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ABSTRACT 
Using Cockerham’s approach of orthogonal scales, we develop  genetic  models for  the effect of an 

arbitrary number of multiallelic quantitative  trait loci (QTLs) or neutral marker loci (NMLs) upon any 
number of quantitative traits. These  models allow the unbiased  estimation of the  contributions of a  set 
of marker loci to  the additive and  dominance variances and covariances among traits in  a random 
mating population.  The  method has  been  applied to an analysis  of  allozyme and quantitative data from 
the  European oyster. The  contribution of a  set of marker loci may either be  real, when the markers are 
actually QTLs, or  apparent, when they are NMLs that  are in linkage disequilibrium with hidden QTLs. 
Our results show that  the additive and  dominance variances contributed by a  set of NMLs are always 
minimum estimates of the  corresponding variances contributed by the associated QTLs. In contrast, the 
apparent  contribution of the NMLs to the additive and  dominance covariances between two traits may 
be  larger than,  equal  to  or lower than  the actual contributions of the QTLs. We also derive an expression 
for  the  expected variance explained by the correlation between a  quantitative  trait and multilocus 
heterozygosity. This  correlation  explains only a part of the genetic variance contributed by the markers, 
i.e., in general, a  combination of additive and  dominance variances and, thus, provides only very limited - 
information relative to  the  method supplied  here 

T HAT quantitative trait loci (QTLs) can be charac- 
terized using linked  marker  genes was first shown 

by SAX (1923)  in  the  common  bean and by THODAY 
(1961) in Drosophila. However, for many  years, the low 
number of markers available was a limiting factor in 
these studies. The advent of techniques to detect molec- 
ular variation, beginning with protein  electrophoresis 
and culminating in DNA sequencing, however, has re- 
versed this situation: the huge amount of genetic vari- 
ability revealed by these techniques in almost all species 
has allowed the construction of detailed  genetic maps 
comprising hundreds of genetic markers evenly spaced 
throughout  the  genome  and has made  the  mapping of 
QTLs feasible. Several maximum likelihood and regres- 
sion methods have already been described for  mapping 
QTLs using a variety  of FY , F3, backcross and testcross 
generations (WELLER 1986, 1987; LANDER and BOT- 
STEIN 1989; mAPP et al. 1990; HALEY and KNOTT 1992; 
MARTINEZ and CURNOV 1992; MORENO-GONZALEZ 
1992),  and their application has provided very promis- 
ing results (TANKSLEY et al. 1982; EDWARDS et al. 1987; 
STUBER et al. 1987, 1992; PATERSON et al. 1988, 1991; 
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ABLER et al. 1991 ; DEVICENTE and TANKSLEY 1993; NO- 
DARI et al. 1993). 

The availability  of an increasing number of genetic 
markers in many species also makes it possible  to obtain 
information on  the genetics of quantitative traits in out- 
bred  populations. One obvious difficulty when using 
genetic markers for this purpose is the possibility that 
they are  not QTLs but  neutral  marker loci  (NMLs) that 
are correlated with quantitative trait variation because 
they are in linkage disequilibrium with hidden QTLs. 
Using COCKERHAM’S (1954)  approach of orthogonal 
scales, we develop here multilocus genetic models for 
(1) the analysis  of the  contributions of a set of markers 
to the additive and dominance variances and covari- 
ances  among quantitative traits and (2) the  interpreta- 
tion of these contributions when the markers are NMLs. 
Data amenable to such analysis are accumulating at  an 
ever-faster rate,  and a  correct  interpretation of the ge- 
netic information  carried by markers is needed.  The 
models allow the statistical estimation of the  mentioned 
genetic  contributions. As an  example, we analyze data 
from the  European oyster. 

COCKERHAM (1954) showed  how orthogonal scales 
could be used to partition the  contribution of multiple 
loci to the  genetic variance of a single trait into additive 
(A),  dominance (D) and various (A X A, A X D, D 
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X D, . . .) interaction terms. COCKERHAM allowed for 
epistasis and  inbreeding  and assumed diallelic loci and 
linkage equilibrium. WEIR and COCKERHAM (1977) pro- 
vided a  complete  partition of the genetic variance in  a 
two-locus multiallelic system  with inbreeding, linkage 
disequilibrium and arbitrary epistasis. Their results 
make it clear that  the simultaneous consideration of  all 
these factors in  a multilocus system  would  yield mathe- 
matically untractable results. Here, COCKERHAM’S ap- 
proach is taken to build up a  linear  model  for  the effect 
of an arbitrary number of multiallelic QTLs upon any 
number of quantitative traits in  a  random  mating  popu- 
lation. The model assumes additive action across loci, 
i.e., no epistasis, but allows for linkage disequilibrium, 
which may be  important  for reasons discussed below. 
We have  also derived expressions for  the  apparent con- 
tributions  made by an arbitrary number of multiallelic 
NMLs to the additive and dominance variances and 
covariances among any number of phenotypic traits. 
The results show that (1) a  neat  partition of the  genetic 
variance into additive and dominance  components is 
possible using NMLs, (2)  the additive and  dominance 
variances contributed by the NMLs are always minimum 
estimates of the  corresponding variances contributed 
by the associated QTLs and  (3)  the contribution of the 
NMLs to the additive and  dominance covariances may 
be  larger than, equal to or lower than  the actual contri- 
butions of the QTLs. 

A number of studies in several species have found  a 
correlation between growth rate, or  other fitness- 
related traits, and multilocus heterozygosity estimated 
using allozyme markers (see for reviews, MITTON and 
GRANT 1984; ZOUROS and FOLTZ 1987). Although this 
correlation is evidence of the  contribution  (real or ap- 
parent) of the analyzed  loci to the  genetic variance of 
the traits, there is no clear interpretation of this rela- 
tion. CHAKRABORTY and RYMAN (1983) noted  that  the 
correlation with multilocus heterozygosity may arise 
even  with purely additive gene action. Using our 
multilocus model, we have derived an explicit expres- 
sion for the  genetic variance explained by the correla- 
tion with the multilocus heterozygosity. This has been 
done in two cases: first assuming that  the  studied loci 
are  true QTLs and  then assuming them to be NMLs. 
We show that  the multilocus heterozygosity “captures” 
only a part of the total genetic variance contributed by 
the loci affecting the character, which  is in  general  a 
combination of additive and  dominance variances. 
Therefore,  the  correlation with multilocus heterozygos- 
ity provides very limited information relative to the 
method  presented  here. 

RESULTS 

Contribution of an arbitrary number  of  multiallelic 
QTLs to the  genetic  variances and covariances among 

TABLE 1 

Allelic doses (%) and  allelic  dose  products &) for the 
different  genotypes  at a multiallelic locus 

in a random  mating  population 

Genotype Frequency Xt Y ‘I 

A,  A, 8 2 ( l  - PZ) 2pZpJ -2p] 
At AI 2PzP, 1 - 2pt 2p,p1 

AI AI # - 2p, 2PCPJ - 2Pt 

+ (1 - p ,  - P,) 

Ai A -  2pt(l  - pt - P I )  1 - 2pz 2ptp, - PI 
AI A -  2P>(l - Pt - pj) -2Pt 2PaPJ - Pe 
A -  A -  (1 - p ,  - p,)‘ -2pi 2Pt P, 
A, and A, ( i  f j )  are any two alleles at this locus (frequencies 

p ,  and pj ,  respectively); A -  stands for  the  remaining alleles 
(overall frequency = 1 - p ,  - PI) .  

phenotypic traits: The k ( k  + 1)/2 possible genotypes 
at a QTL with k alleles may be fully specified by means 
of k - 1 independent allelic doses (xi) and k ( k  - 1)/2 
allelic dose products cyij) (Table 1). These  indicator vari- 
ables are  defined as 

x, = E i m  + EIf, (1) 

ye = E m l f  + E,&,, (2) 

where tim and Eq (Ejm and Ed) stand  for  the  centered 
doses of allele i 0) in the male and female gametes, 
respectively, and  are analogous to the first two orthogo- 
nal scales used by COCKERHAM (1954) to partition  the 
genetic variance into  components. Like COCKERHAM’S 
scales, the allelic doses (xi) are  uncorrelated with the 
allelic dose products (ye) at  the same or at a  different 
locus (Table 2) and will allow  us to decompose  the 
genetic variances and covariances into additive and 
dominance  components. Covariances among  the allelic 
doses (or  among  the allelic dose products) within each 
locus are  functions of the allelic frequencies, whereas 
similar covariances among  different loci depend  on ga- 
metic disequilibria (Table 2). One-locus disequilibria, 
digenic  nongametic disequilibria and trigenic and 
quadrigenic disequilibria do  not  appear in these formu- 
las because they are zero in a  random  mating popula- 
tion (WEIR and COCKERHAM 1989; WEIR 1990).  Three- 
locus and higher order disequilibria (WEIR  1990; ROE 
INSON et al. 1991a) may be present,  but, under  the as- 
sumption of no epistasis, they do not contribute to the 
genetic variances and covariances. 

When 1 multiallelic QTLs  with a  grand total of a al- 
leles are  considered, to  specify the g possible one-locus 
genotypes, we require n independent allelic doses ( n  
= a - I; one allele is left out  at each locus) and m allelic 
dose products ( m  = g - a;  the  number of one-locus 
heterozygotes). Thus, we can define  a ( n  X 1) vector 
of independent allelic doses, x. We also  have a ( n  X 
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TABLE 2 

Variances  and  covariances among the allelic  doses  and  the 
allelic  dose  products of two multiallelic loci 

Variances and 
covariances x, Ys 

Same locus 
X, 2pJl - PJ 0 
XI -2PiPI 0 
Y!, 0 4 g p y  + 2ptpj(l - pi - PI)  

Yt7 0 -2p;PIpAl - 2PJ 
Yrs  0 4PtP,lbrPq 

X, 2D,, 0 
Yil 0 2 D J ,  + 2DqD12 

Another locus 

D is the gametic  disequilibrium parameter (LEWONTIN and 
KOJIMA 1960; WEIR 1990). 

n) matrix of  variances-covariances among  the n allelic 
doses, X, and a (n X n) matrix of correlations among 
the n allelic doses, R,. The latter two matrices are re- 
lated by the expression 

X = D,R,D,, (3) 

where DX is a (n X n) diagonal matrix with standard 
deviations of the allelic doses on the principal diagonal 
and zeros elsewhere. Likewise, a ( m  X 1) vector, y, a 
(m x m) matrix of  variances-covariances, Y, and  a (m 
X m) matrix of correlations, Ry, may be defined  for  the 
m allelic dose products. Of course, Y and Ry are related 
in the same way as X and R, in Equation 3. 

If the 1 QTLs affect t different measurable phenotypic 
traits, assuming no genotype-environment interaction 
and  no epistasis, we can write the following model: 

z = a + d + e = a T x + S T y + e ,  (4) 

where z and a are ( t  X 1) vectors of phenotypic and 
additive values  (given  as deviations from the population 
mean); d and e are ( t  X 1) vectors of dominance and 
environmental deviations, respectively; (Y is a (n x t )  
matrix of the average  effects  of the n alleles on the t 
phenotypic traits, expressed as deviations from the aver- 
age effect of the allele left out in each locus, ie., the 
average effect of a  gene substitution in  case  of a diallelic 
locus; S is a ( m  x t )  matrix of dominance parameters 
(deviations of the heterozygotes from the midpoint of 
the  corresponding two homozygotes) ; and T stands for 
transpose. 

This model can be represented by the  path diagram 
shown in Figure 1  (for  a description of path analysis, 
see  WRIGHT  1921, 1934,1968; LI  1975; for  a multivariate 
generalization, see VOCLER and FULKER 1988). From 
Figure la, we derive the following expression for the 
matrix of additive variances-covariances: 

b 

FIGURE 1.-Path diagrams showing the actual effects on t 
quantitative traits of a  set of QTLs (continuous single-headed 
arrows) and  the  apparent effects of a  set of NMLs correlated 
with them  (discontinuous single-headed arrows). (a) Effects 
of the allelic doses (x  and x' for  the QTLs and  the NMLs, 
respectively). (b) Effects of the allelic dose  products (9 and 
y' for  the QTLs and  the NMLs, respectively). The two effects 
are shown in  separate graphs because the allelic doses and  the 
allelic dose  products are  uncorrelated. Environmental effects 
have been omitted. 

A = D,pLR,p,D,, (5) 

where p- is a (n X t )  matrix of path coefficients from 
the n allelic  doses to the t phenotypic traits, equal to 

p- = D,(YD;', (6) 

and D, is a ( t  X t )  diagonal matrix with phenotypic 
standard deviations of the t characters on the principal 
diagonal and zeros elsewhere. Likewise, from Figure 
lb,  we derive the following expression for the matrix 
of dominance variances-covariances: 

D = DZp;RypFDm (7) 
where pF is a ( m  X t )  matrix of path coefficients from 
the m allelic dose products to the t phenotypic traits 

pF = D,.~D;'. (8) 

Expressions 5 and 7 may be considered the multivariate 
generalization of formulas given by AWRY and HILL 
(1977, 1979), EWENS (1979) and WEIR et al. (1980). 

Apparent  contribution of an  arbitrary  number of 
multiallelic NMLS: to the genetic  variances and covari- 
ances among phenotypic traits: Let us consider now an 
arbitrary number of  NMLs that have no effect on the 
quantitative traits persebut show an apparent effect due 
to  their association with the QTLs. The characterization 
of the NMLs  is fully analogous to that of the QTLs. 
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Thus,  the same symbols are used for  their allelic doses 
and allelic dose products  but  a  prime is added to distin- 
guish them from those of the QTLs. In  addition, we 
define C,, and R,, as the ( n  X n’) matrices of  covari- 
ances and correlations, respectively, between the allelic 
doses of the QTLs and those of the NMLs. These two 
matrices are  related by the expression: 

Cxx, = DxR,fDxf, (9) 

where the  meaning of DX is  given  above and DX, is the 
analogous diagonal matrix for  the allelic doses of the 
NMLs. Similarly, we define CwJ and % as the ( m  X m’) 
matrices of covariances and correlations, respectively, 
between the allelic dose products of the QTLs and those 
of the NMLs. These two matrices are  related in the 
same way as Cxx8 and R,. in Equation 9. 

We first derive an expression for  the  apparent  contri- 
bution of the NMLs to the additive variances-covari- 
ances of the t phenotypic traits. The (n’ X t )  matrix of 
path coefficients from the allelic doses of the NMLs to 
the t phenotypic trait values (Figure la) is 

p,,. = R;,’ R,,,, (10) 

where R,,, is the (n’ X t)  matrix of correlation coeffi- 
cients between the allelic doses of the NMLs and  the t 
phenotypic trait values: 

R,,, = RLfp,,. (11) 

After substitution of Equation 11 into Equation 10 we 
get 

p,,, = RT R,,p,. 1 T  (12) 

These  path coefficients are  apparent, ie., they are  the 
standardized partial regression coefficients that would 
be observed were a multiple regression of the trait val- 
ues on  the allelic doses of the NMLs to be carried out. 
Now, the ( t  X t)  matrix of variances-covariances “ex- 
plained” by the n‘ allelic doses of the NMLs can be 
derived as 

A’ = D,p~rZRx~pxt,D,. (13) 

After substitution of Equation 12 into Equation 13 we 
obtain 

A’ = D,p~Rx,~R~’R~,p ,Dz .  (14) 

We are  interested  in  the comparison of the  true ge- 
netic variancescovariances contributed by the QTLs 
(expression 5), with the  apparent  contribution of the 
NMLs (expression 14). Subtracting Equation  14 from 
Equation 5 ,  we get 

A - A’ = D,pjf, (Rx - R,,R;’R&, ) p,D,. (15) 

The meaning of this expression can be  better  under- 
stood if  we take into  account  that 

D,R,.R;’RL.D, (16) 

is the ( n  x n) matrix of variances-covariances among 
the allelic doses of the QTLs jointly “explained” by the 
allelic doses of the NMLs. Thus  the  term 

(Rx - R,~R~,’R~xp) (17) 

in expression 15 is a symmetric matrix whose diagonal 
elements  represent  the  proportions of the variances of 
the allelic doses of the QTLs “unexplained” by the 
NMLs. These terms are  thus all larger than or equal to 
zero. On  the  other  hand,  the terms off-diagonal repre- 
sent  the covariances between the allelic doses of the 
QTLs left “unexplained” by the NMLs divided by the 
product of the respective standard deviations and may 
thus be positive or negative. In conclusion, the  apparent 
contribution of the NMLs to the additive variances of 
the phenotypic traits is always  less than or equal to 
the  true additive variances contributed by the QTLs. In 
contrast,  the  apparent  contribution of the NMLs to the 
additive covariances between phenotypic traits may be 
higher or lower than  the  true  contribution of the QTLs. 

A similar argument can be used to derive an expres- 
sion for  the  apparent  contribution of the NMLs to the 
dominance variances-covariances of the t phenotypic 
traits. The ( t  X t)  matrix of variances-covariances “ex- 
plained” by the allelic dose products of the NMLs  is 
(Figure 1 b) 

D’ = Dzp&Ry,py&z, (18) 

where pyrz is the (m’ X t )  matrix of path coefficients 
from the m’ allelic dose products of the NMLs to the t 
phenotypic traits: 

pyfz = &‘R;,pP. (19) 

After substitution of Equation 19 into Equation 18, we 
get 

D’ = D,p~%q’R~,p ,D . .  (20) 

The comparison between the  apparent  contribution 
of the NMLs to the  dominance variances-covariances of 
the  phenotypic traits and  the  true  contribution of the 
QTLs  is formally analogous to that  carried out for 
the additive variances-covariances. The conclusions 
reached  there  hold  true  here as  well. Note, however, 
that because the covariances between the allelic dose 
products of different loci are of the  order of 02 whereas 
those between the allelic doses are of the  order of D 
(Table 2), we expect  the  apparent  contributions to the 
dominance variances-covariances to be lower than those 
to the additive variances-covariances. 

Genetic  variance of a quantitative  trait explained by 
the multilocus  heterozygosity: Let us first assume that 
the  studied loci are QTLs. The multilocus heterozygos- 
ity (the  number of loci  in the heterozygous state in each 
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heterozygosity (h ' )  refers to a set of  NMLs. The correla- 
tion between the trait value and h' may be derived (Fig- 
ure 2) as  follows: 

Gh' = p%cx'px%' + P&%'py'h', (23) 

where the symbols  follow the previous notation (the 
prime refers to the NMLs). The variance of the trait 
explained by h' is then given by the expression 

FIGURE 2.-Path diagram  showing the relation  between a 
quantitative  trait ( z )  and the  multilocus  heterozygosity of a 
set of QTLs ( h )  or that of a set of NMLs ( h ' ) .  All other symbols 
as Figure 1. 

individual) may be treated as a quantitative trait without 
environmental variance, for which a is a ( n  X 1)  vector, 
p, with element i equal to frequency of the excluded 
allele at  the locus minus  the  frequency of the i allele, 
and 6 is a ( m  X 1 )  vector, 1, whose elements  are all 
unity. The correlation between a quantitative trait ( z )  
and  the multilocus heterozygosity (h )  , assuming no en- 
vironmental  contribution, is then (Figure 2) 

where pxh and pyh are, respectively, the ( n  X 1 )  and ( m  
X 1) vectors of path coefficients from  the allelic doses 
and  the allelic dose  products of the QTLs to the multilo- 
cus heterozygosity. The variance of the trait explained 
by h is thus 

This expression shows that the variance explained by 
the multilocus heterozygosity is  always  less than,  or 
equal to, the  contribution of the QTLs to the  genetic 
variance of the trait. Furthermore,  in  general, it does 
not  represent  either  the additive or  the  dominance 
component  but some combination of both. Only in  the 
particular case when there is equality of allele frequen- 
cies  within each locus and all the  dominance  parame- 
ters are identical, does the variance explained by the 
multilocus heterozygosity equal  the  dominance vari- 
ance. 

We  now consider the case in which the multilocus 

x [pzzRm,Dx,p' + pgQDY,1'lT. (24) 

The variance of the trait explained by h' may be larger 
than,  equal to or lower than  that  explained by h but is 
always  less than,  or equal to, the  apparent  contribution 
of the NMLs to the genetic variance of the trait, and 
only under very restrictive conditions does it amount 
to the  dominance  component. 

Estimation of the  contribution to the  genetic vari- 
ances  and  covariances: Consider a  random sample of 
N individuals from a panmictic population  in which 
each individual has been genotyped for 1 multiallelic 
marker loci and measured  for t quantitative traits. Ac- 
cording to the model given by expression 4, the ob- 
served data can be written in the form 

where ZN is the ( N  X t )  data matrix whose  row i com- 
prises the observed values of the t measured quantitative 
traits on individual i; XN and Y N  are, respectively, ( N  x 
n) and ( N  X m) matrices of individual allelic doses and 
allelic dose products  (Table 1) ; EN is a ( N  X t )  matrix 
of random variables whose  rows are  independent obser- 
vations from a multivariate normal  distribution with 
mean zero and matrix of variances-covariances, E. All 
other symbols are as  above. A multivariate regression 
combines t multiple regressions into  a single analysis, 
allowing the  complete estimation of the unknown pa- 
rameters, a, 6 and E, and tests for  the joint distribution 
of the  model and for  correlations (or covariances) 
among multiple regression lines. The maximum likeli- 
hood estimators of the unknown parameters  are 

X (ZN - X& - YN6). (28) 

To test the  entire  model,  the total matrix T of sums of 
squares and cross products is split into two orthogonal 
matrices: the hypothesis matrix, &, and  the residual 
matrix, R (Table 3). Furthermore, Hg can be orthogo- 
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TABLE 3 

Multivariate analysis of variance  table for  the  model  given by expression 4 

Source of variation 

~~ ~ 

SSP matrix d.f. 

~ ~ 

SSP matrix 
expectation 

Z is a ( t  x 1) vector of quantitative  trait means. 

nally partitioned  into  the Ha and Hd matrices to test 
for additive and  dominance effects  associated  with the 
markers. Ha and Hd may be  obtained by fitting the ZN 
matrix to the matrices of individual allelic doses and 
allelic dose products, X, and YN, respectively. An alter- 
native but equivalent method to compute H, is to per- 
form a multivariate analysis  of the variance (MANOVA) 
of the ZN matrix over  all loci, considering only the main 
effects (Table 3).  The genotypes at each locus are  the 
levels for each factor. The Wilks' A statistic is one of 
the most common test statistic computed by standard 
multivariate software  packages. It  depends  on  the eigen- 
values  of matrix R" H, where H is any matrix hypothe- 
sis to be tested (ANDERSON 1984). 

Unbiased estimators of the matrices of marker contri- 
butions to the  genetic, additive and dominance vari- 
ances-covariances, G, A and D, can be  obtained from 
Table 3, where we  give the expectations of the matrices 
of sums of squares and cross products for each source 
of variation. The significance of each diagonal element 
(variance) in matrix A is tested by multiple regression 
analysis on the allelic  doses (see also LANDE and THOMP- 
SON 1990). Similar  tests may be carried out for the 
diagonal elements in G and D. The off-diagonal  ele- 
ments of matrix A (covariances) can be tested by esti- 
mating the correlation between the linear functions i 
and j (LI 1975). For a given off-element of the Ha ma- 
trix, this correlation can be computed as  follows: 

A -  SPH,,, 
r=tzJ - d-l . 

(29) 

The test  statistic for this correlation coefficient is 

t="- d m .  
J i - 7  (30) 

If the null hypothesis of no covariance is true,  the statis- 
tic  follows a  Student's distribution with N-n-2 degrees 
of freedom. Similar procedures can be used to test the 
offdiagonal elements in matrices G and D, except  that 
the degrees of freedom  are, respectively, N(gl)-2 and 
N-(ga)9.  A lower bound  for  the narrow-sense heritabil- 

ity  of each quantitative trait can be obtained by dividing 
each diagonal element in the A matrix by the same 
diagonal element in the T matrix. Finally, the specific 
effects of each marker allele on each quantitative trait 
can be tested by looking for the significance of each 
regression coefficient in the multiple regression analy- 
sis. When the genotype frequencies depart from Hardy- 
Weinberg expectations, the allelic doses and  the allelic 
dose products  are not longer  uncorrelated,  and  the Hd 
matrix must be estimated from the difference, H, - Ha 
(Table 3). Interaction across  loci,  which was assumed 
to be absent in our model, can be tested by a MANOVA 
analysis  over  all loci, by comparing the matrix of  main 
effects of genotypes, H,, with the matrix for effects of 
all order, Hd. If Hd - H, is significant, then we can 
infer some interaction effect. But whether or  not this 
effect exists, the estimation of the H,, Ha and H, matri- 
ces remains unaltered. 
An illustration: Data from the  European oyster, Os- 

trea edulis L. (ALVAREZ et al. 1989), provides a practical 
application of our estimation procedures. The data 
come from a large cohort of oysters,  30 months  old, 
located at the Ria de Ortigueira ( N W  Spain). Four traits 
were measured in each individual: shell length (SL), 
shell width (SW), shell depth (SD) and age-specific 
weight (WT). The untransformed measurements 
(weight in grams and shell dimensions in millimeters) 
were  used in the analysis.  For each individual, the geno- 
type at five polymorphic allozyme  loci (malate dehydro- 
genase, Mdh; phosphoglucose isomerase, Pgz; esterase, 
Esst; isocitrate dehydrogenase, Idh; and phospho-gluco- 
mutase, Pgm) was determined by starch gel electropho- 
resis.  Each locus was diallelic except Pgm, which was 
segregating for four alleles  in this population. All statis- 
tical  analyses  were carried out with a sample of N = 
359 individuals for which we have complete genotypic 
information for all five loci. No significant departure 
from the Hardy-Weinberg proportions was observed at 
any  of the five  loci (ALVAREZ et al. 1989). 

The data were  analyzed using SAS's GLM and REG 
procedures (SAS Institute Inc. 1985), which  allow both 
MANOVA and multivariate regression analyses. We first 
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TABLE 4 

Results of the MANOVA carried  out for the 
data set of the  European  oyster 

SSP Wilks' 
Source of variation matrix d.f. lambda P 

Over  all  loci H, 13 0.77 <0.001 
Regression  allelic  doses Ha 7 0.78 <0.001 
Deviations Hd 6  0.97 0.877 

Residual R 345 
Total T 358 

Data from Alvarez et al. (1989). 

performed  a MANOVA analysis  with the genotypes at all 
five  loci  as the  independent variables and  the  measured 
variables as the  dependent  ones (Table 4). Matrix Ha 
was computed  from  a multivariate regression analysis 
where the allelic doses were used as independent vari- 
ables. Hd was estimated as the  difference H, - Ha. 
Highly significant genetic effects were detected and 
these were  exclusively additive (Table 4). All four addi- 
tive variances were significant, showing a clear associa- 
tion between the markers and  the quantitative traits 
(Table 5). The estimated additive contributions of the 
five markers, given  as % of the trait phenotypic vari- 
ance, were 2.15% (SL), 7.79% (SW), 5.58% (SD) and 
2.88% (W). In  addition,  the univariate multiple re- 
gressions showed that all loci, except Pgm, influenced 
significantly one  or more traits (Table 5). Thus, we can 
conclude  from this analysis that, at least at  the  moment 
at which this population was sampled,  the  four  quantita- 
tive traits had non-zero heritabilities. In  addition,  four 
of the five marker loci affected the traits or were associ- 
ated with regions containing QTLs.  Finally, no signifi- 
cant  interaction across loci was detected. 

We also calculated the correlation of the  four  quanti- 
tative traits with the multilocus heterozygosity. The re- 
sults showed a significant effect for  three traits (all but 
SL) . The  proportion of phenotypic variance explained 
by this correlation (2 )  was SL 0.44% ( P  = 0.21), SW 
1.64% ( P  = 0.015), SD 3.82% ( P  = 0.0002) and WT 
2.13% ( P  = 0.0056). All these figures are considerably 
lower than  the  contributions to the  genetic variance 
calculated above. Thus, as expected,  the heterozygosity 
only captures  a  portion of the genetic effects: our analy- 
sis  is a  much  more powerful way of detecting  the associa- 
tion of phenotypic variation with marker loci. 

DISCUSSION 

Testing  and  estimating  the  contribution of a  set of 
markers to the  genetic  variances  and  covariances: The 
computation of the correlation of phenotypic value 
with multilocus heterozygosity has been  a  method 

TABLE 5 

Matrices of estimated  allele effects, a, and  estimated 
contributions  to the additive  variances  and  covariances, 

A, for five  allozyme  loci in the  European  oyster 

Matrix of allele  effects (partial regression  coefficients) 

SL sw SD WT 

& =  
Mdh"" 1.05 2.71** 0.64* 1.98 

Est" 4.04** 5.61*** 0.94" 6.33** 
Zdh" 1.67 3.96** 1.23*** 2.87 

Pgi" -2.49 -4.11** 0.89* 0.08 

PgmB" -5.73 -4.43 - 1.93 -10.18 
Pgm" -4.47 -3.28 - 1.79 -7.01 
PgmIw -4.84 -3.21 -1.59 -7.34 

Matrix of contributions to the additive variances 
and  covariances 

SL sw SD WT 

A =  
SL 1.24" 2.67  0.25 1.74 
sw 5.00*** 0.70 3.46 
SD 0.27***  0.68 
WT 2.86* 

SL, shell  length; SW, shell  width; SD, shell depth; W T ,  

* P < 0.05; ** P < 0.01; *** P < 0.001. 
weight. Data from Alvarez et al. (1989). 

widely used in  the past to study the  relation between a 
quantitative trait and a set of markers. It has yielded 
positive results in some species or for some traits (SINGH 
and ZouROs 1978; ZOUROS et al. 1980, 1988; KOEHN 
and GAFFNEY 1984; KOEHN et al. 1988; ALVAREZ et al. 
1989; GAFFNEY 1990; POGSoN and ZOUROS 1994) but 
negative results in others (BEAUMONT 1982; BEAUMONT 
et al. 1985; FOLZ and ZOLJROS 1984; CHAJSRAF~ORTV et al. 
1986; HOULE 1989; BOOTH et al. 1990).  In  addition, 
differences among loci in their  contribution to the cor- 
relation have been observed in some cases (KOEHN et 
al. 1988).  Our analysis,  however, has shown that this is 
a weak  way to test the relation between a set of  loci and 
a phenotypic trait. It lacks  power to detect such an 
effect and, even when it does give significant results, 
the variance explained by the  correlation does not cor- 
respond  in  general with the variance components of 
known biological significance. These conclusions are 
true regardless whether  the markers are QTLs or NMLs 
and  are  not likely to change if the assumptions of our 
models are relaxed, i.e., by allowing for departures of 
the genotypic frequencies  from Hardy-Weinberg pro- 
portions or for  interactions between loci. 

The  method presented here for testing the  contribu- 
tion of a set of markers to the  genetic variances and 
covariances of  several quantitative traits is a multivariate 
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and multilocus generalization of the analysis  of variance 
currently in use to test the  contribution of one marker 
locus to the  genetic variance of a single character  (SING 
and DAVIGNON 1985; BOERWINKLE and SING 1986; BOER- 
WINKLE et al. 1987; EDWARDS et al. 1987; RUIZ et al. 1991). 
In addition, we provide a way to partition, by means 
of the multivariate regression on  the allelic doses, the 
contribution of the markers to the genetic variances 
and covariances into additive and dominance  compo- 
nents.  This  partition is  very important,  not only because 
it yields variance components with a clear biological 
significance (LANDE 1988; FALCONER 1989) but also  be- 
cause it provides a  more powerful test of the  marker 
effects than  the MANOVA alone. For instance, when 
the locus effects are exclusively additive, the regression 
analysis  clearly increases the  chances of detecting 
marker loci  with effects on  the quantitative traits rela- 
tive to the MANOVA (due to the fewer degrees of free- 
dom).  That  the picture  obtained from the  correlation 
with multilocus heterozygosity may change substantially 
when our  method is applied is illustrated by a reanalysis 
of a  data set from the  European oyster (ALVAREZ et 
al. 1989). Consistent application of our  method  might 
perhaps explain the variable results of studies correlat- 
ing fitness components with multilocus heterozygosity. 

Interpretation of the  estimated  contributions: The 
detection of a significant effect by means of the statisti- 
cal methods  proposed here does not guarantee  that  the 
analyzed marker loci are actually  QTLs. In some cases 
(e.g., KOEHN et al. 1988; SING et al. 1988),  additional 
biochemical and physiological evidence may be pre- 
sented to support  the hypothesis that  the analyzed  loci 
are in fact QTLs (the so called candidate gene appoach) . 
In many  cases, however, this kind of information is  lack- 
ing and the analyzed loci may be NMLs merely marking 
a  chromosome  region  containing one  or  more QTLs. 
When this is the case, what kind of inferences can we 
make about  the  contribution of the QTLs from the 
information we have obtained from the NMLs? 

The analysis carried out  here shows that  the additive 
and dominance variances explained by a set of  NMLs 
is  always lower than,  or equal  to,  the actual additive 
and dominance variances contributed by the associated 
QTLs. This suggests that  genetic markers, such as allo- 
zyme loci or RFLPs, could  be used to obtain minimum 
estimates of the additive and dominance variances of 
quantitative traits in natural  populations. This is useful 
in the estimation of heritabilities. This entails no special 
problems  in  the laboratory (BECKER 1984; FALCONER 
1989) but is difficult in  natural  populations of  many 
species, such as Drosophila, because relatives cannot be 
identified in the field (RISKA et al. 1989).  Further, we 
might expect  that  a similar relation between the actual 
and  apparent  contributions to the genetic variances 
holds  for the contributions to the  genetic covariances. 

This, however, is not generally true:  the  apparent con- 
tribution of the NMLs to the  genetic covariance may be 
lower than,  equal to or larger  than  the total covariance 
contributed by the associated QTLs. This result suggests 
that NMLs cannot be used regularly to estimate genetic 
covariances between traits, and that, when an  apparent 
contribution of a set of NMLs to the  genetic covariance 
between two traits is detected,  the results must be inter- 
preted with caution. 

A brief mention  should  be  made of the possibility, 
implicit in our models, that some of the marker loci 
included in a given  analysis are QTLs whereas the re- 
maining loci are NMLs.  All the conclusions stated in 
the  preceding  paragraph  concerning the relation be- 
tween the  apparent  and actual contributions to the ge- 
netic variances and covariances also hold  true  here. 
Furthermore,  the partial regression coefficients will 
allow us to identify, when a NML  is associated to a QTL 
and  both  are  included  in  the analysis,  which is the  gene 
actually affecting the characters. Likewise, when several 
NMLs are associated with a  hidden QTL ( ie . ,  one  not 
included  among  the analyzed markers),  the partial re- 
gression coefficients will point to the NML with the 
highest correlation with the QTL. This NML  will usually 
be (see below) the  marker physically  closest to the hid- 
den QTL. Therefore,  the multiple regression approach 
allows us to identify either  true QTLs or chromosome 
regions containing one  or  more QTLs. This may be 
an  important  step towards the isolation and cloning of 
QTLs. 

The l i iage disequilibrium  condition: The sine qua 
non for observing an  apparent  contribution of the 
NMLs to the  genetic variances and covariances of quan- 
titative traits is,  of course, linkage disequilibrium be- 
tween the NMLs and  the QTLs affecting the traits. In 
natural  populations, several forces can generate dis- 
equilibria between NMLs and QTLs: random  genetic 
drift (HILL  and ROBERTSON 1968; SVED and FELDMAN 
1973; HILL 1976; SLATKIN 1994),  founder effect (KI- 
MURA and OHTA  1971),  population subdivision and mi- 
gration (NEI and LI 1973; FELDMAN and CHIUSTIANSEN 
1975; CHAKRABORTY and WEISS 1988), hybridization 
(LANDE and THOMPSON  1990),  hitchhiking  (THOMSON 
1977; ROBINSON et al. 1991b) and epistatic selection 
(LEWONTIN and  KO~IMA 1960; BODMER and FELSENSTEIN 
1967; KARLIN 1975).  These forces are  opposed by re- 
combination  that  tend to erode  the associations. Occa- 
sional hybridization between genetically differentiated 
lines is probably the most powerful mechanism for  gen- 
erating associations in domestic species ( L m D E  and 
THOMPSON 1990) and population  admixture has proba- 
bly been very important in humans (CHAKRABORTY and 
WEISS 1988). In natural  populations of many species, 
however, random  drift, migration or selection might be 
perhaps  more relevant. SIATKIN (1994) has shown by 
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simulation that drift is  very likely to  generate significant 
nonrandom associations between closely linked poly- 
morphic  genes in stable populations. 

Turning  to  the empirical data, it is clear that gametic 
associations are  not  an universal feature of all genes 
and all populations, but  the opposite statement, 
namely, that  there  are no linkage disequilibria in natu- 
ral populations, is also untrue.  There  are many exam- 
ples of gametic associations in the  literature (HEDRICK 
et al. 1978;  BARKER 1979). Additionally, many  cases 
where the  authors failed to detect statistically significant 
linkage disequilibrium may merely reflect the low 
power  of the tests used (ZAPATA and ALVAREZ 1992, 
1993). As expected disequilibria are  more intense as 
recombination decreases, i.e., between  closely linked 
markers (LANGLEY 1977;  AQUADRO et al. 1986; ZAPATA 
and ALVAREZ 1992,1993). Perhaps the best, yet indirect, 
evidence for pervasive genome-wide linkage disequilib- 
rium is the positive correlation between nucleotide di- 
versity and recombination rate, which has been ex- 
plained in terms of hitchhiking with  favorable 
mutations  (BEGUN and AQUADRO 1992). Disequilibria 
are also strong is some special  cases, for example, when 
the loci are linked to chromosome inversions,  which 
are  abundant in Drosophila and  other insects (KRIMBAS 
and POWELL 1992). Finally, gametic disequilibria are 
present within families  even in random mating popula- 
tions. This fact has been used for  a  long time to detect 
QTLs in man and domestic animals (HALEY 1991; 
KNOTT and HALEY 1992). 

In any  case,  whatever the cause, empirical observa- 
tions show that markers with an effect on quantitative 
traits are  found surprisingly frequently. For instance, 
SING and ORR (1976) examined  the associations  be- 
tween  12 unselected red cell and serum markers and 
variation in total serum cholesterol levels. They found 
that one third of the analyzed markers accounted  for 
statistically significant portions of the variance in  this 
quantitative trait. Also, in the studies cited above on 
the  correlation between growth rate and multilocus het- 
erozygosity, the  authors typically  use  only a small num- 
ber of  allozyme markers (6  on the average) and, in 
many  cases, in spite of the low number of markers used, 
an effect is detected with the correlation explaining 
-5-10% of the phenotypic variation of the trait. 
KOEHN et al. (1988), who  analyzed an unusually large 
number of polymorphic loci (15) in the coot clam Muli- 
nia lateralis, found  that 8 of them showed a significant 
effect on growth rate. In  the example analyzed here, 
four of the five markers showed a significant effect upon 
two or more of the quantitative traits. These examples 
suffice to show that estimating the  contributions to the 
additive and dominance variances using markers is 
practical; it is  by no means a grail-like pursuit. 
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