Table 4.
Machine learning model performance.
| Factor | Random forest | Logistic regression | Gradient boosting | Naive Bayes |
|---|---|---|---|---|
| True positives (TP) | 60 | 55 | 55 | 44 |
| True Negatives (TN) | 20 | 16 | 22 | 18 |
| False Positives (FP) | 4 | 8 | 2 | 6 |
| False Negatives (FN) | 6 | 11 | 11 | 22 |
| Accuracy | 0.89 | 0.79 | 0.86 | 0.69 |
| Precision | 0.94 | 0.87 | 0.96 | 0.88 |
| Sensitivity (Recall) | 0.91 | 0.83 | 0.83 | 0.67 |
| Specificity | 0.83 | 0.67 | 0.92 | 0.75 |
| F1 Score | 0.92 | 0.85 | 0.89 | 0.76 |
| AUC-ROC | 0.91 | 0.82 | 0.89 | 0.74 |
| AUC-PR | 0.91 | 0.88 | 0.91 | 0.84 |
AUC, Area Under the Curve; ROC, Receiver Operating Characteristic; PR, Precision-Recall.