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ABSTRACT 
We examine the statistical properties of cytonuclear  disequilibria  within a system including one diploid 

nuclear locus and  one haploid cytoplasmic  locus, each with two alleles. The results  provide  practical 
guidelines for the design and interpretation of cytonuclear surveys seeking to utilize the novel  evolutionary 
information recorded in the observed pattern of cytonuclear  associations. Important applications include 
population studies of nuclear allozymes in conjunction with genes from mitochondria, chloroplasts, or 
cytoplasmically inherited microorganisms. Our attention focuses on the allelic and genotypic  disequilibria, 
which  respectively  measure the nonrandom associations  between the cytotypes and the nuclear alleles and 
genotypes. We first  derive the maximum  likelihood  estimators and their approximate large  sample vari- 
ances for each disequilibrium  measure. These are each in turn used to set up an  asymptotic  test  of the 
null hypothesis of no disequilibrium. We then calculate the minimum sample sizes required to detect 
the disequilibria under specified alternate hypotheses. The work  also incorporates  the deviation from 
Hardy-Weinberg equilibrium at the nuclear locus, which can significantly affect the results. The 
practical utility of this new sampling theory is illustrated through applications to two nuclear- 
mitochondrial  data sets. 

B ECAUSE OF the  contrasting modes of inheritance 
of biparentally inherited  nuclear loci and uni- 

parentally inherited cytoplasmic loci, joint nuclear- 
cytoplasmic data can provide important  and qualita- 
tively new insights into  the evolutionary  forces  acting 
on  natural  populations. Much of this novel informa- 
tion is encoded by the  nonrandom associations that 
are increasingly  observed  between  nuclear and cyto- 
plasmic markers (SAGHAI-MAROOF et al. 1992; AVISE et al. 
1990; LAMB and AVISE 1986; SPOLSKY and UZZELL 1984; 
AVISE et al. 1984; FERRIS et al. 1983).  There is  now a 
substantial theoretical framework from which to analyze 
cytonuclear data and use  it to make  inferences about a 
variety  of important evolutionary  processes.  Initial  appli- 
cations  to  hybrid  zones  have been particularly  fruitful, 
yielding formal statistical  estimates  of the rates of gene flow 
and assortative mating, which appear to be more sensitive 
than, and may be unobtainable from, nuclear or cyto- 
plasmic systems alone (ARNOLD et al. 1988; ASMUSSEN 

et al. 1989; AVISE et al. 1990).  The  theoretical  founda- 
tion  has also been laid for  using  cytonuclear data as 
markers of admixture,  population subdivision, and 
genetic  drift (ASMUSSEN and ARNOLD 1991; Fu and 
ARNOLD 1991, 1992a),  and in plant  populations,  to 
decompose  gene flow into  diploid  (seed) and haploid 
(pollen)  components (ASMUSSEN and SCHNABEL 1991; 
SCHNABEL and ASMUSSEN 1989, 1992). 

The present study provides a crucial link for these and 
other applications by formally developing the statistical 
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properties of the cytonuclear disequilibrium statistics in- 
troduced by ASMUSSEN et al. (1987). Our approach is 
based on that summarized by WEIR (1979,1990)  for two 
locus  nuclear systems. We begin by reviewing the cy- 
tonuclear  parameterization  and  the  disequilibrium 
measures which account  for  the  nonrandom associa- 
tions  between cytoplasmic alleles and  nuclear alleles 
or genotypes. We then show  how to  estimate  these 
disequilibria and  their sampling variances, together 
with  how to use them to construct tests  of the null hypoth- 
esis,  namely that a given  disequilibrium is zero.  Finally, we 
show  how  to calculate the sample size required to detect a 
level  of either an allelic or a genotypic  disequilibrium  speci- 
fied  in an alternative  hypothesis.  These procedures are il- 
lustrated through applications to two recent nuclear- 
mitochondrial data sets. 

GENERAL  DEVELOPMENT 

Basic cytonuclear system: We are  concerned with  es- 
timating the  nonrandom associations (disequilibria) in 
a diploid population with two alleles ( A ,  a )  at  an au- 
tosomal nuclear locus and two alleles ( M ,  rn) at a h a p  
loid cytoplasmic  locus. The populational  frequencies of 
the six  possible cytonuclear genotypes are  denoted as in 
Table  1,  together with the marginal genotypic frequen- 
cies at  the individual loci. Note that we have adopted a 
more informative notation in  which the P symbol de- 
notes a frequency, with nuclear genes superscripted and 
cytoplasmic  alleles (cytotypes) subscripted. e, for in- 
stance, replaces u1 as the frequency of individuals 
who are homozygous for  the A allele and have the M 
cytotype,  while PAA replaces u as the frequency of AA 
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TABLE 1 

Geno-ic  frequencies and equivalent  measures  from ASMUSSEN 
et tal. (1987) 

Nuclear genotypes 

Cytotype AA Aa aa Total 

M P Z =  u1 P $ =  u1 P ; =  w1 P" x 
m P f =  u2 P2= up P;= w2 P m =  y 

Total p = _ v  pna,w 1 .o 

homozygotes, PM replaces x as the frequency of the M 
cytotype, and PA = PAA + %PA" replaces p as the 
frequency of allele A.  The full correspondence between 
this and  our earlier genotypic frequency notation is in- 
dicated in Table 1. 

We  will also make use of the frequency measure 

PM=Pf+pg 

that intuitively corresponds  to  the frequency of gametes 
carrylng the A nuclear allele and  the M cytotype.  For- 
mally, pM is the probability that when you sample an 
individual from the  population,  it has the M cytotype, 
and a randomly sampled nuclear allele from that indi- 
vidual  is A. In previous work this has been  denoted by 
e, (CLUK 1984; ASMUSSEN et al. 1987) or PI (ASMUSSEN 

and SCHNABEL 1991). 
Analogous notation will be used with the symbols n 

and P in place of P to denote  the sample counts and 
estimators, respectively, associated with the various fre- 
quency variables. 

Disequilibrium  measures: We focus on two types 
of cytonuclear associations. The first is the allelic 
disequilibrium 

D;= PM- P"PM (1) 

which  is analogous to  the  standard gametic disequilib 
rium  for  a two locus nuclear system and measures non- 
random associations between the nuclear alleles and the 
cytotypes. We also consider the  three genotypic disequi- 
libria 

D $ = e - P P M  (2) 

D$' = p; - P""PM (3) 

D Z = E - P " P M  (4) 

which  similarly measure nonrandom associations  be- 
tween each of the nuclear genotypes and the two cyto- 
types. From these we obtain the basic cytonuclear 
parameterization shown in Table 2. Note that D L  
D S ,  and DE are identical to D,  D,, D, and D,, re- 
spectively,  of ASMUSSEN et al. (1987), and reduce  to two 
independent disequilibrium measures as a result of the 
interrelationships 

D; = D$ -+ $ ~ g  (5) 

and 

D $ + D $ = + D ~ = o .  (6 )  

For completeness, we  will also  specify the nuclear 
Hardy-Weinberg disequilibrium following  WEIR (1990) 
as DA = PAA - PA'. The  three  nuclear genotypic 
frequencies  can  be  decomposed  in  terms of DA and 
PA as 

p u  = P A '  + DA 

PAQ = 2PA(1 - PA) - 2DA (8) 

Pa. = (1 - PA)' + DA. (9) 

( 7) 

The six cytonuclear frequencies can then  be param- 
eterized by the nuclear and cytoplasmic allele frequen- 
cies, the Hardy-Weinberg disequilibrium ( D A )  , and two 
of the cytonuclear disequilibria (D;, D F ,   D E  and 
0;). We choose to emphasize the parameterization 
based on 0; and D$' (Table 3)  although we  will discuss 
DS since it is important  for making inferences about 
migration and mating patterns.  (Note  that  through sym- 
metry, arguments  for D$ are  the same for DE.) Under 
a null hypothesis of no disequilibria, the nuclear allele 
and the cytotype frequencies define the joint cyto- 
nuclear genotypic frequencies in the  population. The 
disequilibria are  constrained by the marginal frequen- 
cies,  as  shown  in Table 4. (The derivation of these 
bounds will appear elsewhere.) 

Estimators of  frequencies and disequilibria: We a s  
sume that when we sample individuals from a large 
population,  obtaining  an individual of a specific  type 
does not  alter  the probabilities of selecting  individuals 
of  any  type in  the  future.  The  distribution of  classes 
in a  sample thus follows the multinomial. (In small 
populations this would not  be  true, in which case  sam- 
pling would be based on  the hypergeometric distri- 
bution.) If  we have a  sample of n individuals, we write 
the  counts of the  different  cytonuclear  genotypes as 
the vector, (n$, n$', n;, n5, nk, nz). Clearly, any one 
of these  counts  could  be  written as the sample size 
minus  the  sum of the  remaining  counts, so that  there 
are five independent classes. From this  data  set we 
would like estimates of the five independent variables 
PA,  PM, DA,  D;, O S .  Since we have five parameters  and 
five independent classes  of data, we can use BAILEY'S 
(1951) method  for calculating  maximum  likelihood 
estimators  for the parameters. We merely need to 
set  the  observed  counts  equal  to the  expected 
values from  the  sample and solve the  ensuing five 
equations  (see  pp. 53-55 in WEIR 1990). This yields 
the following maximum  likelihood  estimators for  the 
three disequilibria 

(10) D A  = - (p)2 

Lj; = p; - ppM (11) 

M M M (12) B A A  = p A A  - ji4Ap 
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TABLE 2 

Basic cytonuclear  parameterization 

Nuclear genotypes 

Cyfotype AA Aa 

M P $ = P A P M + D $  PC = P a p M  4- D$ P , " = P a P M + D , "  PM 

aa Total 

m P f  = PA(l - P,) - D$ P$ = P ( l  - PM) - D e  P r  = P"(1 - PM) - D," 1 - PM 

Total PA P P" 1 

TABLE 3 

Cytonuclear  parameterization in terms of dele frequencies and disequilibria 

Nuclear genotypes 

Cytotype AA Aa aa 

M P Z = P P M + D $  P$ = pa PM + 2(D$ - D $ )  P," = Pa P,  + D$ - 2 0 ;  
m P f  = P ( 1  - PM) - D Z  P$ = p'(1 - PM) - 2(D$ - D Z )  P r  = P'(1 - PM) + 2 0 ;  - D g  

Total PA = PA' -i- D A  P = 2PA(1 - P A )  - 20" Pa = (1 - PA)' + D A  

where 

- 1  
n 

- 1  

P=-( n$ + nf) 

P = - [2( n$ + nF)  + n$ + nk] 
2n 

are  the maximum  likelihood  estimators for  the asso- 
ciated  frequencies. The maximum  likelihood estima- 
tors  for DZ and D," are  equivalent  to  that  for D$ with 
Aa (or aa) substituted  for AA in (12-13) and (17). 

Sampling  properties of the disequilibrium  estimators: 
The expected value  of each cytonuclear disequilibrium 
estimator (D;, D$, a$ and DE) has the  form 

% D =  (1 - k ) D  

indicating a slight bias in the estimators. (Details of the 
derivation can  be  found  in APPENDIX A.) The expected 
value for LY is 

1 
2n 

g p  = DA - - [P(1 - P) + DA] 

(WEIR 1990). 
To  determine  the statistical significance of observed 

disequilibria, we  may use the variances of our estimators. 
There  are two  ways to approach this. The first utilizes the 
Delta method, which is based on a first order Taylor's 
expansion of the  function whose variance is to be cal- 

culated (WEIR 1990). Ths  approach allows  us to calculate 
the approximate sampling variances which are of  im- 
mediate use for developing test statistics to study natural 
populations, and is what we  will focus on here. 

Applying the Delta method  to each of (10-12) yields 
the  approximate  expected values  of the sampling vari- 
ances for  the  three basic disequilibrium estimators 

Var(@) - [Pp(l - P)2 + DA(l - 2 P ) 2  - P'] (18) 
1 
n 

VX(@M) 

1 
2n 
- [P(1 - P)PM(l - PM) + DAPM(l - PM) (19) 

+ De(1 - 2PM) + PA1 - @)(1 - 2PM) - 20",'] 

1 
n Var(B$) - - [ P ( 1  - P)PM(l - PM) 

(20) 
+ D$(1 - 2 P ) ( 1  - 2PM) - x*]. 

The approximations  for Var(D$) and Var(D,") are 
equivalent  to  that in (20) for Var(8$) with AA re- 
placed by Aa or aa. The variances given in (18-20) can 
be used to  obtain  sample  variances by inserting  the 
estimators for  the measures on  the  right  hand sides of 
the  equations. 

The second way to calculate variances is to derive 
the total variances using our indicator variables  as has 
been  done  for  the two locus nuclear case  (BASTEN and 
WEIR 1992). These will help us  clarify the effects  of  evo- 
lutionary and sampling forces on  our statistics, for they 
take into  account  the genetic sampling which  gives 
rise to variation between replicate populations. Prelimi- 
nary work on this problem indicates that  the large 
samplevariances above are an O( l / n )  approximation of 
the total variances in infinite populations. Further 
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TABLE 4 

Bounds on the disequilibria from the marginal frequencies 

D Lower bound  (min  D) Upper bound (max D) 

DA - min[Pz ,  (1 - PA(1 - PA) 
D; - min[PA P,, (1 - P A )  (1 - P,), %PA P,v + % P ( 1  - P,)] min[PA(l - P,), (1 - P ) P , ,  % P A ( l  - PA,) + %P" P,] 
D Z  - m i n [ p A  P,, (1 - PA) (1 - P,)] m i n [ P A ( l  - P,), (1 - PA) P,] 
D$ - m i n [ P  P,, (1 - PA)(l - P,)] m i n [ P ( l  - P,), (1 - P )  P,] 
Dt - min[P"P,,  (1 - P ) ( 1  - P,)] min[P"(l - PM),  (1 - Pa) P,] 

TABLE 5 

Values of Si and 15: 

Note: R = DAP,(I - PM) + DC(1 - 2P,). 

development and analysis  of the total variance will be left 
for a  future  report. 

Testing hypotheses: The distributions of our disequi- 
librium estimators are approximately normal with 
means and variances calculated in the previous section. 
Suppose we are  interested in testing the null hypothesis 
defined by H,: D = 0, where D is one of (DA, D;, DZ, 
D?, Dg).  Under this null hypothesis, the estimator for 
D ( D )  has a  normal distribution with mean zero and 
variance V, = a:/., where for each D, 6; is n times the 
variance expressions of (18-20) assuming D = 0. The 
values of 6, are given  in Table 5. The statistic n f 2 ,  where 
i = D/SO,  provides a useful test statistic because n? = 
D 2 /  V, has an approximately 2 ( 1 )  distribution (since 
the  square of a  normal  random variable  divided by 
its variance has a 2(1) distribution). This statistic is tra- 
ditionally used in measuring nuclear gametic disequi- 
librium ( D ) ,  where using our present allele frequency 
notation, 

is often known  as the  correlation of genes. In the case 
of the cytonuclear genotypic disequilibria, say DZ, 

takes a similar form and could be termed  the  correlation 
of genotypes, while for the cytonuclear allelic disequi- 
librium the statistic  takes a  more complicated form 

where 

R = PPM(l - PM) + B$(l - 2PM) 

includes additional terms involving the estimators for 
the Hardy-Weinberg disequilibrium, p, and  the geno- 
typic disequilibrium, D f .  

For a  test at  the 0.05 significance level, we reject the 
null  hypothesis that D = 0 if ni2 > 3.84. The  order of 
testing the various disequilibria is naturally suggested 
by the  dependencies  among  the variances needed to 
calculate their test statistics (Table 5). In  general, we 
start by testing the Hardy-Weinberg disequilibrium DA 
(whose test statistic is independent of the  other dis- 
equilibria)  and  then test the genotypic  disequilibria, 
DZ, D$' and DZ (whose test statistics depend  on D A  
through  the decompositions in (7-9)). Finally we test 
the allelic disequilibrium, Di (whose test statistic de- 
pends  on  both DA and Of ) .  In  order to  implement  this 
procedure,  it is necessary to decide  whether or not  the 
estimates  for DA and D f  should  be  included in cal- 
culating the test statistics of the  higher  order mea- 
sures if  we fail to  reject  the  null hypothesis that D = 
0 for either of these lower order test statistics. We 
performed simulation  studies following the  method- 
ology  of Boos and BROWNE (1989) as applied by MUSE 
and WEIR (1992) to resolve this issue, based on which 
form of the  cytonuclear  test statistics better fit a x2(  1 )  
distribution.  The results  indicate  that  the  estimate  for 
D A  (and  the observed nuclear  genotypic  frequencies) 
should  be used in calculating  the test statistics based 
on (22-23) for  the  other disequilibria even if we fail 
to reject  the  null hypothesis H,: DA = 0. The estimate 
for D Z ,  on  the  other  hand, should  be  included in 
calculating the test statistic based on (23) for D$ only 
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if the  null hypothesis H,: D Z  = 0 has been  rejected; 
in cases where D$ is not significantly different  from 
0, it  should  be  set to 0 in  the test for Di .  

We also used these simulations to  determine over 
what range of sample sizes and allele frequencies  the 
asymptotic x2( 1) distribution can  be invoked for  the test 
statistics. The results indicate that  the test statistics, n?', 
behave as desired for reasonable sample sizes and in- 
termediate allele frequencies. Allele (or genotypic) fre- 
quencies that  are  extreme  tend to skew the distribution 
of the test statistics, although larger sample sizes can 
overcome this. More specifically, the test criteria above 
based on the ~ ' ( 1 )  approximation can be satisfactorily 
used for samples of  size 100 or  more for which the es- 
timates for PA and PM are in the  range [0.2,0.8]. The 
larger  the sample size, the  more  extreme  the allele fre- 
quencies can be, while for  much smaller sample sizes 
such as  20-30, the two allele frequencies must both be 
in [0.4,0.6]  to use the ~ ' ( 1 )  approximation.  In  general, 
the test statistic for D Z  is more sensitive to lower  values 
of PA, while that  for DG is more sensitive to higher 
values since the frequency of the  corresponding nu- 
clear homozygote is then lower.  With a sample size  of 
100, for  instance, allele frequencies can be in [0.2,0.8] 
for testing D$ and DE, whereas the allele frequencies 
really should  be in [0.3, 0.81 for D Z  and in [0.2, 0.71 
for 0;. 

A computer  program  implementing  our testing pro- 
cedure  for cytonuclear disequilibria is available upon 
request. In cases  with  small sample sizes or extreme al- 
lele frequencies  for which the asymptotic g(1) distri- 
bution  cannot  be used, this program simulates the dis- 
tribution of the statistic(s) to get a distribution for 
testing purposes. Such a simulation is only an interme- 
diate step; ultimately we hope to incorporate exact tests 
for the analysis  of such data sets. 

Sample sizes to  detect disequilibria: The method 
here is a generalization of BROWN'S (1975) analysis 
of nuclear linkage disequilibrium. In testing the null 
hypothesis H,: D = 0 against the  alternate hypothesis H,: 
D = Dl # 0,  we would  like to calculate the sample size 
required to detect  the disequilibrium assuming Hl. 
[Here, Dl is the value  of D under H,, not  the genotypic 
disequilibrium defined in ASMUSSEN et aZ. (1987) .] Recall 
that D has an approximately normal distribution with 
mean zero and variance S;/n under H, and mean Dl and 
variance S:/n under Hl (where 6, is calculated from 
Table 5 assuming that D = Dl and we ignore  the slight 
bias in D ) .  In  standard practice one defines  the size  of 
a test, a, to be  the probability of a type I error (rejecting 
a true hypothesis). The power  of a test, 1 - p, is the 
ability to detect disequilibria if it exists, where p is 
the probability of a type I1 error (failing to reject a 
false hypothesis). We accept (or fail to reject) the null 
hypothesis if and if the value  of fi lies  in the 
interval [ - (Z~/~)S,/  (Z,,~)S,/<~]], where z, is the 

standard  normal deviate defined by the relations, x = 
P ( Z  5 -zx) = P(Z 2 z,) for 2 - N(0,  1). 

The approximate sample size to detect disequilibrium 
with  power 1 - p is obtained by setting to /3 the probability 
that the sample  estimate B is in the acceptance regon for 
H, when HI holds. If D > 0, we approximate this by 

p " P  [ D5- '3 I HI true] 

while if D < 0 we use the approximation 

In either case, the sample size required to detect disequi- 
librium  with  probability 1 - p (or fail to detect the dis 
equilibria with  probability p) when the true value  is D = Dl 
is  given  by 

for a hypothesis  test of  size a. 

RESULTS AND DISCUSSION 

The power to detect nonrandom cytonuclear  associa- 
tions is illustrated  in  Figures 1-5,  which plot the log,,  of the 
minimum  sample sizes calculated  from (26) to detect a 
given  normalized  level  of  disequilibrium D. The latter cor- 
responds to LXWONTIN'S (1964) D',  which  is the actual dis- 
equilibrium D divided by the maximum  possible  magni- 
tude for a disequilibrium of that sign  in a population with 
the observed  marginal  frequencies.  Formally, 

D/IminDI if D<O 
D/maxD if D S O  (27) 

where  min D and maxD are the lower and  upper bounds 
on the disequilibrium B (Table 4). Positive  values indicate 
a proportion of the maximum  disequilibrium  while  nega- 
tive  values indicate a proportion of the minimum. We use 
the notation D here to  avoid  clashes  with our superscripts 
denoting the nuclear alleles and genotypes. The sample 
sizes in  Figure 1-5  were calculated with a = 0.05 and /3 = 
0.1, so that z ~ , ~  = 1.96 and zp = 1.28.  They therefore r e p  
resent the minimum  sample sizes  in order to have a 90% 
probability of detecting the specified  level  of disequilib 
rium  when detection is based on the estimator D falling 
outside the 95% confidence interval under the null hy- 
pothesis that D = 0. For each disequilibrium there is a 
symmetry  with respect  to the cytotype  fi-equency in that the 
sample size  to detect a specified  level  of  cytonuclear dis 
equilibrium D in a population with  cytotype frequency PM 
also  applies to the detection of the disequilibrium  -D  in 
a population with  cytotype frequency 1 - PM In the case 
of the heterozygote  disequilibrium there is an additional 
symmetry: the sample sizes are the same for 0"; whether 
the nuclear allele  frequency is PA or 1 - PA. 
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FIGURE 1.-The minimum sample sizes required to detect  the specified  levels  of normalized disequilibrium d$ for a series of 
marginal frequency combinations when a = 0.05 and p = 0.1. In all  cases  shown, we set D f  = 0.0. The actual (nonnorrnalized) 
values  of D A  and the minimum and maximum of D$ for each curve are given in APPENDIX B. In the  graphs with no line shown for 
PA = 0.9, the minimum sample sizes all exceeded lo4. 

The examples in Figures 1-3 illustrate how,  as in the chance of detecting a given nonrandom association 
case  of nuclear linkage disequilibrium (BROWN 1975), ranges from on the order of 10 to well over lo4. The 
the power to detect  nonrandom associations varies power for  detection is naturally greatest if the associated 
widely, depending  on  the associated marginal frequen- marginal frequencies  are  intermediate and  the disequi- 
cies and magnitude of the disequilibrium. The  number librium in question is near its minimum negative or 
of individuals needed  to  be sampled to have a 90% maximum positive  possible  value. 
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FIGURE 2.-The  minimum  sample  sizes  required  to detect the  specified  levels of normalized  disequilibrium Df for  a  series of 

marginal  frequency  combinations  when a = 0.05 and p = 0.1. The actual (nonnormalized) values of and  the  minimum  and 
maximum of D f  for  each  curve  are  given  in APPENDIX B. 

It is clear from Figures 4 and 5 that  the level  of  Hardy- frequency. This is because Hardy-Weinberg disequilib 
Weinberg disequilibrium at  the  nuclear locus can rium  determines  the frequency of the nuclear geno- 
greatly affect the sample sizes needed to detect specified types,  which  in turn affects the maximum and minimum 
levels  of genotypic disequilibria for a given nuclear allele possible  values of the cytonuclear disequilibria and thus 
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FIGURE 3.-The  minimum  sample  sizes  required  to detect the  specified  levels of normalized  disequilibrium D,"," for  a  series of 

marginal  frequency  combinations  when a = 0.05 and p = 0.1. The actual (nonnormalized) values of and  the  minimum  and 
maximum of D$ for  each  curve  are  given  in APPENDIX B. 

the minimum sample sizes required for their  detection. librium as a function of @ for PA = 0.3 and P A  = 0.7. 
This phenomenon is illustrated for D g  in Figure 4 which When P A  < 0.5 (Figure 4a),  the minimum sample sizes 
plots the log,,  of the minimum sample sizes calculated strongly depend  on  the Hardy-Weinberg disequilib- 
from (26) to  detect a given normalized level  of disequi- rium, monotonically increasing to infinity in a loglinear 
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FIGURE 4.-Sample  sizes required to detect specified  levels 
of the  normalized  genotypic  cytonuclear  disequilibrium 
Df over the  range of Hardy-Weinberg  disequilibrium, dA, 
for a = 0.05 and p = 0.1.  a: PA = 0.3, PM = 0.4; b: PA = 0.7, 
PM = 0.4. 

fashion as DA decreases to its minimum value. This is 
because in this case the minimum of DA corresponds  to 
the absence of AA homozygotes. Consequently, as D A  
decreases from its maximum to its minimum value, the 
frequency of AA homozygotes and  the range of  admis- 
sible Df values shrinks to zero. The sample sizes  re- 
quired to detect  the ever smaller D f  disequilibrium ac- 
cordingly increase without bound.  In contrast, when P A  
> 0.5 (Figure 4b),  there is generally very little effect of 
Hardy-Weinberg disequilibrium upon  the  detection of 
Df because the  extreme values  of DA  then  correspond 
to  the absence of aa or Aa individuals. Although not 
shown, the curves for DG are identical to those of  Df 
with P A  replaced by 1 - PA. This suggests that if one has 
a choice between these two disequilibria, one should 
choose D f  when P A  > 0.5 and D,"when P A  < 0.5 in order 
to minimize the  required sample sizes and  the effect of 
Hardy-Weinberg disequilibrium. The situation is differ- 
ent for  the heterozygote disequilibrium, p;. As Hardy- 

lo4 r 

D*M. 
- -1.0 - - -0.6 

-0.2 
0.2 
0.6 
1.0 

" _  
"... ""_ " _  

P* = 0.3, P, = 0.4 

1 I I I I I 
-1 -0.6 -0.2 0.2 0.6 1 

DA 
FIGURE 5."Sample sizes required to detect  specified  levels 

of the  normalized  genotypic  cytonuclear  disequilibrium De 
over  the  range  of  Hardy-Weinberg  disequilibrium, D", when 
PA = 0.3, PM = 0.4, a = 0.05 and p = 0.1. 

Weinberg  disequilibrium  increases, the heterozygote class 
shrinks as does the range of admissible  values for p;. In 
Figure 5 we see  how  this  increases the required sample 
sizes,  especially  when the normalized  Hardy-Weinberg dis 
equilibrium is  above 0.2. 

It  should  be emphasized that these minimum sample 
sizes are approximations based on the large sample vari- 
ances of the disequilibrium estimators. Fu and ARNOLD 
(199213) calculated the sample sizes for Fisher's exact 
test  of independence in 2 X 2 tables, and their work 
can be used as a  rough  benchmark by which to gauge 
the accuracy  of our approximations to the sample sizes 
required  to  detect D$ for a test of  size a and power 
1 - p. We have used their program to calculate the 
exact sample sizes to detect D$ = 0.75 for various val- 
ues of PA. Results are shown in  Table 6 for P, = 0.4 
and DA = 0, with D$ set  to -0.75, 0 and 0.75 in  the 
top,  middle  and  bottom  thirds of the  table, respec- 
tively. Since the sample size  is discrete,  the  achieved 
values of a and 1 - /.3 will not be exactly 0.05 and 0.9, 
so they are  presented  in  Table 6 as  well. The approxi- 
mate  sample sizes are  not  too  far off from  those cal- 
culated by  Fu and ARNOLD'S exact  test, and have the 
advantage of providing very fast results. There is some 
question  about  the  appropriateness of this  exact  test 
for  testing the allelic disequilibrium  in  cytonuclear 
systems, however, because  it  requires  converting the 
2 X 3 table ofjoint genotypic  counts  to  a 2 X 2 table 
of joint allelic counts.  This  doubles the  count of cy- 
toplasmic alleles in the sample  to 2n, where n is the 
number of individuals, and effectively treats  each  in- 
dividual as a  diploid homozygote at  the cytoplasmic 
locus. The  unique  features of the cytonuclear system 
are  thereby  compromised.  The close agreement be- 
tween the two methods is nonetheless  encouraging 
and consistent with preliminary  results  suggesting 
that  the large  sample  variances on which the mini- 
mum  sample size calculations are based can be rea- 
sonably good  approximations  to  the  exact values. 
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TABLE  6 

Comparison of approximation  with  the  exact  sample sizes for 2 X 2 tables m numbers of gametes (n,) 
to detect D$ = 0.75 for P, = 0.4 and DA = 0.00 

Exact Approximate 

PA D i t  ng a! 1 - 0  n: a! 1 - P  

DE = -0.75 
0.1 0.0383 166 0.0361 0.9017 155 0.0352 0.8755 
0.2  0.0630 109  0.0374 0.9022 89  0.0360 0.8263 
0.3 0.0634 140  0.0401 0.9008 106 0.0382 0.7954 
0.4 0.0360 480  0.0455 0.9005 366  0.0441 0.8030 

DE = 0.0 
0.1 0.0405 148  0.0349 0.9015 142  0.0346 0.8866 
0.2 0.0720 83 0.0356 0.9008 71 0.0344 0.8385 
0.3 0.0735 105 0.0382 0.9030 86  0.0373 0.8318 
0.4  0.0540 216  0.0426 0.9012 189 0.0418 0.8540 

Dg = 0.75 
0.1  0.4388 124 0.0343 0.9010 125 0.0343 0.9010 
0.2 0.0855 57 0.0330 0.9001 53 0.0319 0.8705 
0.3  0.0887 71 0.0369 0.9000 67 0.0357 0.8771 
0.4  0.0810 97 0.0377 0.9028 99 0.0384 0.9070 

* Twice the minimum number of  individuals from (26) 
t Based on equation 27, with  max D$ further constrained by the value  of DE. 

TABLE 7 

Application of the  statistics  to  the  Albumin-mtDNA  data  from  a  hybrid  population of Hyla treefrogs (LAMB and AWSE 1986) 

Disequilibrium D A  D E  D e  D f  D i  

Estimator (d) 0.1362 0.1902 -0.06316 -0.1271 0.1587 
Normalized ( D )  0.561 0.7839 -0.6365 -0.8858 0.8217 
Standard error (H,)  0.0139 0.01427 0.01 17 0.01319 0.01327 
Standard error ( H , )  0.01206 0.009313 0.01075 0.01049 0.008335 
Test Statistic ( ni')  95.99 177.8 29.16 92.87 143 
MSS" ( p  = 0.1) 30 13 103 29 16 
MSS" (B = 0.5) 12 7 40 13 8 

' Minimum sample size  when a! = 0.05. 

TABLE  8 

Application of the  statistics  to  the Es-3 by  mtDNA  data  from  a  hybrid swarm of bluegill  (AVISE et al. 1984) 

Disequilibrium DA D E  D$ D f  DL 

Estimator (B) 
Normalized (D) 
Standard error (H,)  
Standard error ( H J  
Test statistic ( ni') 
Probability 
MSS" ( P  = 0.1) 
MSS" (B = 0.5) 

-0.0287 
-0.1262 

0.0203 
0.0202 
1.996 
0.158 

790 
291 

-0.0258 
-0.245 

0.0162 
0.0163 
2.532 
0.112 

628 
229 

0.0497 
0.2112 
0.0202 
0.0198 
6.053 
0.014 

258 
96 

-0.0239 
-0.1838 

0.0175 
0.0175 
1.865 
0.172 

851 
311 

-0.00097 
-0.008753 

0.0135' 
0.0135' 
0.005 
0.943 

309961 ' 
113475 ' 

~ ~~ 

a Minimum  sample  size  when a! = 0.05. 
' Calculated with D E  = 0 having  failed to reject H, : D E  = 0. 

As an illustration of the usage of our  procedure, we 
apply it to two data sets. The first is the  data Of LAMB and 
AVISE (1986) from a hybrid zone of  Hyla treefrogs. This 
data includes a joint survey  of the mitochondrial types 
and isozyme genotypes at the Alb (Albumin) locus for 
305  individuals. The cytonuclear genotypic counts  for 
this data  set  are ( n f ,  n z ,  ng, ny, n$, nz) = (126, 11, 
5,20,54,89), where the AA/M and aa /m genotypes are 
characteristic of the two parental species, Hyla cinerea 
and Hyla putiosa, respectively. Table 7 presents the es- 

timators for  the disequilibria, their normalized values, 
their  standard  errors,  the test statistic, n?, and  the 
sample sizes required  to  detect  the observed  levels of 
disequilibrium for 1 - /3 = 0.9 and 0.5, and a = 0.05. 
The probabilities of obtaining  the observedvalues of nP2 
are all  less than and thus we reject the null hy- 
pothesis of zero disequilibrium for all the disequilibria. 
The estimators and their  standard  errors  are similar to 
those of Table 9 in ASMUSSEN et al. (1987) which 
were obtained via a complex hierarchical computer 
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algorithm. Because the observed disequilibria are fairly 
near  their maximum negative or positive  values,  ex- 
tremely small sample sizes  would be sufficient to  ensure 
detection of the observed levels  of cytonuclear associa- 
tions with 90% probability. 

The second data set  comes  from  a  nuclear-mtDNA  sur- 
vey  of 151 individuals from a  hybrid zone between two sub 
species of bluegill  sunfish (L.@nnis mucrochirus) involving 
the &"lozyme locus. The  joint genotypic counts are (12, 
52, 16,  18,  32, 21), where AA/M is diagnostic for L. m. 
mucrochirus and aa/m is diagnostic for L. m. pl?guresm. An 
application  of our sampling  theory  yields the results in 
Table 8. As noted by ASMUSSEN et aL (1987), only is 
significantly different from zero. The actual  sample size  is 
50% larger than that necessary for detection of this dis 
equilibrium with 50% probability, but only about 60% of 
that necessary for detection with 90% probability.  This  em- 
phasizes that the minimum  sample sizes calculated here 
are neither necessary nor sufficient for detection. They 
simply ensure rejection of the null hypothesis  of no dis- 
equilibrium with the specified  probability.  Note that 
roughly 800 individuals  would be necessary  to detect the 
levels  of disequilibrium  observed for the other nuclear 
genotypes with 90% probability,  whereas & is so small as 
to be virtually undetectable with  any  sample  size,  even  with 
50% probability. 

This analysis  of the formal statistical properties of  cy- 
tonuclear disequilibria fills an  important missing link in 
understanding  the  proper  experimental design of  cyto- 
nuclear surveys and  the  subsequent  data analysis. One 
final practical point is that  although our treatment ex- 
plicitly applies to codominant  nuclear loci, it also has 
applications to systems  with complete  dominance.  In 
particular, if a is recessive to A, our results still hold for 
DE, although not for  the other cytonuclear disequilib 
ria. Thus, we can accommodate cytonuclear data where 
the  nuclear  component is generated from randomly am- 
plified polymorphic DNAs ( W D s )  . The  amount of in- 
formation  from such systems  is much  reduced, however, 
since only one disequilibrium measure can be calcu- 
lated.  Further work  is needed to calculate the exact 
cytonuclear variances, which will  allow a true test of 
the accuracy  of the theory here which is based on  the 
large-sample variances from  the  standard Fisher- 
approximation. Ultimately, in order to properly design 
and  interpret  joint nuclear-mitochondrialchloroplast 
surveys in plant populations, which should prove 
uniquely informative, it will be desirable to  extend this 
statistical framework to  the various three locus associa- 
tions possible in nucleardicytoplasmic systems. 
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APPENDIX A EXPECTED VALUES OF THE  DISEQUILIBRIUM  ESTIMATORS 

To study the statistical properties of the MLEs (1 1-12), we  will make use  of indicator variables in the same fashion 
as  WEIR (1990). To this end, we index individuals in the sample by i = 1, . . . , n. Furthermore, we arbitrarily index 
the nuclear alleles within an individual by k = 1, 2. With this convention, we define the following indicator variables 
for  the nuclear locus 

{ 
1 if gene k in individual i is A 
0 otherwise 'zk = 

for i = 1, . . . , n and k = 1,2. Over  all  possible samples of  size n from the  population,  the xjk have the identical 
expectation 

%xik = 1 . Pr[x, = 11 + O . Pr[xik = 0] = PA i = 1, . . . , n; k = 1, 2. 

The frequencies of the nuclear homozygotes can then  be expressed as expectations of products of these variables. 
For AA homozygotes, for instance, we have 

%xtlxiP = P i = 1, .  . . , n. 

We define a similar set of indicator variables for the cytoplasmic locus, 

{ 
1 if individual i has  cytotype M 

yi = 0 otherwise 
where %yE = P,,,, i = 1,. . . , n. 

The expectations of  various products of the nuclear and cytotype indicator functions yield the joint cytonuclear 
frequencies in the  population. For example, 

%xjkyi = 1 . e + - p$ = p,,,, i = 1, . . . , n; k = 1, 2 and %xLlxi2yi = i = 1, . . . , n. [ : I  
By expanding (1  1)-( 12) in terms of the  indicator variables, we easily obtain the  expected values  of the cytonuclear 

disequilibrium estimators. For example, the allelic disequilibrium measure defined in (1) and estimated by (11) 
becomes 

Under  our assumption that  different individuals are sampled independently, we find that 

indicating a slight bias in the estimator. In  a similar fashion, we can develop estimators for the genotypic disequilibria. 
The maximum likelihood estimator for D f  is 

where 

The expected values  of De and  are equivalent to that for D f ,  with Aa or aa substituted for AA. 
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APPENDIX B 

Actual  values of the bounds for the  disequilibria examined in Figures 1-3 are given in  Table 9. 

TABLE 9 

Actual values of the bounds for the disequilibria examined in Figures 1-3 

0.3 

0.5 

0.7 

0.1 0.1 

0.4 

0.1 

0.4 

0.1 

0.4 

0.1 

0.4 

0.9 0.1 

0.4 

-0.0075 
0.0 
0.0675 

-0.0075 
0.0 
0.0675 

-0.0675 
0.0 
0.1575 

-0.0675 
0.0 
0.1575 

-0.1875 
0.0 
0.1875 

-0.1875 
0.0 
0.1875 

-0.0675 
0.0 
0.1575 

-0.0675 
0.0 
0.1575 

-0.0075 
0.0 
0.0675 

-0.0075 
0.0 
0.0675 

-0.00975 
-0.009 
-0.0023 
-0.039 
-0.036 
-0.009 
-0.0278 
-0.021 
-0.0053 
-0.111 
-0.084 
-0.021 

-0.02813 
-0.025 
-0.00625 
-0.01875 
-0.075 
-0.025 
-0.01013 
-0.021 
-0.00525 
-0.00675 
-0.027 
-0.021 

-0.00113 
-0.0045 
-0.00225 
-0.00075 
-0.003 
-0.009 

0.04013 
0.0405 
0.02025 
0.0585 
0.054 
0.0135 

0.02113 
0.0245 
0.03238 
0.0845 
0.098 
0.0315 
0.00313 
0.0125 
0.02188 
0.0125 
0.05 
0.0375 

0.00113 
0.0045 
0.01238 
0.0045 
0.018 
0.0315 
0.00013 
0.0005 
0.00388 
0.0005 
0.002 
0.0135 

-0.00025 
-0.001 
-0.00775 
-0.001 
-0.004 
-0.031 
-0.00225 
-0.009 
-0.02475 
-0.009 
-0.036 
-0.099 

-0.00625 
-0.025 
-0.04375 
-0.025 
-0.1 
-0.175 
-0.04225 
-0.049 
-0.06475 
-0.169 
-0.196 
-0.2115 

-0.08025 
-0.081 
-0.08775 
-0.1185 
-0.114 
-0.0735 

0.00225 
0.009 
0.06975 
0.0015 
0.006 
0.0465 

0.02025 
0.081 
0.07525 
0.0135 
0.054 
0.1485 
0.05625 
0.075 
0.05625 
0.0375 
0.15 
0.225 
0.05775 
0.051 
0.03525 
0.231 
0.204 
0.141 

0.01975 
0.019 
0.01225 
0.079 
0.076 
0.049 

-0.0195 
-0.018 
-0.0045 
-0.078 
-0.072 
-0.018 
-0.0555 
-0.042 
-0.0105 
-0.222 
-0.168 
-0.042 

-0.0875 
-0.05 
-0.0125 
-0.075 
-0.2 
-0.05 
-0.0555 
-0.042 
-0.0105 
-0.222 
-0.168 
-0.042 

-0.0195 
-0.018 
-0.0045 
-0.078 
-0.072 
-0.018 

0.0805 
0.082 
0.0405 
0.117 
0.108 
0.027 
0.0445 
0.058 
0.0895 
0.178 
0.232 
0.063 
0.0125 
0.05 
0.0875 
0.05 
0.2 
0.075 
0.0445 
0.058 
0.0895 
0.178 
0.232 
0.063 
0.0805 
0.082 
0.0405 
0.117 
0.108 
0.027 

* The first in each trio for a given P, value sets D A  to -0.75, the third to 0.75. 
t is calculated from (27), with  max D i  further constrained from assuming that D E  = 0.0. 


