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that 6, is  a:ery efficient estimator. 

A“ important  parameter in studying the evolution of 
a DNA region (locus) of a population is 8 = 4Np 

where N is the effective  size  of the  population and p is 
the  mutation  rate  per  sequence  per  generation. From 
the value  of 8, the effective population size N can be 
obtained if the  mutation  rate p is known or vice  versa. 
Until recently inferences  about 8 have been based 
largely on two quantities. One is the  sequence diversity 
T, which is the average number of nucleotide differ- 
ences  per pair of sequences; the  other is the  number K 
of segregating sites (polymorphic sites). These two quan- 
tities lead to respectively  TAJIMA’S estimate .ir of 8 and 
WATTEMON’S estimate K of 8 as  follows 

+ = T  K =  wan 
where 

1 1 
a n = l + - +  . . . + -  2 n- 1 (1) 

and n is the sample  size.  Although the computations of 
these two estimators are easy,  they are not very efficient 
estimators, in particular, the variance  of .ir does not di- 
minish  with increasing sample size. The inefficiency  of 
these  estimators and  the surging of  DNA polymorphism 
data have been stimulating the development of  new meth- 
ods  of  estimating 8 that make better use of the information 
in a sample.  Phylogenetic information are very useful  in 
developing more accurate estimators ( F E L S E N ~ I N  1992; 
FU 1994a). For example, Fu (1994a)  showed that a phy- 
logenetic estimator  has a variance  close to the minimum 
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ABSTRACT 
Mutations resulting in segregating sites of a sample of  DNA sequences can be classified by size and type 

and the frequencies of mutations of different sizes and types can be inferred from the sample. A framework 
for estimating the essential parameter 8 = 4Nu utilizing the frequencies of mutations of various sizes and 
types  is developed in this paper, where N is the effective  size  of a population and p is mutation rate per 
sequence per  generation. The framework is a combination of coalescent theory, general linear model and 
Monte-Carlo integration, which leads to two new estimators 6, and 6,  as  well  as a general Watterson’s 
estimator 6, and a  general Tajima’s estimator 6,. The greatest strength of the framework is that it can 
be used under a variety  of population models. The properties of the framework and the four estimators 
bK, e,,, 6, and 6,  are investigated under three  important population models: the  neutral Wright-Fisher 
model,  the  neutral model with recombination and the  neutral Wright’s finite-islands model. Under all 
these models, it is shown that 6,  is the best estimator among the four even  when recombination rate or 
migration rate has to be estimated. Under  the  neutral Wright-Fisher model, it is  shown that the new 
estimator 6 ,  has avariance close to alower bound ofvariances of  all unbiased estimators of  Owhich suggests 

variances  of  all  possible  unbiased  estimators of 8 under the 
neutral Wright-Fisher  model. That is, the population un- 
der study  evolves according to the Wright-Fisher model, all 
mutations are selectively neutral and there is not recom- 
bination and no population subdivision. 

Natural populations are usually more complex than 
described by the  neutral Wright-Fisher model. For  ex- 
ample, they are often subdivided into small  local popu- 
lations with migrations among  them; an autosomal DNA 
region studied may be very large or consist of several 
separate regions so that recombinations cannot be ne- 
glected; some mutations may not be neutral or mutation 
rates for different region of a locus may differ. Estimat- 
ing 8 under models other  than  the  neutral Wright-Fisher 
model is often necessary for detailed analysis  of  poly- 
morphism data. Although Watterson’s estimator K and 
TAJIMA’S estimator .ir can be modified to provide estimate 
of 8 under various models, they are likely inefficient as 
they are under the  neutral Wright-Fisher model. On the 
other  hand, phylogenetic methods such as Fu (1994a) and 
FEUENSTEIN (1992) are difficult  to be extended because 
they require detailed properties of the branchs of a gene- 
alogy  which are poorly understood under  other models. In 
this paper, I present a framework for estimating 8 which  is 
not only  very efficient but can be used under a variety of 
models  provided that additional parameters (ifany) can be 
estimated  roughly. The efficiency  of the framework is dem- 
onstrated using three models: the neutral Wright-Fisher 
model, the neutral model with recombination and the 
Wright’s  finite-islands  model. 
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where [n/2] denotes  the largest integer  contained in 
n/2  and  the i-th element qi of r) is  given  by 

FIGURE 1 .-The variants of mutations in a genealogy where 
each 0 represents a mutation. 

FREQUENCIES OF MUTATIONS OF 
VARIOUS CLASSES 

Consider a  random sample of n sequences from a 
population.  Corresponding to each homologous site of 
the sequences, there is a genealogy connecting  the  n 
sequences (nucleotides) to their most recent common 
ancestor and the genealogy consists of 2( n - 1) 
branches. A branch is  said  to be size i if exactly i sequences 
in the sample are descendents of the branch. A mutation 
occurred in a branch of  size i is  said  to be of  size i or an 
;mutation. Therefore, mutations leading to segregating 
sites  in a sample  can be classified into n - 1 sizes. An il- 
lustration of the definition is  given  in Figure l. 

Let 5, be the summation of i-mutations over  all the 
sites and be  a vector given by 

where T stands for transpose. The vector & is a primary 
source of information that will be utilized in this  study 
to estimate 8. When the infinite-sites model is assumed 
and an outgroup  sequence is available, the value  of &can 
be  inferred directly from the sequences of a sample. This 
is because that  a  mutation results in a segregating site of 
two segregating nucleotides and  the  nucleotide  that is 
not  the same as that of the  outgroup  sequence must be 
the size  of the  mutation, otherwise it will contradicts with 
the infinite-sites model. However, when the infinite-sites 
model does not  hold and there is no  outgroup  sequence 
available, the value  of & has to be inferred by recon- 
structing a genealogy of the sample; when the  length of 
sequences are  not sufficiently long or  there  are recom- 
binations the  inferred value of & will often contain er- 
rors. Although we  wish to address all important issues 
related to the estimation of 8, we shall assume as an 
initial investigation that  the value of 5: is known for a 
given sample. 

Another vector  of information that will be utilized to 
estimate 8 is 

where 8i,n-z is the Kronecker delta, i e . ,  it is equal to 1 
if i = n - i and 0 otherwise. Under  the infinite-sites 
model, q, is  simply the  number of such segregating sites 
at which the  frequencies of the two segregating nucle- 
otides are  i  and n - i(i c n - i) respectively. Such a 
segregating site is said to be of type i or i-segregating site. 
We thus call qi the frequency of i-segregating sites. It is 
easy to see that when the infinite-sites model holds the 
value of r) can be obtained directly from a sample with- 
out  the  help of an  outgroup  sequence. Because  of this 
reason, it is easier to use an estimator based on r) than 
an estimator based on g, although  the  former is inferior 
to the  latter, as  shall be demonstrated later. 

BEST LINEAR ESTIMATORS OF e FROM 6 AND 1 

Because the  number of segregating site K is equal to 
5, + . . . +5,- I and q1 + . . . +q(n/21, WATTERSON’S esti- 
mator K can be written as 

where a, is  given by (1). Therefore, a i s  a linear function 
of el, . . . , or a  linear  function of ql, . . . , q n I 2 ] .  Since 
a  mutation of  size i is counted in i( n - i) painvise  com- 
parisons, TAJIMA’S estimator .ir can be written as 

which is also linear  function of tl, . . . , (n-l ,  or ql, . . . , 
q[n/21. One common  feature of these linear estimators is 
that  their coefficients, that is l /an,  . . . , l/a, for Rand 
2i(n - i ) / n ( n  - l ) ,  ( i  = 1, . . . , n - 1) for ?r, are pre- 
determined constants. A linear estimator with pre- 
determined Coefficients  is not in general  a best linear 
estimator. To demonstrate this, we consider a sample of 
only three sequences. There is only one topology for 
three sequences (Figure 2) and & = ( tl, &) where 5, is 
the sum of the  numbers of mutations in all the  three 
external  branches and 5, is the  number of mutations in 
the  internal  branch. From KINGMAN’S (1982a,b) coales- 
cent theory, it is  easy to show [for example, FU and LI 
(1993b) that 

~ ( 5 ~ )  = 8 E([,) = 

Var(el) = 8 + 1 / O P  Var(6,) = % 8  + %e2 
cOv(~,, e2) = %e2 
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FIGURE 2.-A genealogy of three  sequences. 6, is the sum of 
the  numbers of mutations  in  branch 1 , 2  and 3 while 6, is  the 
number of mutations  in  branch 4. See  texts for the  explanation 
of t ,  and t2. 

Consider the following linear  function of t1 and t2 

f = at1 + bt2 (7) 
In order  for f to be an unbiased estimator of 8, it must 
satisfy 

~ ( f )  = ae + (b12)e = e 
Therefore, b = 2(  1 - a) .  Substituting 2(  1 - a) for b in 
(7),  we obtain  the variance off as 

Var(f) = a2Var(J) + 4(1 - a)Var(&) 

+ 4 4  - a)c=ov(J, X) 
= [a2 + 2(1 - a)2]e + + (1 - a)2]e2 

It is  easy to show that  the value  of a for  the most efficient 
estimator, that is, the one with smallest variance, must be 
(4 + 8)/(6 + e). Therefore, 

is the best linear unbiased estimator of 8 and the coef- 
ficients off  are not  predetermined. Equation 8 suggests 
that  to have an optimal estimating scheme, we should 
give more weight to t1 than  to t2 when there  are many 
segregating sites in a sample (indicating  that 8 is large) 
and we should give about  equal weights to  both t1 and 
5, when there  are few segregating sites (indicating  that 
0 is small). Nevertheless, we should not fix the coeffi- 
cients in advance. 

Similar analyses can  be  made  for samples of more  than 
three sequences and a general framework by  Fu (1994a) 
can be  applied. The framework was developed for a vec- 
tor of  variables  whose means are  linear  functions of 8 
and variances and covariances are quadratic functions of 
8. In  next section, we shall show that 

E(&) = ea (9) 

Var(&) = OD, + 028 (10) 

where (Y = (al ,  . . . , an-l);  D, = diag(a,, . . . , an-l) ,  
i.e., a matrix whose diagonal  elements  are a,, . . . , an-l 
and all non-diagonal elements  are zero, and 8 = {uv}, 
i ,  j = 1, . . . , n - 1; ai and uv are all constants inde- 

pendent of 8 once  the model is given.  With some modi- 
fications of the  notation in Fu (1994a), we have that  the 
best linear unbiased estimator of 8 from 5 is  given by 

However, Equation 11 does not provide a direct es- 
timate of 8 because its computation  requires  the value 
of 8 which is unknown. The problem  can  be  circum- 
vented by the following iteration  procedure.  Define a 
series 

and assign an arbitrary non-negative value to e,,. Then 
the limit 6, of the series is taken as our estimate of e. hr 
will be  referred  to as the BLUE (best  linear unbiased 
estimator) of 8 from g and  the estimation procedure 
as the BLUE procedure,  though strictly speaking the 
estimator is not a linear  function in 5 because of the 
iteration. 

From the definition of q and Equations 9 and 10, it 
is simple to see that 

E ( q )  = ea (13) 

Var(q) = 8D, + 02r (14) 

where D, = diag(P,, . . . , Pcn,21), I' = {yv] and 

The BLUE dq of 8 from q is the limit of the series 

and 0, can be any non-negative value. 
From (9), we have that 

Therefore we define a general WAITERSON estimator 6,  
and a general TAJIMA estimator 6,  as 

e, = - a n  K 
I: ai 

Under  the  neutral Wright-Fisher model we have that 
6,  = K and 6, = +r, which are also true  under  the 
neutral  model with recombination which will be 
shown later. 
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When 8 is close to zero, it is  easy to see from ( 1  1 )  or 
(12) that 

It  thus follows that when 8 is small, the  general 
WATTERSON estimator is approximately the best  linear 
estimator of 8. 

Treating  the vector of the coefficients of 8, 

as a vector of constants as did in Fu (1994a), we have that 

Var(6,) = a,@ + b,O2 

where a, = u%,u and b, = u'xu. It is  easy to see that 
a nearly unbiased estimate of the variance of 6, is 

Similarly, a nearly unbiased estimate of the variance of 
8, is  given by 

v, = a,e, + .. - a$, 
1 + b, 

where a, = v?,v, b, = v T v  and v is the vector of the 
coefficients of 8, given by 

ESTIMATION OF THE MEAN AND 
VARIANCE OF 6 AND 9 

Consider a sample of n sequences. The time  interval 
between the moment at which the sample is taken and the 
time representing the most recent common ancestor of 
the n sequences  can be divided  to a number of periods by 
the events occurred. In this paper, we mean, by an event, 
a coalescence, a recombination or a migration, but not a 
mutation. For convenience of notations, we treat the m e  
ment at which the sample is taken as an event.  Let the 
events be numbered according to their orders of occur- 
rence and tk be the time length (in terms of the number 
of generations) between the kth  event and ( k  + 1)th event. 
Under the neutral Wright-Fisher  model, there are only 
coalescent  events, so tk represents the time length for the 
period during which the sample  has k + 1 ancestral se- 
quences; therefore tk is a ( k  + l)-coalescent time. 

Suppose there are in  total L sites  in each sequence. Each 
site  can be regarded as a locus and there is a genealogy for 
each  site  which connects the n nucleotides at the site to 
their most recent common ancestor.  Consider the gene- 
alogy  of the Zth site. We can see that the time length of a 
branch of the genealogy  must  be of the form 

t i + . . . + %  

where i is the number of the event  after  which the branch 
starts and j is the number of the event at which the branch 
ends.  For the genealogy of lth  site, the length I ( a )  of the 
branchs of sue k is  given  by 

1p = sjf,)t, + . . . + sgt, 

where s6 is an index variable representing the number of 
times ti appears in the time  lengths of branchs of  size k; p 
is the total number of  events. The average  time length of 
branches of  size k over  all  sites is therefore 

1 1 I- 
lk = - x I f )  = C sbti where ski = C s!). L 

1= t 

When there is no recombination, all the L genealogies are 
the same and consequently s,, = sg) = . . . = sti.  For ex- 
ample we  have for the genealogy  in  Figure 2 that s12 = 3, 
sll = 1, p2 = 0 and +1 = 1. 

Because p is defined as the mutation rate per se- 
quence per generation,  the  mutation  rate  per site per 
generation is therefore  p/L. Assume that  the  number 
of mutations in a branch of the genealogy of a site is a 
Poisson  variable  with parameter Zp/Lwhere lis the length 
of the branch. Then the number of k-mutations  in  all the 
L genealogies is a Poisson  variable  with parameter ( p / L )  

8;) = lkp. In  other words, we assume that 

and 
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TABLE 1 

Variances of four estimators under the neutral Wright-Fisher model 

e n ‘tin svce,, S U ( e , )  s v ( Q  4 e , )  vs vq 

2 5 2.11  2.48 2.28 2.21 2.28 1.87 1.76 
10 1.32 1.94 1.48 1.39 1.46  1.42  1.50 
20 0.93 1.72 1.07  0.98 1.04  1.02  1.12 
50 0.66 1.63 0.78 0.70  0.74 0.74 0.80 

300 0.42 1.54 0.48 0.43  0.45 0.45  0.47 

5  5 9.16  11.75 10.65 9.73  10.59 9.54  9.60 
10 5.16 9.10 6.59 5.60  6.41 5.66 6.53 
20 3.35 7.98 4.56 3.63 4.33 3.67  4.33 
50 2.18 7.65 3.17 2.38 2.84 2.38  2.86 

300 1.25 7.30 1.84 1.33 1.51 1.32  1.49 
10  5 31.00 41.83 37.71 32.50 37.44 32.43 36.04 

10 16.16 32.21 23.02 17.70 22.33 17.67 22.17 
20 9.68 28.67 15.48 10.79 14.27 10.91 14.26 
50 5.77 26.96 10.31 6.48 5.85 6.53 8.79 

300  2.96 25.39 5.73 3.25  4.122 3.23  4.04 

5  112.22 157.28 141.46 117.00 140.44 116.88 139.15 
10 54.96 121.83 84.94 59.79 81.26 59.64 80.65 
20 30.50 107.08 56.58 34.51 51.35 34.68 51.01 
50  16.38 100.52 37.24 19.23 29.58 19.23 29.41 

300  7.28  95.83 19.79 8.44 11.85 8.43 11.87 
5  655.95 943.55 841.26 672.60 832.82 672.01 834.17 

10  304.88 719.55 500.64 329.28 479.03 328.65 477.61 
20 156.57 638.37 330.25 179.90 294.36 179.45 294.23 
50  73.73 603.1 1 214.87 92.84 166.87 92.74 164.16 

300  25.85  571.70 112.51 34.25  57.44  33.99  056.29 

Note: Results are based on 50,000 simulated samples for each combination of 0 and n. su, sampling variance. ve and vq are, respectively, the 
mean of Vs given by Equation 19 and  the mean of V, given by Equation 20. 

Suppose there  are in total T genealogies for  a sample 
of n sequences and let wlk), be  the wi, 4v defined 
above for genealogy k and p ,  be  the probability of o b  
serving genealogy k.  Define 

T 

a, = x W(rk) p, (24) 
k 

T 

ai = x (4;) + wy)wp)p ,  - aiaj (25) 
k 

Then, it is  easy to see that  the  mean  and variance of 
are given respectively by (9)  and  (10). Since Tis a 

very large  number  for even a  modest  sample size and 
p ,  is not always  easy to  compute,  it is impractical  to 
obtain a and Z by examining all possible genealogies. 
To  date, analytical solutions  for a and Z are available 
only for  the neutral Wright-Fisher model (Fu 1994b). 
Analytical  solutions for (Y and 2 simpw computations 
tremendously, but when  they are not available, the values 
of a and 2 have to be estimated,  which  can be done as 
follows. 

Suppose  an  algorithm is available to generate 
genealogies of samples under a given population 
model and let G be  the total number of genealogies 
randomly  generated.  Then  according to the  standard 
theory of Monte-Carlo  integration  [for  example, 
HAMMERSLEY and HANDSCOMB (1965)],  one  can esti- 

mate ai and aq by 

respectively. Once  the estimate & of (Y and  the esti- 
mate 2 of 2 are  obtained, we can  obtain  the  estimates 
of p and r. The accuracies of these  estimations ob- 
viously should  increase with the  number of genealo- 
gies examined. My experience suggests that  the  num- 
ber G of genealogies in the proximity of 10,000 is 
usually sufficient  for the  purpose of estimating 8. Be- 
cause algorithms based on coalescent  theory are usu- 
ally  very efficient, the  need to  estimate (Y and 2 does 
not pose  a  serious burden of computation. 

THE NEUTRAL  WRIGHT-FISHER MODEL 

The neutral Wright-Fisher model is the simplest 
model in coalescent theory and is often selected to  be 
the null model in studying DNA polymorphisms. Be- 
cause the lower bound of the variance of  all unbiased 
estimators of 8 under this model is known to be 

(Fu and LI 1993a) and because (Y and 2 are known ana- 
lytically (Fu 1994b), we can obtain the efficiencies of 



1380 Y.-X. FU 

I 

0 100 200 300 

0 

Y 
0 100 200 300 

e 

100 200 300 

e 

U 

FIGURE 3.-Coeficie~t.s of 6, 
(panels a and c) and e,, (panel h 
and d) as functions of 8. The 
sample size n is 10 for panels a and 
b, and 50 for panels c and d. In 
panel a and c the  curves  from top 
down  are u,, up, . . . , respectively, 
and in panels h and d the curves 
from top down  are u,,  u,, . . . 
respectively. 

estimators, 6,,,  6, 6, and 6, by comparing  their variances 
to  the lower bound Vmin. 

Simulated samples were  used to measure the perfor- 
mances of the  four estimators. For a given  values  of 8 and 
sample size n, we generated a large number of samples 
using straightforward coalescent algorithm (KINGMAN 
1982a,b; HUDSON 1983; TAJIMA 1983); the values  of the 
vector 5 and q from each sample were then used to 
obtain e,,, 6 ,  6, and 6, with both analytical  values or 
estimated values  of a and 2. The results using analytical 
a and 2 are summarized in Table 1. 

Table 1 shows that  the variance of 6, is only  marginally 
larger than Vmin, suggesting that 0, is a very efficient es- 
timator of 8. Comparing the variance of 6, to that of the 
estimator UPBLUE [Table 3 of Fu (1994a)], we find that 
6, is slightly  less efficient than UPBLUE of 8. This is 
expected because UPBLUE  uses more information 
than 6,. Nevertheless, 6, is substantially better  than 
WAITERSON'S estimator K and TAJIMA'S estimate .ir. The 
latter always has the largest variance among  the  four 
estimators considered. The percentage of variance re- 

duction by 6, over K increases with the value  of 8 and 
sample size n. In comparison 6, is  only  marginally  bet- 
ter than bK when  sample  size  is  small but become  consid- 
erably better than 6,when sample  size and 8 are both  large. 
Table 1 also  shows that %given by ( 19) and V, given  by (20) 
are nearly  unbiased  estimators of Var(6,) and Var(6,) 
respectively. 

The performances of 6, and 6, using estimated values 
of a and 2 (data  not shown) are found to be almost 
indistinguishable from those using analytical results of 
a and Z, as long as reasonably large number of gene- 
alogies (for example 10,000) are used to estimate a 
and 2. This indicates that  the BLUE procedure pro- 
posed in this paper is a powerful  Monte-Carlo method 
for estimation 8. 

We also examined the coefficient vectors u and v to 
see the relative contributions of ti ( i  = 1, . . . , n - 1) 
and qi( i = 1, . . . , [ 72/21) to 6,and 6,. We have  shown 
earlier that when 8 is small, the 8, is close to WAITERSON'S 
estimate, which  gives the same weight to all the  frequen- 
cies, t,, . . . , 6 "-,. On the  other  hand, when 8 is 
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TABLE 2 

Variances of  four estimators  under  the neutral model  with  recombmations 

n P sv(8,) sv(&) s v ( Q  sv(Q vc v? 
e =  10 

10 0.0 31.97 22.82  17.56 22.11  17.41  21.69 
1 .o 25.72' 18.84  15.89 18.41  16.35  19.11 

10.0 19.15 14.18  12.47 13.99  12.61  14.24 
26.74' 19.27 16.05  18.69 16.22  18.61 

13.78 10.67 10.45  10.60 10.96  11.15 

50 0.0 26.81 10.50 6.87 9.06  6.16 8.24 
1.0 21.58 8.71 6.50 7.83  5.60  6.90 

22.58 8.96  6.57 7.96 5.85 7.70 
10.0 15.85 6.69  5.48 6.15 5.01 5.89 

11.77 5.36 5.01 5.12  4.84  5.17 

0 = 50 
10 0.0 716.10 495.55  328.34 475.53  327.81  479.45 

1.0 555.77 395.04  292.66 381.75  305.07  402.32 
593.73 413.02  299.67 394.47  306.55  393.28 

10.0 398.12 283.30  216.62 276.72 219.41  284.75 
269.01 199.08  184.07 194.71 194.53 206.04 

50 0.0 598.35 214.02  99.41 167.92 82.86 150.20 
1.0 462.39 172.48  97.45 142.86  72.73  118.84 

492.79 179.08  98.08 146.37  74.66 139.10 
10.0  327.22 123.96  80.11 105.95  60.23  95.60 

222.13 90.20  73.09 80.30  60.50  76.52 

a Two-loci model. 
The infinite-sites model. Covariance matrix for each combination of n and R is estimated from 10,000 simulated samples. See the footnote 

to Table 1 for sv, and v,,. 

extremely large, is approximately 

while the coefficients for intermediate values  of 8 should 
lie  between the two extremes.  This is confirmed by Figure 
3 where the coefficients of estimates for several  sample 
sizes are plotted. The coefficients are very  sensitive  to 8 
when 8 is small but become  stable  when 8 is large. 

Suppose u, and vi are  the  ith  elements of the coeffi- 
cient vector u and v, respectively. Then Figure 3 shows 
for i < j ,  we have 

ui 2 uj and vi 2 vj. (27) 

This suggests that  the  information  from (, (or qi) is more 
reliable than  the  information from ej (or q )  for  the 
purpose of estimating 8. This is indeed  the case because 
although &/ai, ( i  = 1, . . . , n - 1) and q i / p i ,  ( i  = 1, . . . , 
[ 4 2 3 )  all  have the same expectation 8, their variances 
have the relationships 

var( $) < var( :) var( 2) <var(  ;). 

for i < j .  However it is found,  for example from Figure 
3, that some of the coefficients of 6, are negative when 
8 is not too small. This is surprising because in com- 
parison the coefficients of 6, are all  positive and so are 
all the  coeffkients of the UPBLUE of 8 (Fu 1994a).  It is 
possible to construct a linear estimator  similar to 6, by re- 
stricting  all  coefficients  to be non-negative, but such an 
estimator was found to have larger variance than that of 

THE NEUTRAL  MODEL WITH RECOMBINATIONS 

When an autosomal locus studied is either very large 
or consisting of several separate regions, recombina- 
tions cannot be neglected. The coalescent theory of the 
neutral model with recombination and algorithms to 
generate samples under this model have been devel- 
oped by HUDSON (1983),  HUDSON  and KAPLAN (1985) and 
KAPLAN and  HUDSON  (1987). An event under the this 
model is either a coalescence or a recombination. Sup- 
pose  between two consecutive events, there  are m an- 
cestral sequences. HUDSON (1983) showed that  the ex- 
pected time length between the two events is 

4N 
Rmc + m(m - 1) 

where the  recombination  parameter R = 4Nrand  ris  the 
recombination rate  per  sequence  per  generation; c(0 I 
c 5 1) is the average proportion of recombinable sites 
at which recombinations are relevant to the sample [see 
HUDSON (1983) for  detail]. 

Since the coalescence process of a single site is iden- 
tical to that under  the neutral WRIGHT-FISHER model, ex- 
pectation of the frequency (:) of i-mutations in the ge- 
nealogy  of kth site is 

The expectation of the total number ti of i-mutations is 
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It follows that recombinations do  not change  the ex- 
pectation of the frequency of  z-mutations.  Conse- 
quently, expectation of the total number of mutations 
remains unchanged, which has long  been known. How- 
ever, recombinations change  the variances of 5 and 11 as 
they change  the variance of the total number K of seg- 
regating sites. 

We again used simulated samples to investigate the 
performances of 6,, 6,, 6, and 0, under  the neutral 
model with recombination. We focused on two cases. 
The first is a two loci model so that recombination oc- 
curs only  between the loci and each locus follows the 
infinite-sites model. The second is an infinite-loci model 
such that recombinations can occur between any two 
sites. In  the first case, we assume that  the values of 8 for 
the two loci are  the same. In  both cases, it reduces to  the 
neutral WRIGHT-FISHER model when recombination rate 
T is zero. Table 2 presents the results of simulations for 
several  sets  of parameters. 

Because recombinations reduce the correlation be- 
tween two sites, we expect  for any estimator of 8 that  the 
larger the recombination parameter R is, the smaller the 
variance of the estimator is. This is confirmed by simu- 
lation results as it is clear in Table 2 that  the variance of 
each of the  four estimators decreases with increasing 
value  of R. Table 2 also  shows that 0, is the best estimator 
among  the  four;  the second best is the 6, which  is traced 
closely by eK; the worsest estimator is 0,. Comparing the 
results of the two-loci and  the infinite-loci models shows 
that when R is small, the variance of an estimator under 
the two-loci model is smaller than  under  the infinite-loci 
model; while when R is large,  the reverse is true. This 
seems to be logical because when the  number of recom- 
binations is  very small, for example only one recombi- 
nation,  the best site for recombination is close to the 
middle of the  sequence as far as estimation of 8 is con- 
cerned. The estimators perform better under  the two 
loci model when R is small because the recombination 
occurs precisely at  the middle of the sequences. On  the 
other  hand, when the  number of recombinations are 
large, it is better to have them  occurred at as many  sites 
as  possible. Therefore, these estimators perform better 
when R is large under  the infinite-loci model than  under 
the two-loci model. Table 2 also  shows that V, and Vq are 
in general  adequate estimators of Var (6,) and Var (6,) 
respectively, but they become biased when both 8 and 
sample size n are large. 

Under  the infinite-loci model, WATTERSON’S estimator 
is getting closer to 6,with the increase of R. This suggests 
that when recombinations are  frequent, WATTERSON’S es- 
timator 6,is quite efficient even for modest sample sizes. 
Examining the coefficients of 6, (Figure 4) shows that, 
for  a given sample size n, the coefficients of 0, are mov- 
ing towards those of 6, with increasing R. This implies 
that 6 ,  is becoming not only efficient but  the same  es- 
timator as 6, and 6,. This can be explained as  follows. 

I I 

0 6 17 25 

R 
FIGURE 4.-Coefficients of 6, (panel a) and 6,  (panel b) as 

functions of recombination  parameter R under  the  mifite-loci 
model with tl = 20 and n = 10. The curves  from  top  down 
(when R = 0) represent ul,  . . . , ug in panel a and u l ,  . . . , v5 
in panel b. The  coefficients  for  each  value of R are averaged 
over 10,000 samples. 

When R is large, the coalescence processes  of different 
sites are nearly independent which means that  the best 
estimator of 8 should  be close to the sum of best esti- 
mator of 8 of each site; because the 8 per site is  very small, 
the best estimator for each site is close to WATTERSON’S 
estimator which  has been shown before and thus the 
best estimator of 8 is close to WATTERSON’S estimator 
when R is large. Under the neutral model with recom- 
bination,  the coefficients of 6, and 6, also  satisfy the 
relationship given by (27). 

THE NEUTRAL WRIGHT’S FINITE-ISLANDS MODEL 

Let d be  the  number of islands and m be  the overall 
migration rate. The neutral Wright’s finite-islands 
model assumes that  at each generation, each individual 
has probability m / ( d  - 1) to migrate from his current 
island to each of the  other d - 1 islands. We shall  assume 
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TABLE 3 

Variances of four estimators  under the neutral Wright’ f~te-islands model 

Two islands 
5 
5 

0.1 

5 
1 .o 
5.0 

5 
5 

0.1 
1.0 

5 5.0 

20 0.1 
20 1 .o 
20  5.0 
20  0.1 
20 1.0 
20 5.0 

Five islands 
5 0.1 
5 
5 

1.0 
5.0 

5 
5 

0.1 
1.0 

5  5.0 

20 0.1 
20 1.0 
20 5.0 
20 0.1 
20 1.0 
20 5.0 

20 
20 
20 
20 
20 
20 
50 
50 
50 
50 
50 
50 

20 
20 
20 
20 
20 
20 
50 
50 
50 
50 
50 
50 

A 
A 
A 

B 
B 
B 
A 
A 
A 

B 
B 
B 

A 
A 
A 

B 
B 
B 
A 
A 
A 

B 
B 
B 

49.05 
10.53 
7.28 

15.35 
7.32 
7.09 

851.70 
144.27 
101.82 
236.94 
100.03 
95.71 

114.19 
16.49 
8.09 

8.50 
6.79 
6.18 

1709.09 
253.37 
117.48 
133.40 
99.82 
92.79 

29.03 
6.25 
4.28 

10.52 
4.09 
3.88 

439.10 
62.67 
41.91 

133.96 
39.68 
34.80 

68.84 
11.03 
4.98 

6.54 
3.75 
3.27 

1052.06 
126.98 
55.45 
95.90 
41.75 
33.54 

6.50 
4.54 
3.37 
2.66 
2.62 
2.52 

36.69 
31.14 
22.45 
15.80 
15.73 
15.63 

32.99 
9.46 
3.66 

3.29 
1.95 
1.94 

360.56 
86.01 
31.35 
30.76 
14.91 
13.79 

28.58 
6.00 
4.14 

8.39 
3.89 
3.67 

432.95 
59.14 
37.35 
69.53 
30.92 
26.87 

68.86 
11 .oo 
4.92 
5.80 
3.39 
3.00 

1085.31 
124.31 
53.59 
86.94 
31.65 
25.45 

7.21 
5.60 
4.43 

2.68 
3.24 
3.71 

37.52 
38.18 
29.81 

16.11 
18.37 
20.53 

36.95 
12.23 
5.14 
4.72 
2.87 
2.84 

373.79 
111.24 
44.27 
40.33 
18.91 
17.87 

29.88 
8.17 
6.30 

8.22 
5.04 
5.32 

442.44 
80.55 
56.50 
81.32 
42.98 
42.25 

73.34 
17.25 
8.16 

10.36 
6.06 
5.20 

1227.03 
205.75 
90.85 

127.38 
55.11 
42.23 

Note; a and 8 are estimated from 10,000 samples and the results in each row of the table is from 10,000 samples. A, extreme sampling scheme; 
B, balanced sampling scheme. Also see the  footnote  to Table 1 for sv, V E  and vq. 

that all the islands have the same effective population 
size Nand that  the overall migration rate m is sufficiently 
small so that  the probability that two or  more individuals 
in a sample migrate at  the same generation can be ne- 
glected. Also  we assume that  there is no recombination. 

An event under  the WRIGHT’S finite-islands model is 
either  a coalescence or a migration. A coalescence event 
reduces by one  the  number of ancestral genes in the 
island where the coalescence event occurs while a mi- 
gration event reduces by one  the  number of ancestral 
genes in one island but increases by one  the  number of 
ancestral genes in another island, thus  the total number 
of ancestral genes remains the same. Let M = 4Nm and 
6, ( k  = 1, . . . , d )  be  the  number of ancestral genes in 
island k between two consecutive events. STROBECK 
(1987) showed that  the  expected time length between 
the two events is 

4N 

bk + x h  6k(6h - l) ’ 

Algorithms for  generating samples under  the neutral 
Wright’s finite-islands model were developed by 
STROBECK (1987) and SLATKIN and MADDISON (1989). 

Since there is no recombination, all the sites in the 
sequences have the same genealogy. However, unlike 
the  model with recombination,  the expectation of the 
number of i-mutations is no longer  the same as that un- 

der  the  neutral Wright-Fisher model. Therefore, &,is no 
longer  the same as K ,  neither is 6,  as .ir. Because  mi- 
grations tends to increase the time between two coales- 
cent events, K and 7i both overestimate 8. 

We focus on the cases  of two islands and five islands 
and consider two sampling schemes. The first is that all 
the sequences are taken from one island and  the second 
is that  a sample is taken from each island. These two 
sampling schemes will be referred to as the extreme- 
sampling scheme and  the balanced-sampling scheme re- 
spectively and consequently a sample from the extreme- 
sampling scheme and  a sample from the balanced 
sampling scheme will be will be referred to as an extreme 
sample and a balanced sample, respectively. 

We again use simulated samples to evaluate the per- 
formances of the  four estimators. Table 3 summarizes 
the results of simulations. It is obviously that d, is again 
the best estimator among  the  four estimators, but all  of 
them have smaller variances when migration rate is large 
than when migration rate is  small.  Similar to the  neutral 
WRIGHT-FISHER model and  the  neutral model with re- 
combination, superiority of d, is  mostly evident when 8 
and sample size TZ are  both large and in such cases, d, 
also  shows considerable improvement over dK dT is again 
the worst estimator among  the  four. 

Comparing the results for the cases  of two islands and 
five islands, we find that under the extreme-sampling 
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M 
FIGURE 5.-Coefficients of de (panel a) and e,, (panel b) as 

functions of migration  parameter M for balanced  samples  of 
size 10 from two islands.  The curves from  top  down  represent 
y, . . . , in panel a and v,, . . . , v, in panel b. The  coefficients 
for each  value  of M are averaged  over 10,000 samples and 
0 = 20. 

scheme, all the estimators performs better in the case of 
two islands than in the case of  five islands, suggesting 
that in general  the variance of an estimator of 8 increases 
with the  number of islands under the extreme-sampling 
scheme. For the balanced-sampling scheme, the pat- 
terns of the  four estimators are  not all the same. When 
Mis small, 6, and 6, perform  better with smaller number 
of islands than with larger number of islands but  the re- 
verse are  true when M is  relatively large. In comparison, 
6, and 6, seem to  perform  better with larger number of 
islands for all the migration rates we have considered. 

Table 3 also  shows that  the balanced-sampling scheme 
is  always better  than  the extreme-sampling scheme for 
the  purpose of estimating 8 because all the estimators 
perform better under the  former scheme than under 
the  latter  one. The extreme sampling scheme should be 
avoided particularly when migration rate is small. It 
should be pointed out that we have assumed that all 
islands have the same effective population size  in our 

TABLE 4 

Variances of  four estimators under  the infinite-loci neutral model 
with recombination when R has to be  estimated 

e R s4e, )  4 4 i )  su(@*) 4 l )  

10 

50 

10 

50 

0.0 
3.0 
8.0 
10.0 
15.0 
0.0 
3.0 
8.0 
10.0 
15.0 

0.0 
3.0 
8.0 
10.0 
15.0 
0.0 
3.0 
8.0 
10.0 
15.0 

n=20 and k=5 
27.84 15.33 
19.15 10.93 
13.25 8.11 
12.60 7.73 
10.40 6.72 
625.78 329.67 
398.84 214.24 
266.53 150.94 
237.02 136.15 
184.32 109.32 
n = 50 and k =  10 
26.68 10.45 
17.77 7.47 
12.45 5.64 
11.43 5.23 
9.75  4.74 

609.04 220.29 
367.31 139.85 
248.52 97.72 
215.08 90.74 
177.47 75.84 

11.50 
9.35 
7.52 
7.35 
6.73 

194.21 
154.07 
124.43 
119.21 
102.25 

7.81 
6.31 
5.12 
4.92 
4.65 

144.36 
98.50 
78.56 
75.06 
67.16 

14.65 
10.30 
7.81 
7.47 
6.64 

313.01 
196.82 
141.21 
128.96 
105.49 

9.61 
6.93 
5.32 
5.01 
4.63 

200.84 
127.21 
86.43 
82.60 
69.44 

Estimations of a and I; are based on estimated k and 10,000 
samples. Each  row is obtained from 10,000 simulated samples 
with recombination  rate R. Also see the  footnote to Table 1 for su, 
vt and vq. 

simulations. When this is not true,  the best sampling 
scheme is  likely the generalized  balanced-sampling 
scheme  in  which the relative  size of a sample from an island 
with respect to the overall  sample  size  is the same as the 
relative  value of the effective population size  of the island 
with respect  to the sum  of  all  effective population sizes. 

We also present in Table 3 the means of estimated 
variances of 6, and 6,. It is found  that variances  of and 
6, computed from Equations 19 and 20, respectively are 
on average overestimates of the  true variances under  the 
neutral Wright's finite-islands model. 

The coefficients of 6, and 6, for a balanced sample of 
size 10 from two islands are given in Figure 5. It is in- 
teresting to see that  the coefficients quickly become 
stable with the value  of  M. This example and many oth- 
ers we examined indicate that as far as 8 is concerned, 
samples from islands may be treated as from a panmictic 
population even when migration parameter  Mis as  small 
as 1, particularly when the estimator 6, is used. This o b  
servation is in accordance with a large body of literature 
showing that migration is extremely powerful  in  elimi- 
nating differences among local populations. Under  the 
neutral Wright's finite-islands model, the coefficients of 
6, and 6, also  satisfy the relationship given by (27) which 
seems to  be  true in general. 

DISCUSSION 

We have demonstrated under the  neutral WRIGHT- 
FISHER model,  the  neutral model with recombination 
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TABLE 5 

Means  and MSE of the four estimators  under  the neutral Wright’s finiteislands model for balanced  samples 

0 M M 0, MSE MSE 9 s  MSE e; MSE 
- - 

6, 
- 

A 
5 0.5 0.1 11.8 131.4 9.2 52.7  6.1  5.3  7.7  26.5 

0.3 6.2 16.6 5.7 8.1 5.2  2.8 5.5  6.2 
0.5 5.1 8.8 5.0 4.8 5.0  2.7 5.0  4.1 
0.7  4.5 6.5 4.7  3.9 4.9  2.5 4.8 3.5 
1 .o 4.1 5.9 4.4  3.6 4.8  2.6 4.6 3.4 
5.0  3.5 5.8 3.9  3.6 4.5  2.6 4.2  3.2 

20 5.0 0.1 69.5  5382.4  47.7  1708.0  24.7  69.3  35.7  656.4 
1.0  23.9  162.8  22.6  79.7  21.2 35.3 21.7  64.6 
2.0  21.3  114.9  21.0 59.6 20.6  32.4  20.8 53.5 
5.0 20.1 106.0  20.1 55.6 20.1  30.5  20.1  50.2 
7.0  19.6  102.2 19.7 52.9 19.8 30.4 19.8 46.8 

10.0 19.7  97.7 19.8 51.9  19.9  29.9  19.9  49.1 

5  0.5  0.1 16.1 207.1 13.8 124.6 9.1 26.8 11.1 65.7 
0.3 6.8 17.1 6.5 10.3 5.7 3.1  6.1  7.5 
0.5 4.9 6.9 5.0 4.0 5.0  1.9 5.0  3.4 
0.7 4.1 5.4 4.3 3.3 4.7 1.6 4.5  3.1 
1 .o 3.5 5.4 3.8  3.4  4.4 1.7 4.1  2.9 
5.0  2.4 8.1 2.8  5.6  3.7  2.7 3.3 4.0 

20 5.0 0.1  133.9  18949.9  97.7 8458.5 50.3 1228.9 67.4 3291.1 
1 .o 29.0  284.0 26.8  138.7  23.8  47.6  24.8  93.2 
2.0  23.5  146.3 22.8 71.6 21.8  29.7  22.2  57.6 
5.0 19.6 88.9  19.8  41.9  20.0  22.0  19.9  36.7 
7.0 19.4 92.1  19.4  42.8 19.5 21.3 19.5 37.1 

10.0 18.5 84.5 18.8 42.2  19.1  21.9 19.0 38.6 

B 

- ”  e,, e,, 6, and e, are, respectively, the  means of e,, e,,  e, and e,. Estimations of a and 2 are based on estimated value M of M and 10,000 
samples.  Each row is obtained  from 10,000 samples. A, Two islands and 10 sequences are taken from  each island; B, five islands and five sequences 

- 

are $ken from  each island. 

and the  neutral Wright’s finite-islands model that  the 6, 
is an efficient estimator of 8. However, comparisons of 
the  performances of  various estimators were conducted 
assuming that  the values  of parameters other than 8 are 
known. Since in practice the value  of migration param- 
eter M and  the value  of recombination  parameter R are 
likely unknown as  well, one has to estimate their values 
in order to  obtain estimates of 8 by GC or 0,. It  then raises 
a question: will 0, be still superior when M and R are  to 
be estimated? Although the recombination parameter R 
can be estimated by, for example, HUDSON and KAPLAN’S 

(1987) method  or HUDSON’S (1993) method  and  the mi- 
gration  parameter M by, for example, SLATKIN and 
MADDISON’S (1989) method,  but  their inferences are still 
in their infancies and better  methods  for estimating M 
and R are likely to appear in the  near  future.  Therefore 
I decide to examine the  performances of the  four esti- 
mators by using directly erroneous values  of M or R to 
estimate a and 2. 

Consider the  neutral model with recombination first. 
Since recombinations do  not change  the expectation of 
5 and r), it is  easy to see that 6, and 6, is still unbiased 
estimators of 8, when the estimated value  of R is inac- 
curate.  Table  4 gives a few examples on how the vari- 
ances of 6, and 6, are affected when the estimate of R 
is inaccurate. It is found from Table 4  that 6, remains to 
be the best estimator even when the estimate R of R is 
considerably different from its true value.  However, 
when R is different from R, the variances of 6, and 0, 

increase. For example, consider the case  of 8 = 50 and 
sample size n = 50, when R is equal to 0 while it is  es- 
timated to be 10, the variances of 6, and 6, are, respec- 
tively,  144.4 and 200.8 (Table 4), but if the estimation of 
R is accurate, i . e . ,  R = 0, the variances become 92.3 and 
166.9  respectively (Table 1). These simulations show 
that  the effort to compute 0, is undoubtedly worthwhile 
and  one must make effort to obtain good estimate of R 
to make most  of 6,. 

Next we consider the  neutral Wright’s finite-islands 
model. When the estimate Mof  Mis  not  accurate, all the 
four estimators become biased. To measure the per- 
formance of a biased estimator we must consider its  bias 
as well  as  its variance. A proper measure of the accuracy 
of a biased estimator 6 of 8 is the mean square error 
(MSE) , defined by 

MSE = E(6 - = Var(6) + (6 - 
Note that when 6 is unbiased, MSE is simply the variance 
of 6. Since the balanced-sampling scheme is much better 
than  the extreme-sampling scheme and its  use is strongly 
recommended, I shall examine the performances of the 
four estimators for balanced samples only. Table 5 gives 
a few examples of the effect on estimations of 8 when M 
is not accurate. 

It is clear from Table 5 that all the  four estimators, 
e=, dK, 6, and 6,, are biased when R is inaccurate  but 6, 
remains to be  the best estimator among  the  four. 6, is 
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a superior estimator not only because its MSE  is the 
smallest  in  all the cases we examined but also because it 
is the least biased estimator. Table 5 also  shows that  the 
MSE  of each estimator becomes relatively large when M 
is much larger than M; while on the  other  hand,  the MSE 
of an estimator does not change substantially when fi is 
considerably smaller than M. This suggests that  for  the 
purpose of estimating 8 it is better to underestimate M 
than  to overestimate M .  We pointed out earlier by ex- 
amining the coefficients of 6, and 6, that samples from 
islands may  well be  treated as from a panmictic popu- 
lation when M is not extremely small and Table 5 re- 
inforces this conclusion. For example, when & is 5 
which may be  regarded to represent a nearly panmictic 
population,  the bias  of is not substantial when M is  as 
small  as 1, through  the bias seems to increase with the 
number of islands. 

We assumed in this paper  that  the  frequencies of  mu- 
tations of  various  sizes, i. e. 6, can be  inferred accurately, 
which implies that  either  the infinite-sites model is ap- 
propriate  and an  outgroup sequence is available, or the 
sequences are sufficiently long so that  the phylogeny 
reconstruction is accurate. Samples of sequences of 
modest length without an  outgroup  are  common  and 
thus procedure  for estimating 8 for such samples will be 
of practical importance. Because Lj and r) are also  likely 
to be  important in constructing more powerful  tests  of 
the hypothesis of neutral mutations than those by  TAJIMA 
(1989) and Fu and LI (1993b), and may even lead to 
better estimators of R and M ,  we are currently searching 
for the best methods to infer  the values  of 6 and r) under 
various population models. But without going further, 
we expect that when the values  of Lj and r) can not be 
inferred accurately, some simple equations for bias cor- 
rection may be sufficient in practice, as found  for a 
BLUE  of 8 by  Fu (1994a). For the  neutral Wright’s finite- 
islands model, it may turn  out  that  the bias due to es- 
timating M is larger than  that due to estimating 6 and 
r) therefore  finding a good estimate of M may be  more 
critical. 

The programs  written in C language  for  estimat- 
ing 8 under models  considered  in this paper  are 
available from  the  author whose E-mail address is 
fu@gsbsl8.gs.uth.tmc.edu. 

I thank an anonymous referee for suggestions. This work is sup 
ported in part by a FIRST  AWARD from the National Institutes of 
Health. 
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