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ABSTRACT 
We describe  a method for  constructing  the confidence interval of the  QTL location  parameter.  This 

method is developed in  the  local  asymptotic  framework,  leading  to  a  linear model at each  position of the 
putative  QTL. The idea is  to  construct  a  likelihood  ratio  test,  using  statistics  whose  asymptotic  distribution 
does not depend on the  nuisance  parameters  and  in  particular on the  effect of the  QTL. We show 
theoretical  properties of the confidence interval  built  with  this test,  and  compare it with  the  classical 
confidence interval using  simulations. We show in  particular,  that  our confidence interval  has  the  correct 
probability of containing  the  true  map  location of the  QTL, for  almost  all  QTLs,  whereas  the  classical 
confidence interval can  be very  biased  for  QTLs  having  small effect. 

F OLLOWING SAX (1923), many methods have been 
developed in the  literature  for  detecting quantita- 

tive trait loci (QTL) using marker  information. Estimat- 
ing QTL map location is possible using “interval m a p  
ping”  procedures based on maximum likelihood 
estimation (LANDER and BOTSTEIN 1989) or  on linearized 
version  of maximum likelihood (KNNP et al. 1990; 
HALEYand KNOTT 1992). As pointed out by  DARVASI et al. 
(1993),  a very important quantity is the confidence in- 
terval  of the QTL position on  the chromosome. 

CONNEALLY et al. (1985), in the field of linkage analy- 
sis, and LANDER and BOTSTEIN (1989) proposed  the use 
of a  confidence interval based on limiting x2 distribution 
of the likelihood ratio test between two positions. This 
idea leads to a very simple construction of the confi- 
dence interval: take the maximum value  of the LOD 
score, substract c, and the locations corresponding to 
this value  of the LOD score are  the  extremes of the con- 
fidence interval (at 96.8% when using c = 1). 
As we  will see, simulations show that  the x‘ approxi- 

mation is not correct  for QTLs  having  small effect, and 
therefore  that  the  corresponding confidence intervals 
are biased, e.g., the probability of the QTL being in an 
interval is  less than  the  nominal level. The reason for this 
is that  the regularity conditions  for  the convergence of 
the likelihood ratio test toward a 2 distribution are not 
fulfilled for QTLs  having  small  effect. 

In this report, we will study the asymptotic properties 
of the likelihood ratio test for QTLs having  small effect 
and construct  a new test and  therefore  a new unbiased 
confidence interval. 

MODEL AND CLASSICAL  CONFIDENCE  INTERVAL 

We consider  a backcross sample of  size n. Consider a 
QTL present at  the position d on a  chromosome of 
length L. The trait value has a  normal distribution with 
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means p A  and pB for  the two QTL genotypes present in 
the backcross population and  the same variance 4, for 
both genotypes. We  will use a = pA - kB and p = (kA 
+ pB)/2. For each individual k = 1, . . . , n, we score the 
phenotypic value  of the trait y k  and  a set o f j  = 1, . . . , 
Jmarkers with the information Mj,k that takes the values 
A or B depending  on  the allele of the marker. The vector 
of phenotypic observation will be  denoted by Y, and the 
vector of  all marker information by At. 

The likelihood of Y, conditional on the  marker in- 
formation is LA( Y, a, k, r?, d). Its complete expression 
is  given  by LANDER and BOTSTEIN (1989) 

LA ( Y,  a, k, u2, 4 
= n LG&(’9 d)’$(l) + (l - d)llk(O)) 

k 

where G,( k,  d) is the probability for individual k to have 
genotype A at position d, conditional on  the  marker 
information A; Zk(x) = +( y k  - p - xu, r ? ) ,  for x equal 
0 or 1, is the probability density function for  the  normal 
distribution with mean 0 and variance 4. In  the follow- 
ing, we assume no interference in recombination events 
and therefore use Haldane’s map  function. This func- 
tion associates distance d with recombination probabil- 
ity r ( d )  = 0.5(1 - exp(-2d)). 

A confidence  interval  can  be  built as follows 
( CONNEALLY et al. 1985): at each point do along the chro- 
mosome, perform  the likelihood ratio test 

~ 4 )  = 2 1n 
S U P , ~ , ~ ~ L ~ ( Y ,  a, P, u2, 4) 

~ u p ~ , ~ & ( Y ,  a = 0, CL, u2, 4) * 

Note that  the LOD score test is essentially the same test 
as the likelihood ratio test R( do), where the log,,  is used 
instead of the Naperian logarithm and  the ratio is not 
multiplied by 2. Therefore, it is asymptotically distrib 
uted as  log,, e$/2 = 0 . 2 7 ~ ~ .  



B. Mangin, B. Gofinet  and A. Rebai 

3 4 0 1 2 
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We can now calculate the test T(  do) 

q4) = sup [ad)] - R ( 4 )  
d 

SUpGp,u~,dL&(Y, a> P> u', d) 
s u p G + , u ~ ~ ~ ( y ,  a, p9 (+*1 4) * 

= 2 In 

Considering that T(  do) follows a x' distribution with 
one degree of freedom under the null hypothesis, that 
is do is the  correct position, the (1 - a )  confidence in- 
terval  is: [ dinf, dsup], where dinf ( &,) is the smallest (the 
greatest) value  of do such that T( do) is smaller than 
x;,a; is the a quantile of a x' with 1 d.f. 

The theory underlying this confidence interval is cor- 
rect  for any non-null finite value  of a and  an infinite 
number n of individuals. To investigate the quality of 
this confidence interval, we perform simulations for 
some a values  with n = 2 0 0 , 4  = 1 and a chromosome 
of length 100 centiMorgan (cM) having markers each 20 
cM (Figure 1) and 5 cM (Figure 2). The QTL is located 
in the middle of the chromosome in the first  case, and 
at d = 47.5 cM in the second case. It  appears  that  the 
confidence interval is unbiased for large values of a but 
can be very biased for small  values of a, particularly in 
the case  of a dense map. 

The reason for this is that  for small  value of a, the 
likelihood ratio test T(  d )  does not follow a x' distribu- 
tion, when the QTL is located at d. Table 1 shows that 
the quantiles of the distribution of T( d )  are different 
from those of a x*. The difference depends  on  the a 
values and is quite large when a is small. 

The following section gives a theoretical framework to 
deal with these small  values  of a. 

FIGURE 1 .-Empirical probabili- 
ties that  the confidence interval 
based on T(d,) contains the actual 
position of the QTL  over 1,000 r e p  
lications.  Data for 200 backcross 
progeny were simulated with a 100 
cM chromosome with markers each 
20 cM. The QTL. is located  in the 
middle of the chromosome (4 = 1). 
Simulations  were  performed  with  ac- 
tual value a = (0, 0.1, 0.8, 1.5, 2, 4). 
Vertical  segments are for the 95% 
confidence  interval of the empirical 
probabilities. 

CONSTRUCTING A SIMILAR  CONFIDENCE 
INTERVAL 

A usual way to obtain a confidence interval based on 
the theory of  tests  is to defined a 1 - a confidence in- 
terval  as the set ofvalues do not "rejected" at level a using 
some function of Y, denoted U( do),  i .e .  

(4; u(4J 5 dd,,)} 

P [ U ( 4  > C J 4 ) l  = a* 

with 

In models  where there are nuisance  parameters, the 
central requirement for this procedure is to be similar  for 
all the nuisance parameters, i.e., the probability of U( d,,) 
being greater than c( d,,)  equals a for all the nuisance  pa- 
rameters. That is not the case for the classical procedure. 

Basic ideas: To obtain a similar procedure for all the 
nuisance parameters (p,  4, a ) ,  we propose  to  use a similar 
test, as described by Cox and HINKLEY (1974). The basic 
idea for similarity  is to find statistics  whose  distribution 
does not  depend on the parameter a under the null hy- 
pothesis: the QTL is located at 4. Suppose that, under the 
null hypothesis, Go is a sdc ien t  statistic for the parameter 
a then a good way to obtain similar procedure is to work 
with the conditional distribution of Y given zq 

The second idea is to work in the local  asymptotic 
framework. This framework is used in  asymptotic theory 
to obtain the power  of maximum likelihood ratio test, 
whose  power  is not trivially equal to 1. It is the  correct 
framework to deal with  QTLs that can be  detected with 
powers ranging from 20 to 90% (REBA~ et al. 1994). Note 
that when the classical interval is correct,  the power of 
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TABLE 1 

Empirical quantiles and  their 95% confidence interval for the 
distribution of T(do) over 1,000 replications 

Quantile 

10% 5% 

X: 3.84 2.71 

a = 0.1 

' 49 4.89 5,69 3.34 3.75 .109 a = 0.8 

5 1 8  5.96 6,42 '." 4.51 5,18 a = 0.4 

5.96 6.36 7,42 '." 5.07 5,42 

In each cell, the number in the middle is the empirical quantile 
and the italic numbers in the corners are  the lower and upper bounds 
of a 95% confidence interval for the quantile. 

Data for 200 backcross progeny where simulated with a lOOcM 
chromosome with markers each 5 cM. The QTL is located at  a dis- 
tance of 47.5 cM from one  end of the chromosome (d = 1). 

the maximum likelihood ratio test for QTL detection 
converges to 1 (Table 2). 

Formally, in the local  asymptotic  framework, as n + 00, 
a is assumed to tend to 0 in  such a way that a f i  converges 
to a finite constant 6 (Cox and HWKLEY 1974,  p.317). FEIN- 
GOLD et al. (1993)  used the same  asymptotic  framework. 

In this framework, T( do) is not asymptotically distrib- 
uted as a 2 under  the null hypothesis. This is because 
the  information matrix is not positive-definite for a = 0, 
and therefore  the classical  Taylor expansions cannot 
be  made in the  neighborhood of a = 0. In particular, 
the  parameter d cannot be estimated consistently for 
a = 6/<n, i. e. ,  the maximum likelihood estimator d of 
d does not converge toward d when the  number of ob- 
servations tends  to infinity. This can be easily seen in a 

FIGURE 2.-Empirical probabili- 
ties that  the confidence interval 
based on T(  do) contains the actual 
position of the QTL  over 1,000 r e p  
lications. Data for 200 backcross 
progeny were simulated with a 100 
cM chromosome with markers each 
5 cM. The QTL is located at a dis- 
tance of 47.5 cM from one  end of 
the chromosome (4 = 1) .  Simula- 
tions were performed with actual 
value a = {0,0.1,0.8,1.5,2,4}.Vertical 
segments are for the 95% confi- 
dence interval of the empirical 
probabilities. 

3 4 

TABLE 2 

Empirical  power (in %) of interval  mapping for QTL detection 
over 1,000 replications 

n 

200 800 

5% quantile 1% quantile 5% quantile 1% quantile 
at density at density at density at density 

(cM): (cM): (cM): (cM): 

a 20 5 20 5 20  20 

0.1 8.5 9.0 1.0 1.2 18.2 4.2 
0.4 59.8 64.0 28.4 30.0 99.3 95.2 
0.8 99.3 99.9 95.2 98.5 100.0 100.0 

The QTL is located in the middle of the chromosome for a marker 
density of 20 cM and at  a distance of 47.5 cM from one  end of the 
chromosome for a marker density of 5 cM (4 = 1). 

simple situation with  only two markers that is treated in 
detail in the following section. 

The new test: Working in the local  asymptotic frame- 
work,  asymptotically sufficient statistics can be found  for 
the  parameters a, w,  d, d. These  are p, the global mean, 
(i2, the classical estimator of the variance, and  the mean 
class difference at each marker Sj; j = 1, . . . , J 

where lrq,&= is the  indicator of the event [Mj,k = e ] .  

Proof of  asymptotic  sufficiency  of these statistics is 
straightforward using the work  of RE& et al. (1994). 
They showed that  the maximum likelihood estimators in 
the complete model of LANDER and BOTSTEIN (1989) 
(known to be asymptotically sufficient statistics) and the 



1304 B. Mangin, B. Goffhet  and A. Rebai 

regression estimators in the linearised model of KNAPP 

et  al. (1990) and HALEY and &om (1992) are asymp- 
totically equivalent ( e .   g . ,  convergent in probability). 

Consider now z4 the maximum likelihood estimator 
of a if the QTL is located at do and Z(  do) the vector of 
components Z,( do); j = 1, . . . , J - 1 defined by: 

where rj, do denotes  the probability of recombination 
between the marker j and a QTL located at do. 

Proposition 1 (proven in APPENDIX [All) shows that 
Z (  do) is asymptotically a similar  statistic for all the nui- 
sance parameter when the QTL  is supposed to be lo- 
cated at do. 

Proposition 1. Under the null  hypothesis-the  QTL  is 
located at  do-we  get: 

where the matrix V depends only on the length of the 
chromosome and the position of the makers. 

Proposition 2 (proven in APPENDIX [MI) gives the as- 
ymptotic distribution of Z(do)  when the QTL is sup- 
posed to  be located at d. 

Proposition 2. Under the alternative  hypothesis-the 
QTL is located at d-, we get: 

where  the vector  X(d, d,,) depends only on the length of 
the chromosome, the position of the  makers, d  and d,. 

Using the asymptotic distribution of Z(do)  we can 
build a maximum likelihood ratio test Tz(   do) ,  

where L a ( * )  means that  the likelihood is calculated with 
the asymptotic distribution of Z(do)  and 6 = 6 / a .  

This gives: 

where: 

W ( d ,  4,) = X(d, 4 ) ' V - ' q 4 )  
and Var,(.) denotes  the variance for  the asymptotic  dis- 
tribution of Z ( d o ) .  

The algebric expression of Tz(do)  is  given in the 
APPENDIX [MI. 

THRESHOLD CALCULATIONS 

To be able to use the confidence interval built with 
Tz(   do) ,  we need  the asymptotic distribution of this sta- 

tistic under the hypothesis that  the QTL is located at do. 
This distribution does not  depend  on  the  parameters 6, 
4 and p, but may depend  on  the  length of the  chro- 
mosome, the  number  and  the position of the markers 
and  the position do. 

The  case with only two markers: In this situation, the 
statistic W(d,   do )  does  not  depend on d. So, the asymp- 
totic distribution of Tz( do) under the null hypothesis is 
a x:. Looking at  the algebric expression of W (   d ,   d o ) ,  
given in the APPENDIX [A3], we see that: 

1 

where p is the recombination probability between the 
two markers and r (do )  the recombination probability 
between the QTL and  the first marker. 

We get as a 1 - a confidence interval, the set of points: 

The  end points of the confidence region for the parameter 
( 1 - 24 4) ) appear to be the solution of a quadratic  func- 
tion. In particular, the confidence region is not symmetric 
around the maximum  likelihood  estimator of d. Note that 
we observe here the same  type  of result as RELLER (1954) 
with the confidence interval of the ratio of  two random 
variables. 

Another feature of the case  with  only  two markers is the 
fact that the classical confidence interval and the new con- 
fidence interval could be the same. APPENDIX [A41 explains 
this  particularity and the non-consistency of the likelihood 
estimator of d in the local  asymptotic  framework. 

The  case with more than 2 markers: In this case, the 
asymptotic distribution of Tz(do)  is the distribution of 
the  supremum of a x: process with a covariance function 
depending  on do. As it is difficult to obtain this distri- 
bution using analytical arguments, we propose to use 
simulations. These simulations are made using the as- 
ymptotic distributions of the Sj for j = 1, . . . , J. 

Figures 3 and 4 show the c,( 4) threshold functions of 
this  distribution for the 5 and 10% levels and for diEerent 
numbers of markers  equally  spaced along the chromo- 
some. In these  cases, the threshold function c,( $) is sym- 
metric around the middle of the chromosome so we  give 
this function for  half of the chromosome. 

RESULTS  AND  DISCUSSION 

Because the new confidence interval is constructed 
using  asymptotic arguments in the local  asymptotic  frame- 
work, it is important to determine their qualities  in  real 
situations.  This  has been done using  simulations. 
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0.0 0.1 0.2 0.3 0.4 0.5 

Position  on  the  chromosome (Morgan) 

- 
1 6 markers 1 

FIGURE 3.-Empirical  threshold 
of  the T,(d,) distribution  for  the 
5% level  over 50,000 replications. 

FIGURE 4.-Empirical  threshold 
of the Tz(do) distribution  for  the 
10%  level  over 50,000  replications. 

0.0 0. I 0.2 0.3 0.4 0.5 

Position  on  the  chromosome  (Morgan) 

Table 3 gives the empirical  probability for the interval 
to contain the actual  position of the QTL. Simulations 
are made with a  chromosome of 1 Morgan,  with  markers 
at each 20 or 5 cM with n = 200 or n = 800. It appears 
that the confidence  interval is unbiased for all  values  of 
a that have been  used. 

We  show  in detail  a  simulated  example in Figure 5. This 
simulation  has  been  performed  with n = 200, a = 0.4,d 
= 1 and  a  marker at each 5 cM. The dashed  line  represents 
T( d )  and the classical  confidence  interval is the set  of the 

points  behind the threshold 2.71. The full  line  represents 
T,( d )  and the threshold is that shown  in  Figure 4. In this 
case, the actual  position  of the QTL, shown  with an mow 
on Figure 5, is not  in  the classical  confidence  interval  but 
is in the new one. We obtain  this type  of  result  in about 20% 
of the  replications. 

The practical  use of the new confidence  interval needs 
the computation of T,( do) using the formula (1) and its 
algebric  expression given  in APPENDIX [A3]. Then the 
correct threshold of the test statistic T,(d,,) for each 
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0.0 0.2 0.4  0.6 

Position on the chromosome 

TABLE 3 

Empirical  probabilities  (in %) that  the  Confidence  interval 
based  on TZ(cb) contains the actual  position 

of the QTL over 10,000 replications 

n 

200 800 
at density at density 

(cM) : (cM): 

a 20 5 20 

0.1 90.0 90.3 90.6 
0.5 89.5 89.6 89.9 
1 89.6 89.8 89.9 
2 90.4 89.8 89.4 
4 89.7 89.6 89.8 

The QTL is located in the middle of the chromosome for a marker 
density of 20 cM and at  a distance of 47.5 cM from one  end of the 
chromosome for a marker density of 5 cM (0' = 1 ) .  All the empirical 
probabilities are in the 99% confidence region of 0.9. 

position do in a specific  situation  must be found. In Figures 
3 and 4, we  give the threshold function for some  situations. 
For other situations,  far from the equally  spaced number 
of  markers studied, specific  simulations should be per- 
formed. Even if the use of Tz( 4) seems to be more com- 
plicated than the use  of T( 4), it  must be preferred because 
it guarantees an unbiased confidence interval.  Moreover, 
a correct threshold for T( 4) cannot be obtained because 
it depends on the value of the unknown parameter a. 

In  the  general case, we have no information on  the 
power  of the test Tz( do) and  therefore on  the  length of 
the new interval. However, we worked with  asymptotic 
sufficient statistics and can argue for completion of {p, 
2, ;;$ in the local asymptotic framework under the null 
hypothesis. Then in this framework, Z(do) contains all 
the informations coming from Y, concerning d and  not 
depending  on  the nuisance parameters under the hy- 

FIGURE 5.-Confidence  intervals 
for the  position of the QTL built 
respectively  on T( do)  and T,( do). 
Data for 200 backcross  progeny 
were simulated  with a 100 cM chro- 
mosome  with  markers each 5 cM 
(4 = 1). The actual position of the 
QTL is pointed  with the vertical  ar- 
row and its actual value is a = 0.4. 
The full line is T,(d,) and the 
threshold is that shown in Figure 4. 
The  dash line is T (  do) and the con- 
fidence  interval is the set of points 
below the  threshold 2.71. 

pothesis that  the QTL is at position do. COX and HINKLEY 
(1974, p. 135) used the  argument of completion to en- 
sure that  the region constructed with the likelihood ra- 
tio test of the distribution of the  data  conditioned on a 
complete sufficient statistic is the uniformly most pow- 
erful similar region. The main difference is that, in our 
work, we got  the  properties of  sufficiency and complete- 
ness  only  asymptotically and locally. 

Another  problem is to calculate the probability that 
the confidence interval contains the actual position of 
the QTL, conditional on to the fact that  the LOD score 
test is greater  than its threshold. 

FEINGOLD et al. (1993), in the framework of identity by 
descent  mapping, gave approximate confidence regions 
for gene position based on sophisticated theoretical de- 
velopments about  point processes in the case of an ide- 
ally dense map. Their  approach could be  adapted in our 
situation and would  give interesting results for this kind 
of map. 

An interesting use of these confidence intervals is 
when one wants to test the consistency of a QTL  over 
different environments or crosses. For instance, suppose 
a QTL  was detected in some environment with a specific 
effect and position on the chromosome. A QTL in the 
same region of the chromosome was also detected in 
another  environment  but with different  genetic effect 
(e.g., PATTERSON et al. 1991). Some  developments around 
our method could permit a test of whether the locations 
of the QTLs in both environments are the same. 

Having a correct confidence interval for the QTL po- 
sition is  also  of major interest in gene introgression ex- 
periments, by repeated backcrosses ( e . g . ,  oligogenic dis- 
ease resistance, MELCHINGER 1990).  It would increase the 
efficiency and  the reliability of such marker-facilitated 
selection programs. 
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Thanks are  due to the referees whose comments clarified many 
issues and led  to a better presentation. 

LITERATURE CITED 

CONNEALLY, P.  M., J. H. EDWARDS, K. K. KIDD, J. M. LALOUEL, N. E. 
MORTON et al., 1985 Reports of the  committee  methods 
of linkage analysis and reporting. Cytogent. Cell Genet. 40: 

Cox, D. R., AND D. V. HINKLEY, 1974 Theoretical  Statistics. Chapman 
& Hall, London. 

DARVASI,  A,, A. WEINREB, V. MINKE, J. I. WELLERAND M. SOLLER, 1993 De- 
tecting marker QTL gene effect and map location using a satu- 
rated genetic map. Genetics 134 943-951. 

FEINGOLD, E., P. 0. BROWN AND D. SEGMLIND, 1993 Gaussian  mod- 
els for genetic  linkage  analysis  using  complete  high-resolution  maps 
of  identity by descent. Am. J. Hum. Genet 53 234-251. 

FIELLER, E. C., 1954 Some problems in interval estimation. J. R. Stat. 

HALEY,  C. S., AND S. A. horn,  1992 A simple regression method for 

Heredity 69: 315-324. 
mapping quantitative trait loci by using molecular markers. 

KNAPP, S. J., W. C. BRIDGES AND D. BIRKES, 1990 Mapping quantitative 
trait loci  using molecular marker linkage  maps. Theor. Appl. 
Genet. 79: 583-592. 

LANDER, E. S., AND D. BOTSTEIN, 1989 Mapping Mendelian factors un- 
derlying quantitative traits using RFLP linkage  maps. Genetics 
121: 185-199. 

MELCHINGER, A. E., 1990 Use  of molecular markers in breeding for 
oligogenic disease resistance. Plant Breed. 104 1-19. 

PATERSON, A. H., S. DAMON, J. D.  HEWITT,  D. ZAMIR, H. D. RABINIWITCH 
et al., 1991 Mendelian factors underlying quantitative traits in 

ments. Genetics 127: 181-197. 
tomato: comparison across  species, generations and environ- 

REBA~, A,, B. GOFFINET AND B. MANGIN, 1994 Comparing power of dif- 
ferent methods for QTL detection. Biometrics (in press). 

SAX, K, 1923 The association  of  sizes differences with seed  coat pattern 
and pigmentation  in Phaseolus vulgarus.  Genetics 8: 552-560. 

356-359. 

soc. B 16: 175-185. 

Communicating editor: B. S. WEIR 

APPENDIX 

[All In the local  asymptotic  framework, the maximum 
likelihood  estimators are asymptotically  equivalent to the 
regression  estimators  using the linearized  model: 

y k  = + aGA4(b d) + ‘k 

where the ek are  independent  and identically distributed as 
normal with mean 0 and variance c? (REM et al. 1994). 

Using the linearized model,  it is simple to see that $, 
and the Si for j = 1, . . . , J are asymptotic sufficient 

In the following, we  will use that l[,,,=Al/n and 

For the null hypothesis-the QTL is located at do- 

statistics for p, a‘, S and d. 

l,y,h=,/n both converge in probability to X. 

we get: 

where id, is the left  marker of the interval  where the 
QTL is located, T , ~  ( r J  is the  recombination  rate be- 

tween the QTL and  the  marker j (between the markers 
i and j) and xa,b = (1 - 2r0J.  

As 62 converge in probability to 4, it is sufficient to 
study the  distribution of the statistics 4 for j = 1, . . . , 
Jin the linearized  model,  to get  the asymptotic dis- 
tribution of (fizd, ad, ) ) .  

In the linearised model, S ,  the vector of components 
Sj, is multinormal. This implies that &, and Z(4) are 
asymptotically and locally multinormal. 

Under  the null hypothesis: 

E(%) = [(l - 2?j4)/2]S. 

So we get: 

my4)) = 0 

Cov(S,, %+J = a2(Pr(4.  = A, M,+, = A)  

+ Pr(Mj = B, Mj+, = B )  

- Pr(Mj = A, Mj+l = B )  

- Pr (M, = B, Mj+l = A))  

= a2(1 - 2?jj+J 

So, the matrix V depends only on the  length of the 
chromosome and the location of the markers. 

Besides,  given three  points on the  genome,  denoted 
a, b, c, located in term of probability of recombination 
by r,,,,  rb,c and ra,c, if b is located between a and c we get, 
assuming no interference in recombination events: 

‘a,r = xo,bxb,c (3) 
Using (3),  we get: 

COV(Z@ Z,(&)) = 0 

[ A 2 1  To obtain the asymptotic distribution of  Z( d o ) ,  
we study the distribution of S in the linearised model 
under the alternative hypothesis-the QTL  is located 
at d-. 

E(%) -- [(l - 27,,)/2]6 
We then get: 

E(z4) 2. X ( d t  4)(S/a) 
where the j th  component of the vector X ( d ,  4) is: 

X(d,  4)j = (Xj,&,d, - Xj+* ,d/Xj+1,$)  (4) 

The same arguments  than in APPENDIX [All provides 
for  Z(do)  an asymptotic normal distribution with  vari- 
ance V. 

[ A 3 1  The expression of W( d,do) is: 

% - I  

w(d4)  = ai&&,b($) + aid<d,(&) i- x q(4) for id< ‘4, 
,=“+I  

W d  4) = 4&4) for id = i4 

W(d,  4) = ai, 4&(4) + aiid.q4) + E g(&) for id > id, 
“-1 

] = & + I  
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with 

Using that Vis a diagonal matrix with diagonal ele- 
ment  equal to: 

1 x,,,+ 1 1 
2 v.. = - - +- 

the algebric expression of T,(do) is  easily found. 

J J  x;, xj,45+1,& ' ; + I , ,  

Details of calculations: Using (2) we get: 

v .  =-- 5 , j +  I I+ 1 

X j , 4 5 + L 4   x j , 4 x j + l + 1 . 4  

- X j + l , j + I   x j + l , j + l + l  

1.J+I 

+ 
5 + 1 , , X j + r ,   x j + l , , X j + I + l , &  

Now, using (3) and  the QLT position under  the null 

Suppose that id < zdo, we obtain using (2), (3) and (4) : 
hypothesis, give y , j + . l  = 0 for 1 > 0. 

4)j 

[A41 In  the local asymptotic framework,  consider 
the asymptotic distribution,  under  the  null hypoth- 
esis, of the vector S, which elements  are SI and S, 
divided by m: 

with 

w= ( x:,z x ; z )  

where x i , j  is defined  in APPENDIX [All .  
Maximum likelihood  estimator for the  parameter d: 

Using the linearised  model and  the vector U( d ) ,  
we found  that  an asymptotic equivalent statistic of 
the maximum  likelihood  estimator for = (1 - 
2r(d))2 is: 

j <  id 

j =  id 

i d <  j <  id, 

j =  i, 

i4 < j .  

Because the test is invariant by scale, the  constant xd, do 
can be left and we find  the expression given for W( d, do) 
in the case id < i,. 

For id = i,, we get: 

And for id > i,: 

X ( 4  a i  

This  estimator  does not converge towards (1 - 
2r( d ) ) 2 .  Therefore,  the maximum likelihood estimator 
for  the  parameter d does not converge toward d. 

Asymptotic  equivalence  between Tz(do) and Tz(do): 
Denote PG:, the  projector  onto  the  linear space gen- 
erated by U( do) for  the W" norm, P:I(i, the  projector 
onto  the  orthogonal of the space for  the W" norm 
and 1 1 .  . .]I;-, the  square of the W" norm. 

When only 2  markers  are  present on the  chromo- 
some, it can  be  proved  that T( do) and T,( do) are 
equiva-lent when 

The probability of this  event is not null,  because the 
region  covered by {& U( d )  } and  the vector S' are  both 
in  a two dimensional  space. 

This result follows from the equality 


