
using this method is based on phenotypes of the animal 
itself and/or those of its relatives. When only observa- 
tions on  the trait of interest  are  considered,  the contri- 
bution of observations on relatives to an animal’s breed- 
ing value depends on the additive genetic  relationship, 
i .e. ,  the  proportion of genes  shared in common by de- 
scent, and  the heritability of the trait. Mixed models 
used for  prediction of breeding values require  that  the 
inverse of the  numerator  relationship matrix between 
animals (A) is known, and this matrix is generally very 
large. HENDERSON (1976) described a method  to write 
the inverse of A directly from  pedigree  records and in- 
breeding Coefficients. This has enabled  the use of  im- 
proved methods  for estimation of genetic parameters 
and prediction of the  breeding value  of animals. Re- 
cently, the  concept of the  numerator  relationship ma- 
trix has been  extended  to  the gametic relationship ma- 
trix (G)  where paternal and maternal gametes of an 
animal are  considered separately (SMITH and AMRE 
1985; TIER and 1993a). The gametic relationship 
matrix  has been used for constructing the relationship ma- 
trix due to dominance effects (SCHAEFFER et ul. 1989; S m  
and MAKI-TANILLA 1990) and for the analysis  of gametic 
imprinting effects  (GIESON et ul. 1988; SCHAEFFER et al. 1989; 
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TIER and si)-, 1993a). In building the relationship ma- 
trix or its  inverse, at either the animal or gametic  level, no 
knowledge on the actual contribution of a parent to its 
offspring is used. Instead use is made of W R I G ~ ’ s  (1922) 
inbreeding coefficients and the coefficients  of relationship 
between  animals. 

The detection of microsatellites and  the use of po- 
lymerase chain reaction (SAIH et d .  1988) make it pos  
sible to identify differences between individuals in geno- 
type at many genomic sites. These sites are called marker 
loci ( M ) ,  and their alleles are genetic markers. Marker 
loci are  not likely to be quantitative trait loci (QTL) 
themselves, but they may be linked to QTL  (SOLLER 
1978). The use of information on markers is expected 
to accelerate genetic progress through increasing  accuracy 
of selection, reduction of generation interval and increas- 
ing selection  differentials (SOLLER and  BECKMANN, 1983; 
&HI et ul 1990; MEWSEN and VAN m o m  1992). 

FERNANDO and GROSSMAN (1989) showed  how infor- 
mation on a single marker could be used in a mixed 
model analysis fitting additive effects for alleles at a QTL 
linked to  the  marker  and additive effects for alleles at the 
remaining quantitative trait loci. They discussed the ex- 
pansion of the model to include  information on mul- 
tiple markers but this expansion could not be  applied to 
a large data set, unless a simple algorithm to invert the 
covariance matrix of  all marked QTL is available. 
GODDARD (1992) extended  the  model of  FERNANDO and 
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GROSSMAN (1989)  to  a  situation with many linked 
markers and where genes  for quantitative  traits were 
bracketed between two markers. In  an animal  model 
with m quantitative  trait loci, there  are 2 m + l  effects 
to be  estimated for  each  animal. The  number of equa- 
tions limits the  application of the full  model  to  rela- 
tively small data sets. The  number of effects to be es- 
timated  can  be greatly reduced by use of a reduced 
animal  model  (CANTET and SMITH 1991; GODDARD 
1992).  In this case effects are only predicted  for  ani- 
mals that  are  parents.  Breeding values and additive 
QTL effects for  non-parents  can  be  obtained by back 
solution  when covariances between  different QTL ef- 
fects are  zero. 

TIER  and SOLKNER (1993) presented  a general ap- 
proach for constructing relationship matrix and its in- 
verse  based on partitioned matrix theory. In  the  present 
paper it will first be shown  how this method can be used 
to incorporate  information on a single autosomal 
marker locus in prediction of breeding values. In addi- 
tion,  a  method will be presented to use information on 
multiple markers while predicting only one random ef- 
fect for each individual. 

METHOD 

Inverse  numerator relationship matrix  without 
markers: The usual model to obtain BLUP  of additive 
genetic effects for animal i ( a , ) ,  given phenotypic in- 
formation, is 

y, = x$ + a, + e, (1) 

where y, is the phenotypic value  of individual i, x: is a 
known incidence vector and f3 is a vector with fixed ef- 
fects, and e, is a  random  error. BLUP  allows information 
from relatives to contribute to the  predictor of a, 
through  the covariance matrix of a values. This covari- 
ance matrix is proportional to the  numerator relation- 
ship matrix, A, which describes the genetic relationships 
between all individuals in the  population. This matrix 
can be built recursively from a chronologically ordered 
list of pedigrees. A matrix representation of the rules for 
building A, for animals 1 to i is 

where 

Si is a  column vector with i - 1 elements con- 
taining two elements 5 corresponding to the 
sire and dam (if known) and zeroes elsewhere; 
is the  numerator relationship matrix for ani- 
mals 1 to ( i  - 1); 

F, where F, is the  inbreeding coefficient of the 
ith animal. 

1 

' t i  is the ith diagonal of A which is equal  to 1 + 

TIER  and SOLKNER (1993) applied  partitioned matrix 
theory to determine  the effect of adding  an  additional 

TABLE 1 

Example data for construction of G,  and A, and their inverses 

Animal Sirea Dam Genotype M b  Phenotype 

1 12 80 
2 34 120 
3 1 2 13 90 
4 1 2 23 110 
5 3 4 33 115 

~ ~ ~~~ ~~~~~ 

- - 
- - 

a Missing parent is indicated by -. 
Genotype at marker  locus ( M )  is represented by combination 

alleles which are  numbered  from 1 to 4. In animals 1 and 2 the first 
marker allele is assigned to be linked to  paternal QTL allele. 

row to A on  the  elements of A-'. They showed that 

When both  parents of i are known S & ~ S ,  is equal to 
i( app + apy + apq + ayy), where a with subscripts are  the 
four  elements of Ai-,  relating to the sire ( p )  and  dam 
( 4 )  of i. As a result (aii - sIA,-~ si)-' can be rewritten 
as (1 - :( app + ayy)) -'. B. TIER  and J. SOLKNER (unpub- 
lished) showed that (3) is equivalent to the result of 
HENDERSON  (1976) and QUAAS (1976). Equation  3, how- 
ever, has the advantage that it is not restricted to the special 
form of si which contains only 5 as non zero  elements. 

Inverse of gametic  relationship ma& Under an ad- 
ditive genetic model,  the genetic value  of the ith indi- 
vidual (a , )  is the sum of the additive genetic contribu- 
tion from the paternally derived (g!) and maternally 
(gy) derived gametes, i . e . ,  a, = g$ + gm. The model for 
an observation on the  ith individual can be written as 

y, = x$ + 8 + gm + e,. (4) 

The variancecovariance matrix of g is proportional to 
the gametic relationship matrix (G) which can be set up 
using Equation 2 and building the  equations by gametes. 
Elements of G, gtl, describe the probability that alleles 
drawn from two gametes ( i  and j )  are identical by de- 
scent. The diagonal elements of G are,  therefore, all 
equal  to  one. We  will illustrate construction of G and its 
inverse for the small population in Table 1 which is used 
throughout this paper. For animal 1, let gf represent  the 
paternally derived gamete and g;" represent  the mater- 
nally derived gamete,  and likewise for the  other animals. 
The gametic relationships for the five animals are given 
in the lower  half  of Table 2. To construct G3p, for ex- 
ample,  the following vector is used SSP = [,, $, 0,  01. The 
matrix A may be obtained from G as 

1 

1 

1 1  

A = ;KGK' (5) 

where K = I, * [ 1,  11, where n is the  number of in- 
dividuals and * denotes  the Kronecker product of two 
matrices  (SMITH and ALLAIRE 1985; TIER  and SOLKNER 
1993a).  The  relationship between a and g is given by 

a = K g .  (6) 
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TABLE 2 

Gametic  relationship  matrix for a  single QTL using information on linked marker locus (Go, ,, above  diagonal) and without  using  marker 
information (C, below  diagonal) for pedigree and data in Table 1 and recombination  rate  between  marker and MQTL of 0.10 

1 2 3 4 5 

P m P m P m P m P m 

1 P 

2 P 

3 P 

4 P 

5 P 

1 0 0 0 0.9 0 0.1 0 0.09 0.01 
m 0 1 0 0 0.1 0 0.9 0 0.01 0.09 

0 0 1 0 0 0.9 0 0.9 0.81 0.81 
m 0 0 0 1 0 0.1 0 0.1 0.09 0.09 

0.5 0.5 0 0 1 0 0.18 0 0.1 0.02 
m 0 0 0.5 0.5 0 1 0 0.82 0.9 0.74 

0.5 0.5 0 0 0.5 0 1 0 0.02  0.1 
m 0 0 0.5 0.5 0 0.5 0 1 0.74 0.9 

0.25 0.25 0.25 0.25 0.5 0.5  0.25  0.25 1 0.67 
m 0.25 0.25 0.25 0.25 0.25 0.25 0.5 0.5  0.25 1 

Diagonal elements G, and G are  identical and given on diagonal. 

There is, however, no closed form  relationship be- 
tween A" and G" nor is it possible to  form G from 
A, directly. 

Gametic  relationship matrix for a single QTL linked 
to a marker locus: Consider a single polymorphic 
marker locus ( M ) ,  closely linked to a quantitative trait 
locus (QTL) . This QTL will be referred  to as a marked 
QTL  (MQTL) to distinguish it from any other QTL af- 
fecting the trait. The information on M gives informa- 
tion on transmission of genes from parents to offspring 
and  that  information can be used in predicting  the in- 
dividuals' additive gametic effects at  the linked QTL. 
The model for  an observation on individual i can be 
written as 

yI = x$ + vp + vm + ui + e, ( 7 )  
where v: and vy represent  the additive gametic effects 
at  the MQTL and ui the additive  genetic effects due 
to QTL unlinked to M. The covariance  matrix of vi 
values with marker  information is proportional  to  the 
gametic  relationship  matrix  for  the MQTL (Gu, J 
which depends  on  the  recombination  rate ( r )  be- 
tween M and MQTL and  on marker  genotype  infor- 
mation on individuals.  Without  marker  information, 
v4 has a  relationship o f f  with both  the  paternal  and 
the  maternal gametic effect of its sire.  Information on 
M which is linked  to  the MQTL changes  these  rela- 
tionships  when  transmission of marker  allele  from  sire 
to offspring  can  be  traced.  This will first  be  illustrated 
for  some small pedigrees given in  Table 3. The no- 
tation  used  to  identify  alleles is given in Figure 1 .  Off- 
spring i has one marker  allele  from  the  sire (mQ) and 
one from  the  dam (my).  From the genotypic  infor- 
mation on  the M ,  probabilities of each  marker  allele 
coming  from  the  sire  and  the  dam  are  calculated  first. 
Secondly the probabilities that  the mQ is identical by 
descent to mt and m: are  determined.  In  the first pedi- 
gree given in Table 3, marker  allele 1 in  the offspring 
(m, = 1) comes  from the  sire, 2.e. P(m,  = m,) = 1, and 

m1 is identical by descent  to  the  allele in the sire which 
is assigned  to be mt. The second  marker  allele is iden- 
tical by descent  to mpd. 

Given the information on  the marker genotypes and 
the recombination rate between M and QTL ( r )  we can 
determine  the relationships of  with vt  and v,". 
For pedigree 1 in Table 3 the relationships for ve are 
p(vt E ut) = (1 - r )  and p(v$ = v,") = r, while for vy they 
are p(vy = vf;) = ( 1  - r )  and p(v: = U T )  = r. These 
probabilities can be used in s for building the gametic 
relationship matrix (G,, J and its  inverse (Gill) for the 
marked QTL. 

Pedigree 6 in Table 3 contains only information on 
the allele transmitted by the dam but  not by the sire. The 
vector s f  for  the  paternal  gamete of the offspring in that 
case is [f l, 0, 01, while for  the  maternal  gamete s' = [0, 

When gametes are  ordered chronologically, the ga- 
metic relationship matrix for gametes l to k (Gv, r,R)  can 
be obtained from 

0, (1 - r ) ,  r, 01. 

where 

' k  is column vector ( k  - 1 elements)  containing 
non-zero elements  relating  gamete k to ga- 
metes in the  parent (if known) and zeroes else- 
where; 

G,, ,,k- I is gametic relationship matrix for gametes 1 to 
( k  - 1 ) ;  

g k k  is the diagonal of G, relating to the kth gamete 
which is equal to one. 

The inverse of G,, r,k can be obtained from 
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TABLE 3 

Probability of marker alleles in offspring (m,, mJ being  equal to parental marker alleles in  sire (m!, m:) and dam (mp, m;) for several 
pedigrees (Ped.) differing in genotype of sue, dam and/or offspring 

Prob(m,)d Prob( m,) 

Ped.  Sirea  Dama ofPb P(m, m,)' 4 m," mf m; m{ m," mf m,. 

1 12  34  13 1  1 0 0 0 0 
2 12  12 

0 1 0 
11 Ih ?4 0 56 0 !A 

3  12  12 
0 v2 0 

12 % ?4 0 'A 0 0 ?4 0 
4 11 22  12 1 !A 142 0 0 0 

Yi 

11 12 
0 vi7 

5 
Y2 

12  1 ?4 ?h 0 0 0 0 0 1 
6 11 23  12  1 ?4 142 0 0 0 0 1 0 

___ 

Genotype is represented by combination of alleles  which are  numbered  from 1 to 4. For  sire  and  dam  the first allele is assigned  to  be  the 
paternal  marker allele, Le. ,  m! and mf,  respectively. 

'The first allele in  offspring is referred to as m, and  the second as m,. 
Probability  that m, is identical by descent to an allele  in  sire. 
Probability  that allele  in  offspring is  identical  by descent  to  the  four  parental alleles. 

dam 

offspring 

" 1  t - @  

Consequently, the vector with ancestral contributions 
can be  obtained from 

- v;" 
st = A2,i-lA:I r,i' (12) 

- @  Estimation of breeding  values: In matrix notation 
Given si we can use Equation 3 to  get AiIlr,,. 

model (7) can be written as: 

y = X @ + Z u + W v + e  (131 

where 

y is the vector of observations on the trait of interest, 
j3 is the vector with fixed effects, 
u is the  random vector with  additive genetic effects 

due to loci not linked to  the M ,  
I I 

v is the  random vector  with gametic effects at the 

e is the  random vector of residual effects. 

The matrices X, Z and W are  incidence matrices and  the 

FIGURE 1 .-Pedigree  with  sire (I) ,  dam (2) and  offspring (3) 
where v are alleles at  quantitative  trait locus  and m are alleles 
at  marker locus. 

MQTL, 

Numerator  relationship  matrix using a  single marker: variance-covariance structure of the  random variables is 

Observations are available on animals and  not  on ga- 
metes but  an animal level model  can  be written which 
is equivalent to the gametic level model. To be able to 
use a model at the animal level, the inverse  of the nu- 
merator  relationship matrix for MQTL  is needed. Simi- 
larly to ( 5 ) ,  the  numerator relationship matrix for the 
MQTL for animals 1 to i (4, r , , )  can be  obtained  from 
the gametic relationship matrix G,, r,z, using 

where K = Ij * [ 1 ,1 ] ,  i is the  number of individuals and 
* denotes  the Kronecker product of two matrices. To 
enable  the use of Equation 3 for  obtaining A,',, the vec- 
tor si reflecting the ancestral contributions is needed. 
From Equation 2 it can be  seen  that the row vector con- 
taining the  numerator relationships of i with animals 1 
to i - 1 (AiI +) is equal to 

A:, r,i = r,j-Isj* (111 

A a: 0 .[:I = [ GvI,u: ] (14) 

where A, is the  numerator relationship matrix for  the 
QTL which are  unlinked  to M ,  G,, is the gametic re- 
lationship matrix for the MQTL, and I is an identity 
matrix. Also, ut, a: and U S  are  the additive genetic vari- 
ance  due to QTL not linked to M ,  the variance due to 
gametic effects at  the MQTL and  the residual variance, 
respectively. The total additive genetic variance (a:) is 
equal  to a: = ut + 2a:. Let a, = uS/u: and a, = 
af/u:, then  the mixed model equations of (13) are 

0 0 IUS 

X'Z X'W E z'z;pz;Ia. W'W z w  + G;l',au ]E] = E;]. 
(15) 

For selection of animals it is relevant to know the predicted 
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total  additive genetic merit, i.e., the sum  of the predicted 
value for polygenic  effects and predicted gametic  effects. 
Predicted total  additive genetic merit (I) can be calculated 
as 

I = ii + K@. (16) 

The matrix K, which relates  gametic  effects to animals, is iden- 
tical to W in (13) when all individuals  have  observations. 

The variance covariance matrix of a calculated from 
u and v, Val which uses information on r, is equal to 

Val = Var(u + Kvl r) 

= Var(uI r) + Var(KvI r) 

= Var(u) + KVar(vI  r)K' 

= A,aZ + KG,, .K'a; 

= A,aZ + 2A,, .a;. 

The variance due to additive gametic effects at  the 
MQTL (a:) is half the additive genetic variance due to 
the MQTL (a:) and, as a result 

The combined  numerator  relationship matrix including 
information on  the MQTL (Aa, ,) is equal  to 

A,, = Val ,ai2 = AUa2,/a: + A,, p;/a:. (18) 

The combined additive genetic  merit (a) can be pre- 
dicted directly from  the following model 

y = X p + Z a + e .  (19) 

The mixed model  equations of (19)  are 

where a, = a;/af. The inverse A;,'r can be  obtained 
using Equations 12 and 3. 

Several unlinked markers: If information on several 
(say, m) MQTL  is  available, model (7) can  be  extended 
to  include gametic effects for each MQTL 

m 

yi = xip + (u$ + v:) + u, + e,. (21) 

This approach, however, results in two additional equa- 
tions for  each individual for  each MQTL introduced in 
the analysis. This results in 2m + 1 equation per indi- 
vidual, where m is the  number of  MQTL.  For a large 
number of individuals and a large number of  MQTL, 
solving the mixed model  equations may not be feasible 
(FERNANDO and GROSSMAN 1989). Instead of fitting gametic 
effects for each MQTL, the additive genetic effect for each 
MQTL might be fitted, in  which  case the number of equa- 
tions reduces to m + l. The number of equations is r e  
duced to 1 per animal, however,  when just the sum  of  ad- 

k= 1 

ditive  effects  of  all  QTL (a , )  is included in the model 

m 

a, = ( v i  + u;) + uz. (22) 
k= 1 

The numerator relationship matrix for total  additive 
genetic merit can be obtained using 

a2 0 2  

U a  
AaI ,= t l++  XAI*$ (23) 

k= 1 a 

where A,, is the numerator relationship matrix for the I*h 
MQTL and a$ is the additive  genetic  variation  explained 
by the Kth MQTL. The recombination rate for building 
A,, will differ  between  MQTL.  Equations 7 to 12 can be 
used to constructA,, The inverse ofA,, ,can be obtained 
using  Equations 12 and 3. 

NUMERICAL EXAMPLES 

Gametic relationship matrices and their inverse: 
Consider the  pedigree and genotypes for M in Table 1. 
To construct G,, rand A,, we take r = 0.1. The gametic 
relationship matrix for  the single QTL using informa- 
tion on linked M is  given in Table 2. Animal 3 inherited 
marker allele rn: from  the sire. As a consequence,  the 
paternally derived gametic effect at the QTL  of animal 
3 (us) has a relation of (1 - r )  with vf and r with u;". 
Animal 3 and 4 are full sibs  which inherited  different 
marker alleles from the sire but  the same marker allele 
from the dam. For these full sibs to inherit  the same 
paternal allele at  the QTL, recombination needs to have 
occurred in the  formation of the gamete transmitted to 
one offspring and  no recombination occurred in that 
transmitted to the  other, which has a probability of 
2 * (1 - r)  * r = 0.18 (Table 2) .  The QTL allele trans- 
mitted by the  dam to animals 3 and 4 is identical when 
no recombination or recombination occurred in both 
gametes produced, of  which the probability is (1 - r) * 
(1 - r) + r * r = 0.82. It can be seen from this example 
that  the  relationship between gametic effects in full sibs 
can deviate from f ,  which is the value found with no 
information on a linked marker locus. 

Animal 5 is an offspring from full sibs 3 and 4. With 
no marker  information  the probability that  the  maternal 
and paternal alleles at  the QTL are identical by descent 
is (Table 2). Animal 5 inherited  marker allele 3 from 
both  parents which results in a relationship of  0.666 
which can be explained as  follows. The parents received 
allele 3 from dam 2. Both us and vj. are identical by 
descent  to ug when no recombination has occurred 
when genes where transmitted from 2 to 3 and 4, and the 
subsequent transmission from 3 and 4 to 5: P($ = vg and 
vy E vg) = 0.g4 = 0.6561. Secondly, alleles can be iden- 
tical by descent when recombination  occurred in ga- 
metes transmitted by 2 to 3 and 4 but  no recombination 
thereafter, i .e.  P(vg v; and v? = v;) = 0.1' Y 0.g2 = 
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TABLE 4 

Inverse of gametic  relationship  matrix for a  single QTL using  information on linked  marker locus (G;fr, off diagonal  elements  in  upper 
triangle)  and  without  using  marker information (G", off diagonal  elements  in  lower  triangle) for  pedigree and  marker  information 

in  Table 1 and  recombination  rate  between  marker  and MQTL of 0.10 

Diagonal 1 2 3 4 5 

G" G,,], P m P m P m P m P m 

1 p  2 5.56 1 0 0 -5 0 -0.56 0 0 0 
2 m 5.56 1 0 0 -0.56 0 -5 0 0 0 

2 10.00 0 0 1 0 -5 0 -5 0 0 
2 1.11 0 0 1 0 -0.56 0 -0.56 0 0 

2.5 5.61 - 1  -1 0 0 0.50 0 0 -0.56 0 
2.5  10.06 0 0 -1  -1 0.5 0 0 -5 0 

2.5 
2.5 10.06 0 0 -1 - 1  0 0 0.5 0 -5 
2 5.56 0 0 0 0 -1 -1 0 0 
2 

0 
5.56 0 0 0 0 0 0 - 1   - 1  0 

2 :  

3 :  

4 :  

5 :  

5.61 -1 -1 0 0 0 0 0.50 0 -0.56 

0.0018. In  addition, vg can be identical by descent to 
v: due to alleles transmitted by sire 1, but this probability 
is small  given that  different  marker alleles where trans 
mitted to 3 and 4: P(vg ut and v; = vp) = 0.9 * 0.1 * 
0.1 * 0.1 = 0.0008 and P(vg = v;" and v,; v;") = 0.1 * 
0.9 * 0.1 * 0.1 = 0.0008. In this case, recombination 
is needed in one of the gametes transmitted by sire 1 
and in both gametes transmitted by 3 and 4. All four 
possibilities result in P(v$ v;) = 0.6561 + 0.0081 + 
0.0009 + 0.0009 = 0.666  which is equal to the value 
given  in Table 2. 

The inverse  of the gametic relationship matrix for a 
single MQTL using information on linked M (GiI'J  and 
without using marker  information,  the  latter  being 
equal  to G-', are given in Table 4. Non-zero elements in 
G,',and G" occur at  the same positions but their values 
are different. In G" the two elements relating a gametic 
effect to its parent  are  equal  to - 1. In G;,'? these ele- 
ments  are  equal to -0.56 and -5.56. In G" the diagonal 
elements  for animals 1 and 2 are identical which reflects 
that  the same amount of information is available to es- 
timate the gametic effects. As a result of using marker 
information the  amount of information available to es- 
timate gametic effects in animals 1 and 2 differs and as 
a  consequence  the  corresponding diagonal elements in 
GLIIr are different. Dam 2 transmitted marker allele 3 to 
both offspring and as a consequence most information 
is available to estimate the  paternal gametic effect in 
animal 2 which is associated with it (vg), which is re- 
flected by the large diagonal element of 10. 

Numerator  relationship  matrices: Equation 10 can be 
used to calculate the  numerator relationship matrix 
(A,, , T) from the gametic relationship matrix for the QTL 
linked to the marker (Gv, J. The results are given in 
Table 5 which  also  gives the  numerator relationship ma- 
trix without marker  information (A). The relationships 
between animals 1 to 4  are identical with and without 
marker information. However, this is not  the case  in 

general. For example,  the  numerator relationship be- 
tween full sib offspring of l and 2 with marker genotype 
13  and 24  is only 0.18. The relationship between these 
full sibs at M is zero. Due to recombination between M 
and QTL, alleles at  the QTL have probability of 0.18  of 
being identical by descent. When two full sib offspring 
of 1 and  2 have same marker genotypes (e .g . ,  13) the 
relationship at M is 1  and  at QTL 0.82. As expected,  the 
numerator relationship of an offspring with  its parents 
remains 5 in  all  cases.  For the  marker genotypes given  in 
Table 1, the relationship at M is : and consequently the 
relationship at QTL is also i. 

The relationship of animal 5 with animals 1 to 4 are 
changed to the  extent  that  grandparent  2 has a  much 
higher relation than  grandparent 1 (Table 5). In addi- 
tion,  the diagonal element for animal 5 is increased. The 
animal is completely inbred  at  the marker locus and  the 
inbreeding coefficient at the linked QTL is 0.666,  which 
is  by definition equal to P(vg = v;) in Table 2. 

To obtain the inverse of AnI using ( 3 ) ,  the vectors si 
need to be calculated first using (12).  The vector s, is 
given in Table 6 for animals (2) 2 to 5.  For animals 3 and 
4, s, contained only non-zero elements of 5 for their par- 
ents which  makes these vectors identical to those for 
building A". This was to be  expected because numera- 
tor relationships between l to 4 were identical in A,,, 
and A. The vector s5, however, contains non-zero ele- 
ments for both  parents  and  grandparents.  The contri- 
bution of both  parents is equal but  the  granddam (2) has 
a positive contribution while the  contribution of the 
grandsire (1) is negative. The negative contribution re- 
flects that  the  numerator relationship between 1 and 5 
based on marker information is much smaller than ex- 
pected based on the relationship (:) between 1 and  the 
parents of 5 (3 and  4).  The inverse of A,, rand  Aare given 
in Table 7. 

Prediction  of  effects: Let us look at the prediction of 
random effects for model (7) which includes one ran- 

1 

1 
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TABLE 5 

Numerator  relationship  maeiK for animals in  Table 1 for a single MQTL using information  on linked marker  locus (A, r )  and without  using 
marker  information (A) for recombination  rate ( r  ) of 0.10 

With marker  information (A,1 ,) No marker information (A) 

i 1 2 3 4 5 1 2 3 4 5 

1 1 0 0.5 0.5 0.1 1 0 0.5 
2 0 1 

0.5  0.5 
0.5  0.5 0.9 0 1 0.5 0.5 0.5 

3 0.5 0.5 1 0.5  0.88  0.5  0.5 1 0.5 0.75 
4 0.5  0.5  0.5 1 0.88 0.5  0.5 0.5 1 0.75 
5 0.1 0.9 0.88 0.88 I .67 0.5  0.5  0.75 0.75 1.25 

TABLE 6 

Vector (si) with  contributions  at  the  QTL linked to M from 
ancestors for animals ( i  ) 2 to 5 in  the  pedigree  given 

in Table 1 ( r  = 0.1) 

Animal 
Elements in s, relating to animal 

(i) 1 2 3 4 

2 0 
3 ?4 ’A 
4 ?4 !h 0 
5 -0.656 0.144 0.756 0.756 

dom effect due to polygenes unlinked to M ( u t )  and two 
random effects for additive gametic effects at one 
MQTL. The following parameters (all expressed as 
proportion of phenotypic variation) were used: a: = 
0.3, a: = 0.05, a: = 0.3 + 2 * 0.05 = 0.40, a: = 0.6, 
i.e., 40% of phenotypic variation is due to additive ge- 
netic variation of  which  25% can be explained by the 
MQTL. 

In Table 8, predictions of combined additive genetic 
effect (a) are given  with and without using information 
on M .  When no marker information used, a value  of 1.5 
(ag/aq) was taken for a, and the inverse of the  numera- 
tor  relationship matrix (Ap1) is used in (20). 

Predictions of combined additive genetic merit (a,) 
could be obtained by solving equation (15) and sum- 
ming the relevant estimates ( a ,  = vQ + v: + ui). Alter- 
natively, Equation 20 could be used in which the com- 
bined numerator  relationship matrix (A,, r,,,) is used 
which from (23) is equal to 

0 1 
2 
- 1 

2 
- 0.4 1 

1 
2 2  2 1 0.782 I 

1 0.4 0.6 0.782  0.782 1.3541 

For animal 5, a increased considerably after using 
marker  information as a result of the increased relation- 
ship with granddam 2 which had  a  high  phenotype 
(Table 8). 

DISCUSSION 

TIER and SOLKNER (1993) presented  a  method based 
on partitioned matrix theory to obtain the inverse  of the 
numerator relationship matrix. In this paper it is shown 
how their  method can be used to  incorporate informa- 
tion on a marker locus ( M )  into building a relationship 
matrix for  a QTL linked to a marker locus (MQTL) . We 
have  only considered  the situation where all animals 
have genotypic information on  one M. This situation is, 
however, not likely to occur in  livestock. To illustrate 
how the  procedure can be extended to allow for animals 
without marker information,  a situation with a single 
marker locus will be considered. The Equations 8 and 9 
can still be used to calculate the gametic relationship 
matrix for  the MQTL and its inverse. The problem is to 
find the  appropriate vectors s. With no marker genotype 
information on the offspring, s for both gametic effects 
in that offspring contains non-zero elements  equal 
to relating the gametic effect in the offspring to those 
in the relevant parent. This is true  independent of 
whether or not marker genotypes on the  parents  are 
available. In a situation where all animals are genotyped, 
marker alleles can be assigned to gametic effects  in a 
base animal. This is not  true  for  a genotyped animal 
which is an offspring of two ungenotyped parents. In 
that case each marker allele should have a probability of 
5 of being linked to either  the  paternal  or maternal ga- 
metic effect in that animal. By doing this, gametic effects 
in subsequent genotyped offspring have equal covari- 
ances with gametic effects  in their ungenotyped grand- 
parents. The vector s can be derived by the  procedure 
described in APPENDIX A. 

The situation which needs special consideration is 
that where a genotyped offspring has one  or both par- 
ents with unknown marker genotype and when one  or 
both parents have more  than one genotyped offspring. 
When, for example, the marker genotypes are  not avail- 
able on the  dam,  the covariance between maternal ga- 
metic effects  in two genotyped offspring i and j can be 
derived as  follows 

l 

s;, = p(v7 = u;”) (24) 

= p (  m r  E m;”){(l - r)? + P} + p(my * m;”)2(1 - r)r 
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TABLE 7 

Inverse of numerator relationship matrix for animals in Table 1 for a single MQTL. using information on linked M (A;:,) and 
without using marker information (A") for recombination rate between  marker 1 and QTL of 0.10 

With marker information (A;:r) No marker information (A-') 

1  2  3  4  5 1 2  3  4  5 

1 3.57  0.66  -2.81 -2.81 2.39 2  1 -1 -1 0 
2 0.66  2.08  -0.60  -0.60  -0.52 1 2 -1 -1 0 
3 -2.81 -0.60 4.08  2.08 -2.75 -1 -1 2.5  0.5 
4 -2.81  -0.60 2.08  4.08 -1  -1 0.5 2.5 

-1 

5 
-2.75 

-0.52  -2.75 -2.75 3.64 0 0 -1  -1 2 
-1 

2.39 

TABLE 8 

Prediction of effects for animals without and with using 
information on marker locus asociated with MQTL 

Without marker With marker information 

2 ai v! v r  u, a, 

1 
2 

-8.00 -1.74 -0.74  -5.84  -8.32 
8.00 1.57 0.91  5.84  8.32 

3 -1.84 
4 

-1.78 1.46 -1.46 -1.78 
3.16 

5 
-0.75 1.69 2.29  3.23 

3.75 1.26 1.57  2.43 5.26 

Pedigree and data from Table 1; r = 0.1, u: = 0.3, ui = 0.1, 
u: = 0.6. 

where p(my E my) is the probability that  the maternally 
inherited  marker alleles in i and j are identical by de- 
scent and p(mq + my) is the probability that they are  not 
equal by descent. The latter probabilities can  be derived 
from the genotype of the sire, genotypes of i and j and 
population allelic frequencies. This is illustrated in 
Table 9. The row and column in the gametic relation- 
ship matrix for vi" can  be built with a vector s with two 
elements  equal to 5 corresponding  to  the gametic effects 
in the  dam. As shown in APPENDIX A, s for the  maternal 
gametic effect in the second offspring (UT) contains 
(1 - gjj) at  the elements  corresponding  to  the gametic 
effects  in the  dam while there is also an  element  equal 
to (2g,, - 1) at the position of maternal gametic effect 
in i (vy). In Table  9,  it is illustrated how genotypic prob- 
abilities are used to calculate probability that  marker 
alleles are identical by descent. For a situation with more 
than two offspring the gametic relationships can be  de- 
termined using Equation 24 where genotypic probabili- 
ties  of the  parent(s) without information on M is used 
to determine p(mT = m;). Methods are available to ef- 
ficiently determine genotypic probabilities for each M 
for animals with unobserved genotypes from informa- 
tion on pedigree and observed marker genotypes (VAN 
ARENDONK et al. 1989; FERNANDO et al. 1993; JANSS et al. 
1993). With more  than two offspring, the  vectors, which 
is needed  for building the inverse using (9), can be ob- 
tained using the equivalent of (1 1) and (12) for gametic 
effects (APPENDIX A). The presented  procedure can be 
extended to a situation with multiple markers as well  as 
the  combined matrix approach.  It  can,  therefore,  be 
concluded  that  the  presented  procedure is  sufficiently 

1 

general  to  incorporate individuals without information 
on  marker loci. 

LANDER and BOTSTEIN (1989) have pointed out that 
marker brackets are  more efficient for estimating MQTL 
effects compared  to  an analysis  based on either of the 
bracketing markers alone. With marker brackets, the 
probabilities that MQTL  effects in different animals are 
identical by descent can be calculated more accurately. 
The  procedure presented here can use information on 
two marker loci bracketing the MQTL or even on several 
markers linked to a single QTL. Consider two marker 
loci bracketing the MQTL and recombination rates be- 
tween marker  and MQTL  of y] and r2. The non-zero 
elements of sk for the paternal gametic effect in an off- 
spring which inherited  the  paternal  marker bracket of 
the sire, is equal  to (1 - r1) (1 - r2) + r,r2 and (1 - rl) r2 
+ (1 - y2) rl for  the  paternal and maternal gametic effect 
in the sire, respectively. Without complete knowledge of 
the linkage phase of marker alleles in the  parent, all 
alternatives need to be weighted with their probability of 
occurrence given the available information.  In  that case 
a  procedure similar to that in APPENDIX A can be used to 
determine  the  elements of s. 

The  method presented  in this paper is  very similar to 
that of FERNANDO and GROSSMAN (1989) which cannot  be 
applied in situations where parents  are  inbred and 
which requires assigning paternal and maternal origin 
of marker alleles.  WANG et al. (1991) described a  method 
which does not  require assigning the origin of the alleles 
and  accounts  for  inbreeding. Also the  procedure  pre- 
sented  here to  obtain G , , ,  and GillT can be  applied 
when parents  are  inbred.  In  addition,  the  method 
allows for  individuals  without  information on marker 
locus. Moreover, the  procedure  presented by 
FERNANDO and GROSSMAN (1989) cannot be used in 
situations  where the effects of more  than  one MQTL 
are  combined  and,  therefore,  require  fitting two  ga- 
metic  effects for  each  animal in the mixed model 
equations. The  current  procedure can  be  applied  to 
a  situation with more  than  one MQTL. In  addition, 
the  number of random effects predicted  for  each  ani- 
mal can  be  reduced  to  one, i .e. the total additive ge- 
netic  merit (a). In  obtaining  the  numerator  relation- 
ship matrix A,, - using  Equation 23, it is assumed that 
all MQTL are  unlinked.  In case of linkage between two 
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TABLE 9 

Calculation of probabilities of identity by descent of maternally  inherited  marker alleles in two full sibs, p(my mj"), for  a  given  pedigree 
where  the dam is not  genotyped for M 

A C  AC 

Probabilities 

Dam genotype" Priorb Joint' Rescaled p(m;  E my) p(m: f my) 

A B  vi '/4 * ' / 4 2  % 1 0 
BC '/4 '/4 * Y6 1 0 
CC '/4  '/4 * ' h 2  Y3 w Yi 

Weightedd 0.67 0.33 

In the population there are three alleles for M (A, B and C) with a frequency of '/4, ?4 and I/z. 

" Only genotypes which  based on offspring genotypes have a probability larger than zero are shown. 

'The probability of offspring having genotype AC given the parental genotypes A B  and AC is equal to vi. Combining the prior probability 
Prior probabilities are calculated assuming a population in Hardy-Weinberg equilibrium. 

( G )  with the information on both offspring results in a joint probability of ?4 * '/4*. 
The weighted probability p(mP my) = (1 + 1 + 4 * W ) / 6  = 0.667. 

or  more MQTL, Equation 23 needs to  be expanded 
with terms  relating to the covariances between effects 
at  linked MQTL. 

The  method described by GODDARD (1992) is very simi- 
lar to that of FERNANDO and GROSSMAN (1989) but allows 
for multiple marker brackets. In constructing the ga- 
metic relationship for a MQTL, it is assumed that no 
double  recombinants  occur between markers. It is not 
clear how uncertainty about  marker haplotypes in par- 
ents or animals without marker  information can be ac- 
counted for. 

Application of the  presented  procedures  requires 
knowledge  of the  recombination  rate ( r )  between M 
and MQTL and the additive genetic variance explained 
by MQTL (a: or ai). The models presented  here can be 
used to estimate these parameters using derivative-free 
REML procedures (GRASER et al. 1987). This is not re- 
stricted to the effect of one QTL alone  but allows for 
simultaneous estimation of parameters (r, ui) for differ- 
ent MQTL and unlinked QTL (a:) as described in more 
detail by VAN ARENDONK et al. (1993). 

The costs  of building the inverse  of the  combined 
numerator  relationship matrix (A;,',) for very large 
populations (hundreds of thousands of animals) would 
be prohibitively expensive with current  computer facili- 
ties.  However, it is unlikely that  marker information will 
be collected on such large numbers of animals in the 
near  future. Given the  current limitations for popula- 
tion size (thousands of animals) and  number of random 
effects  in the models for  popular REML algorithms for 
estimating components of variance, the use  of a com- 
bined  numerator  relationship matrix for some of the 
random effects should  be tractable. 

For large populations and numbers of  MQTL the 
question arises whether it is more efficient to use 
the  combined A,, rm and  hence  one equation  per animal 
or to use m G,, matrices and  one A, matrix and have 

2m + 1 equations  per animal. Let there  be m MQTL, 
f fixed effects, n animals in the  complete model (21) 
and marker genotypes on all animals. Now consider the 
number of contributions from each observed animal to 
the half-stored mixed model equations. An additional 
animal with identified parents results in 2 m ( j +  m + 1) 
+ 2 non-zero contributions to mixed model equations 
as a result of the observation, and 3(2m + 1 )  non-zero 
elements relating random effects for the individual to 
those in  its parents. As a result, the total number of non- 
zero  elements in the half-stored mixed model equations 
is expected to be (2m(f  + m + 4) + 5) n. This approxi- 
mation is an overestimate because elements  pertaining 
to repeated sire dam combinations have been included 
and animals with unidentified  parents have  fewer  ele- 
ments. It is  likely that  the inverse  of the  combined  nu- 
merator  relationship matrix will contain relatively few 
non-zero elements and the total number of elements is 
f ( n  + 1 + f) ( n + f) . When we ignore  thef fixed effects, 
the  number of non-zero elements in the complete 
model (21) will be smaller than in the model predicting 
the  combined effect when 2m(  m + 4) + 5 < f (  n + 1) 
which can be approximated by 2m2 < fn. The combined 
effect model therefore  requires  more  computer 
memory, and calculations per iteration. However, the 
combined effects model will result in equations which 
should converge more easily, reducing  computing time. 

In  the above derivations we have  assumed that  marker 
genotypes are available on all animals. A more likely 
scenario, however, is that  marker genotypes will be avail- 
able on a limited number of individuals only. In this 
case, marker information will only affect the  structure of 
the inverse of the  combined  numerator relationship ma- 
trix for some animals while for  others (e.g., base animals 
and offspring without genotypes identified)  the struc- 
ture will be the same as without markers. This feature 
makes application of the  combined model attractive in 
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populations where marker genotypes are available on a 
limited number of animals. Further research on the 
structure of the matrices might result in reductions of 
computational  requirements. 

In this study we have assumed that a marker locus is 
linked to a single quantitative trait locus. The marker 
locus, however, might also be linked to a cluster of  sev- 
eral genes of moderate effect (GELDERMANN 1975; 
DENTINE and COWAN 1990).  In this case, chromosome 
segments rather  than alleles can be followed by the seg- 
regation at  the  marker locus. GOLDGAR (1990) showed 
how the  method of  FERNANDO and GROSSMAN (1989), 
which  also  assumes a single MQTL, can be changed  to 
account  for a large number of  QTL surrounding  the 
marker locus. 

When more  than  one MQTL  is being considered, co- 
variances between pairs of  MQTL effects are assumed 
zero (Equation  23). When a trait has been under selec- 
tion for some time, covariances between pairs of  MQTL 
effects are likely to be non-zero due to linkage disequi- 
librium (BULMER 1985) even when they are on different 
chromosomes. The magnitude  and sign of the covari- 
ances determine  the  extent of error in predicting MQTL 
effects due to incorrectly assuming null covariances be- 
tween  MQTL  effects.  For a trait undergoing selection, 
covariances are mostly  negative and, as a result, MQTL 
effects may be overpredicted (CANTET and SMITH 1991). 

In Equations 20 and 23 only the sum of  all genetic 
effects at all MQTL and QTL are  considered. This, how- 
ever, might not be the optimal solution, especially not 
in a multiple trait situation. Selection programs in live- 
stock are generally directed  at changing more  than one 
trait. Antagonistic relationships are generally found,  for 
example, between production traits on the  one  hand 
and reproduction and health traits on  the  other.  These 
genetic relationships can be largely explained by some 
loci having a positive effect on  one trait and a negative 
effect on  the  other. Genetic correlations are  not  one, 
which implies that loci differ in their direction and or 
magnitude of effect on different traits. In such a situa- 
tion we might be interested  to  predict  the sum of  effects 
of  MQTL, which  have a positive effect on  one trait and 
no effect or a positive effect on the second trait, sepa- 
rately from the effects of other loci. This can be achieved 
by fitting two random factors in (23) for  that trait. By 
doing this, selection pressure can be applied only to 
MQTL which  have little or  no negative  effects on  other 
traits of interest. Information from genetic maps will tell 
us whether this is a feasible way to achieve a well- 
balanced genetic progress in livestock selection. 
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APPENDIX A 

Derivation of vector with contributions of gametic ef- 
fects ( s )  when gametic relationships are known. 

Two offspring: Consider a  dam without information 
on M ,  which has two offspring ( i , j )  with  known geno- 
type for M. Using Equation 24 the probability that  the 
maternally derived gametic effects in i and j are identical 
by descent, is determined to be gv. The row and column 
in the gametic relationship matrix for v l  can be built 
with a vector s, with two non-zero elements of 5 corre- 
sponding to the  paternal and maternal gametic effect in 
the  dam. To  determine  the gametic relationships of the 
maternal gametic effect in the second offspring v;" the 
vector sI can only  have non-zero elements  at  the position 
corresponding  to v:, vpd and v l ,  which are  set  equal to 
s,,~, s ~ , . ~  and s ~ , ~ .  From Equation 8 it can be seen that  the 
followng relation holds 

g .  = -s 

1 

1 1 
y 2 m,d + 5'p.d + ' m , t .  (A1 ) 

When there is no information on M of the  dam or on 
its parents,  the following relation holds 

- 
' m , d  - 'p,d.  (A21 

It is further known that 

Smd + sp,d + smi = 1. (A3) 

From (Al) ,  (A2) and (A3) it follows that 

5 . =  2 g . -  1 
m.1 tl 

sm,d = ( l  - 

For the example shown  in Table 9, s,,,, = 0.33 and 

In Equation A2 it is assumed that genotype probabili- 
ties for  marker genotypes are  equal  for  grandsire  and 
granddam. Probabilities might be unequal when, for ex- 
ample,  the  marker genotype of the  grandsire is known. 
In  that case the relation between s , ,~  and s ~ , ~  will be 
different. 

More than two offspring: In  a situation where an 
ungenotyped animal has more than two offspring the 
procedure  to calculate s starts with determining  the ga- 
metic relationship matrix G,, r,k where k is the  number 
of gametic effect after including  the offspring. The re- 
lationships in G,, r,k which relate to the gametic effects 
in the offspring and those in the  other animals can be 
calculated ignoring  the marker information on the off- 
spring. The gametic relationships between the offspring 
can be calculated using (24). 

After constructing G,Ir,k, a  procedure equivalent to 
(1 1) and (12) can be used to determine  the vectors s for 
the gametic effects  in the offspring. From Equation 8 it 
can be seen that  the row vector containing  the gametic 
relationships of gametic effect k with gametic effects 1 
to k - 1 (Gi, r,k) is equal to 

smSd - s ~ , ~  = 0.67. - 

G:l r,k = Gul r,k-lsk' 644) 

Consequently, the vector sk with contributions of  ga- 
metic effects l to k - l can be obtained from 

' k  = G~llr,k-IG:I r,k' (-45) 

Given sk we can use Equation 9 to get Gr;,'r,k. 
The computational requirements to solve sk using (A5) 

can be reduced considerably  because  only the gametic  re- 
lationships pertaining to parents and all  offspring  have  to 
be considered rather than the entire G6, r,k. 


