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ABSTRACT 
Equations  to approximate the effective  size ( N e )  of populations under continued selection are 

obtained that include the possibility  of partial  full-sib  mating and other systems  such  as  assortative 
mating. The general equation for the case  of equal number of  sexes and constant number of breeding 
individuals (N) is N, = 4N/[2 ( 1  - a ~ )  + ( S i  + 4Q'C') ( 1  + aI  + 2a0)] ,  where S: is the variance of 
family  size due to sampling  without  selection, C' is the variance of  selective  advantages among families 
(the squared  coefficient of variation of the expected number of offspring per family), al i s  the 
deviation  from  Hardy-Weinberg proportions, a0 is the correlation between genes of male and female 
parents, and Q2 is the term accounting for the cumulative  effect of selection on an inherited trait. 
This is obtained as Q = 2 /  [ 2 - G (  1 + r )  ] , where G is the remaining proportion of genetic variance 
in selected  individuals and r is the correlation of the expected selective  values  of  male and female 
parents. The method is also extended to the general case  of different numbers of male and female 
parents. The predictive value of the formulae is tested under a model of truncation selection with the 
infinitesimal  model of gene effects,  where C2 and G are a function of the selection  intensity, the 
heritability and the intraclass correlation of  sibs. Under random  mating r = aI  = - 1 / ( N  - 1 ) and 
a0 = 0. Under partial full-sib mating with an  average proportion p of full-sib  matings  per generation, 
r = p and a0 = a, = p /  ( 4  - 3 p ) .  The prediction equation is compared to other approximations 
based on the long-term contributions of ancestors to descendants. Finally,  based on the approach 
followed, a system  of mating (compensatory mating) is proposed to reduce rates of inbreeding without 
loss of response in selection  programs in  which selected  individuals  from the largest  families are mated 
to  those  from the smallest  families. 

I N the  absence  of  selection,  all  the  individuals  of a 
population  have  the  same  expected  number of 

offspring,  and  differences  in family size are  due only 
to  random  sampling of individuals among families 
under a  given reproductive system. In  practice, how- 
ever,  populations  are  under  selection,  and,  in  gen- 
eral,  families do  not have equal  probabilities  of  con- 
tribution  to  the  next  generation  because  of  inherited 
or  noninherited causes.  This  leads  to  an  increase  in 
homozygosity and  random  changes  in  gene fre- 
quency.  Thus,  the effective population size [ N e ,  the 
size of an  ideal  population  that  would give rise to  the 
variance  of  change  in  gene  frequency or the  rate of 
inbreeding  observed  in  the  actual  population  under 
consideration  (WRIGHT  1931) ] is smaller than  the 
number  Nof reproductive  individuals. WRIGHT (1939) 
derived  a formula  for  the effective population size in 
terms of variance of family size ( S : ) ,  Ne = 4N/ ( 2  + 
S z )  , that  can be applied  when  selection is acting on a 
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noninherited trait.  Since then expressions have been 
developed  to  predict effective population size for a 
number of different cases (see CABALLERO 1994 for a 
review). 

When  selection  acts on an  inherited  trait,  the effec- 
tive size cannot  be  predicted solely from  the  variance 
of the family size at a  given generation,  because a 
fraction of the selective advantage of individuals re- 
mains  in  descendants over generations.  Thus,  the 
progeny  of  an  individual with  a high selective  value 
tends  to  produce a large  progeny  number. If a neutral 
allele is randomly  associated with that individual,  its 
frequency will tend  to  increase,  but  eventually  the 
rate of increase will  slow down as the average  selective 
advantage of descendants is diluted by segregation. 
Therefore, a fraction of random  changes  in  gene  fre- 
quency  in a  given generation is positively correlated 
with changes  in  previous  generations,  and WRIGHT'S 
formula  overpredicts  the effective population size. 
The  problem was first  discussed  in the  context of arti- 
ficial selection by ROBERTSON ( 1961 ) , who gave a  for- 
mula  to  predict  the effective size of populations  com- 
prising full-sib  families when  the  asymptotic  state  of 
correlated  changes is reached  under steady  selection. 
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He  introduced  the  idea of the accumulation of selec- 
tive advantages of individuals over generations.  Thus, 
the selective advantage of an individual is expected 
to  be reduced by one-half each  generation  in its de- 
scendants (the average selective advantage of the off- 
spring is half that of the  parents),  and the  total selec- 
tive advantage over generations  increases  in  a series 
1 + '/2 + '/4 + '/* -t * up to a  limiting value of 
twice the selective advantage  present  in the initial 
generation. By using  ROBERTSON'S  derivation, NEI 
and MURATA (1966) reached  an  equivalent  expres- 
sion for  the case of inherited fertility differences. 
BURROWS ( 1984) derived  a  formula for  the effective 
size in the first generation of truncation  selection,  in 
which ROBERTSON'S  expression is only the first order 
approximation.  He  did  not  address, however, subse- 
quent generations of selection and, consequently, the 
fundamental  problem of correlated  changes  in  gene 
frequencies over generations. 

The  solution given by ROBERTSON clearly under- 
predicts  the effective size of selected  populations, es- 
pecially for  high  heritability and  intense selection 
(HILL 1985; WRAY and THOMPSON 1990), because the 
increasing  competitiveness of contemporaries as se- 
lection  proceeds is not  accounted  for (WRAY and 
THOMPSON 1990).  To overcome  this deficiency, WRAY 
and  THOMPSON  (1990), working on  the infinitesimal 
model (BULMER 1980), developed  a recursive 
method to  approximate  the effective size as a  func- 
tion of the  mean  and variance of the  contributions 
of ancestors in the first generation  (when  selection 
starts)  to  descendants in the limit. The  method, how- 
ever, does  not allow  easy predictions of the effective 
size. Simpler methods, which consider  changes in 
gene  frequencies over two generations, have been de- 
veloped by WRAY et al. (1990),  but, as expected,  these 
methods  overpredict  the effective size. More recently, 
WOOLLIAMS et al. (1993)  and WRAY et al. (1994) have 
derived  equations  to  predict  means and variances of 
the  contributions of ancestors  to  descendants  for 
mass and  index  selection, respectively. Thus, follow- 
ing  the  approach of  WRAY and THOMPSON (1990), 
good  approximations  to  the effective size  of popula- 
tions under selection and  random  mating of selected 
individuals can be obtained. 

In this paper,  equations to predict effective  size under 
selection are  obtained by an alternative method. An 
approach similar to that of ROBERTSON is followed, cor- 
recting and extending his predictions, and the results 
are discussed  in connection with the WOOLLIAMS et al. 
(1993)  approach. The method is  also an extension of 
the derivation of CABALLERO and HILL (1992a), which 
allows the equations to be integrated  into  a  general 
framework ( K I M U ~  and CROW 1963; CROW and DEN- 
NISTON 1988; CABALLERO  and  HILL,  1992a) where selec- 

tion and  nonrandom mating of selected individuals 
(such as  positive or negative  assortative mating, or de- 
liberate mating between full sibs) can be considered 
simultaneously. Finally,  based on  the principles of the 
approach followed, a new  system  of mating (which we 
will call compensatory mating) is proposed to reduce 
rates of inbreeding with  practically no loss  of response 
to selection. 

DERIVATION OF EXPRESSIONS 

The genetic model: We assume first a  population 
with the same number of breeding males and females 
in which parents  are pair  mated  to  create N / 2  fami- 
lies each  generation.  Extension  to  the  general case 
of different  numbers of male and female  parents will 
be given later. Letf; be the relative fitness of family 
i, with mean Xf"=/l"/ ( N / 2 )  = 1 and variance C' = 
[ E:': f 9 / ( N /  2 ) 3 - 1 .  As population size is assumed 
to be  constant over generations, 2 J  is the  expected 
number of offspring contributed by family i .  We con- 
sider  an  autosomal neutral allele  unlinked  to  the se- 
lected  genes with mean  frequency Po in generation 0, 
which is the  initial  unselected  generation with a full- 
sib family structure. Effective population size is com- 
puted  from  the variance of change  in  gene  frequency 
of this neutral allele  among  infinite (conceptual) 
replicates of the  population. We will consider first 
the variance of change  in  gene  frequency  after  one 
generation of selection.  Later, the asymptotic effec- 
tive population size under  continued selection, when 
the variance of change in gene frequency (or the 
rate of inbreeding) is approximately  constant over 
generations, will be  addressed. Discrete generations 
are assumed. 

First generation: Changes in gene frequency are the 
result of three  independent processes acting each gen- 
eration:  random association  between the neutral allele 
and families  with a selective advantage or disadvantage, 
random sampling of individuals among families and 
Mendelian sampling of the  neutral allele  in the families 
in  which one  or  both  parents  are heterozygotes. The 
two last  processes comprise nonselective causes of  drift, 
and expressions to predict effective  size  in  this  case  have 
been derived by a  number of authors (see CABALLERO 
1994 for  a  review).  In what  follows the derivation of 
CABALLERO  and HILL ( 1992a) is repeated  for complete- 
ness and extended to take into  account the first process 
of inherited variation. 

Let (x,, + x$ / 2  be the frequency of the  neutral 
allele in  family i, where mand fdenote male and female 
parent, respectively. Thus, xi, or xti is 0, '/2, or 1 if the 
individual carries zero, one  or two copies of the gene, 
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respectively. The gene frequency in the  population in 
generation 0 is 

i v  . 
2= 1 

Now, assume that family i contributes ki offspring. The 
mean  gene frequency in the first generation is then 

where 6,, is the difference in gene frequency between 
the jth sampled gene from the individual i of  sex s and 
its parental value xis, Le., 6, is zero if the  parent is a 
homozygote or 5 1/2 if a heterozygote. Therefore,  the 
change in gene frequency is 

Under selection the  number of offspring contributed 
by the  ith  parent ( k j  ) can be partitioned  into two terms: 
the  expected  contribution due to its  selective  value (the 
2J defined  above) , plus a possible deviation due to 
random sampling ( di ) with  average  value zero among 
families, i.e., k, = 2$ + d, . Thus, 

= Si + Dl + Hi,  ( 2 )  

where S,, Dl and HI represent  the  change in gene fre- 
quency of the  neutral  gene from generation 0 to 1 
because of random association between the  neutral al- 
lele and a family  with a selective advantage or disadvan- 
tage, random sampling of individuals among families 
and segregation of heterozygotes, respectively. These 
three terms are assumed to be independent of one an- 
other. First, we  will consider the total contribution ( ki), 
and later we  will partition this term into its two compo- 
nents (2J  and di) . From ( 1 ) the variance of change 
in gene frequency is 

vrp1 - pol = - ; { v [;;; c ( T ) ( k i  - 211 

Gene  frequencies and numbers of offspring are ex- 
pected to be  uncorrelated in generation 0, and Men- 

delian sampling terms are also uncorrelated  and have 
equal variance ( V [  S,] ) . We take the same retrospective 
approach as CROW and KIMURA (1970, p. 353) in defin- 
ing  the effective  size from the observed distribution of 
offspring number, such that  the value k, for family i is 
fixed, describing the actual number of offspring from 
family i, and  not  a  random variable.  We,  however, de- 
fine the variance of family  size ( V [  R] ) as 

Finally, we ignore terms in 1 /N2 from correlations 
among  the x, because their sum is fixed. Hence, 

Now,  we take expectations for  the variances and covari- 
ances of gene frequencies and Mendelian sampling 
terms over an infinite number of conceptual replicates 
of the  population.  Thus, V (  xi,) = V (  xf) = po (1 - 
Po) ( 1 + aI)  /2, where crI is the deviation from Hardy- 
Weinberg proportions or the correlation between genes 
within individuals (approximately equal to WRIGHT'S 
&statistic [WRIGHT 1969, pp. 294-2951 ) . The expecta- 
tion of  cov (x,,, xq) = ( 1 - Po)  aO, where crO is the 
correlation between genes in pairs of parents or the 
correlation between genes within individuals in their 
offspring. Finally, the expectation of V (  hi,) equals the 
expected frequency of heterozygotes 2po ( 1 - Po) ( 1 - 
ar) times the variance generated from them ('/J . Thus, 
substituting above we obtain 

vrp, - p o l  
- - po(1 - p o l  V ( k )  ( 1  + a1 + 2%) 

2N 4 

The second term in ( 4 )  is due to segregation of hetero- 
zygotes. The first term is due to the variation in family 
size, which, as stated above, will have two components, 
due to differences in fitnesses among families and  due 
to sampling variation. Now we partition V (  R) into its 
two components. Because of the different relative  fit- 
nesses of the families, the expected number of offspring 
contributed by family i is E [  k , ]  = 2J. Its variance 
(og) will depend  on  the distribution of the  number of 
individuals available for selection in each family. We 
consider three distributions. 

Poisson: The total number of individuals available for 
selection is not fixed, and for a given  family  with an 
expected  contribution 2J, the actual number of de- 
scendants is assumed to be Poisson distributed with 
mean 2J. Thus,  the variance of the possible total num- 
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ber of individuals contributed by that family  is,  of 
course, 

a$ = 2J. (5)  

Constant: Under artificial selection the same number 
of progeny is often evaluated per family. If n individuals 
of each sex are evaluated per family (2n  for both 
sexes), the probability of selecting a given individual 
of a family  with an  expected  contribution 2J is 2J /  
2n. The variance of the possible number of individuals 
contributed by the family will be approximately 

a t  = 2 J ( 1   - J / n ) .  (6 )  

Binomial: If the total number of individuals that  are 
available for selection is fixed previous to selection 
but  there is variation between families, the variance of 
contributions will have two components. One is due 
to differences in the  number of individuals evaluated 
per family. This is assumed to be binomially distrib- 
uted with mean n for one sex, and variance n ( 1 - 2 / 
N) = n, when N is not very small. Thus, dividing by 
the  squared  mean  number of individuals evaluated in 
each family ( n2,  because the  mean  number of individ- 
uals of one sex contributed by one family is o n e ) ,  
this component is 1 / n and, considering  both sexes 
together, 2/   n.  The second  component is equivalent 
to  the variance of contributions when the same num- 
ber of individuals is evaluated per family (Expression 
6)  and,  therefore, 

a t  = ( 2 / n )  + 2 J ( 1   - J / n ) .  ('7) 

Then, taking expectations over  families  in the expres- 
sion for V (  k )  (Equation 3)  , 

E:/: E [  k g ]  x:': (a;* + E [  ki] 2 )  
V ( k )  = 

N/ 2 
- 4 =  

N/ 2 
- 4. 

Substituting E [  kt] by 2J and o : ~  by ( 5 ) ,  (6)  or ('7) 
and  noting  that, as stated before, Cz': J /  (N/ 2 )  = 1 
and Ez/: f :/ ( N/ 2 )  = C2 + 1, the variance of family 
size after one generation of selection when the  number 
of individuals available for selection in each family  fol- 
lows a Poisson, constant or binomial distribution is 

V ( k )  = 2 + 4C2, ( 8 )  

ponent.  Thus, substituting V (  k )  = V, + 4C2 from (8- 
10) into ( 4 ) ,  

pol = - C2(1 + af + 2ao) 2N 

+ - 3 (1 + af + 2ao) 
2N 4 

where E denotes  expectation and  the  three terms  are 
the variance of change in gene  frequency due to ran- 
dom association between the  neutral allele and a fam- 
ily with a selective advantage or disadvantage, random 
sampling of individuals among families and segrega- 
tion of heterozygotes, respectively (cf. Equation 2 ) .  
Equating  the variance of change in gene frequency in 
an ideal population [ po ( 1 - p,) / 2N,] to  Equation 11, 
we obtain  the effective  size in the first generation of 
selection 

4N 
2 ( 1  - af) + (V, + 4C2)(1 + a,+ 2aO) Ne,] = 

For a Poisson distribution of sampling variation (V, = 
2 ) ,  and  ignoring af and a. terms ( i . e . ,  assuming ran- 
dom mating and large N) , ( 1 2 )  reduces to 

N 
N.1 = ~ 1 + C2 

( CJ ROBERTSON 1961 ) . 
Cumulative effect  of selection: Changes in gene 

frequency due to  noninherited causes (random sam- 
pling of individuals among families, Dl, and segrega- 
tion of heterozygotes, HI) are  not  expected  to persist 
over generations. However, the  change in gene fre- 
quency due to random association between the  neutral 
allele and families with a given  selective advantage or 
disadvantage (SI )  will partially remain over genera- 
tions, as will be shown next.  This  change in gene fre- 
quency due to the  different fitnesses of families can 
also be expressed as a covariance (PRICE 1970) of rela- 
tive fitnesses ( J )  and  gene  frequencies ( p ,  = [x,, + 
xf] / 2 ) of families, or 

respectively. In these expressions the first term  denotes 
the sampling component of variation (which we  will 
denote V,) , and the second ( 4C2) is the selective  com- 

Assuming that differences between J values of the 
families correspond to an additive component of ge- 
netic  variation,  the  expected value of this covariance 
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in  offspring  before  selection will be the same as the 
original  covariance in parents. However, it is ex- 
pected  that  selection  reduces  the  genetic variance in 
selected  offspring;  selected  individuals are less  vari- 
able than  the whole group  in  the same  generation 
( BULMER 1980).  The remaining  proportion ( C ; )  of 
genetic  variance will depend  on  the selection  proce- 
dure  and genetic system (its  prediction for  truncation 
selection on a  normally  distributed  trait will be given 
later).  Therefore,  the  expected  remaining associa- 
tion  between selective values and  gene  frequencies  in 
selected  individuals is 

where the  prime  denotes selected individuals.  After the 
selected individuals are  mated,  a fraction of this covari- 
ance will remain in the newly formed families  of genera- 
tion 2. This can be represented as 

- - '/4 [ covl ( J m ,  9 pim,  ) + covl (J7 2 p f  ) 
+ C O V ~ (  Jm' > p f  ) + COVI ( $7 7 ptm, ) 1 9 

where pi,, ( p f  ) are  the  gene frequency of male (fe- 
male)  parents (from generation 1 ) of the new  families 
(in generation 2 )  andJmt ( Jr ) are  their  expected selec- 
tive  values.  All the individuals in generation 2 that come 
from the same family in generation 1 have the same 
expected values  of f and p .  The first two terms in  brack- 
ets are  the covariances between f and p values  in each 
parent  (which  are  expected  to be the same for males 
and females, covl [ Am,, pi,. ] = covl [ Jr , p f  ] = covl [ Jf  , 
pi , ]  ) , and the two last terms are  the covariances  be- 
tween f values in one  parent  and p values in the  other. 
These  latter can be obtained as the  product of the covar- 
iance between f and p values in the same parent 
(covl[ J, ,  pi , ]  ) and the correlation between the ex- 
pected f values  of male and female parents, which we 
will denote r. Thus 

cov2 ( J  7 p,  ) = I/4 [ 2 COVl (A,, pi, ) + 2 COVl (A,, pi, ) 7.1 
= '12 ( 1 + r )  covl 2 pi, ) 7 

and substituting ( 1 3 ) ,  

G 
2 c0v2 ( ~ , p , )  = -  (1  + r) c o v l ( ~ , p t ) .  (14) 

Equation 14 is the  expected  change of gene  fre- 
quency in the  second  generation  due to an associa- 
tion  in the first generation.  The  expected  changes  in 
the following generations  due to an association in the 
first generation will also be in the same  direction as 
SI, but  the  magnitude of these  changes will decrease 

by a proportion Gt-l ( 1 + r) / 2  every generation t .  
Thus, summarizing, 

is the  expected  change of gene frequency in the first 
generation due to an association between the  neutral 
allele and families  with a given  selective advantage or 
disadvantage, 

is the  expected change in the second generation given 
an association  in the first generation, 

= - (1 + r) - ( 1  + ?-)SI G2 G1 

2 2 

is the  expected  change in the  third  generation given an 
association in the first generation,  and so forth.  Under 
steady selection the  proportional  reduction in genetic 
variance per  generation will be approximately constant 
over generations, so we assume that G1 = G2 = G3 = 

frequency due to association  between the  neutral allele 
and families  with a selective advantage or disadvantage 
in the first generation  are 

. . .  = G. Therefore,  the  expected changes in gene 

in generation 1, 2 ,  3, . . . . 
Analogously, we can apply the same arguments for 

the new random associations between the  neutral allele 
and families  with a given  selective advantage or disad- 
vantage in generation 2 and in further generations. 
Then, changes in gene frequency due to associations 
in the second generation  are 

in generation 2 ,  3, 4, . . . , and similarly for further gen- 
erations. Therefore,  the  expected variance of gene fre- 
quency drift is 

V[pl  - pol = E ( &  + Dl + HI)' 

in the first generation (which is Equation 11 ) , 

2 

+ s, + 4 + H2)  



1018 E. Santiago and A. Caballero 

in  the second generation, 

+ $ + D 2 + H 2 + S l [ ; ( l + r ) ]  2 

in  the  third  generation,  and so on. As the  gene  fre- 
quency in  generation 0 is the same for all conceptual 
replicates of the  population, V[po] = 0 and V[p, - p,] 
= V[p,]. Let us denote Q = 1, Q = 1 + [ G( 1 + T )  / 
21,  8 = 1 + [ G ( 1  + ~ ) / 2 1  + [G(1 + ~ ) / 2 3 ' ,  (& = 
1 + [G(1 + r ) /2]  + [G(1 + r ) /2] '  + [G(1 + r ) /  
21 3 ,  etc. Thus, 

Wpll = E(QlS1 + Dl + Hl)2, 

V[&l = E(&& + Dl + HI + QI$ + 0 2  + Hz) ' ,  

V[g] = E (  QlS1 + Dl + HI + &$ + D' + HZ 

+ QlSl + 0 3  + Hl)', 

and so on. Assuming that population size and the selective 
( C2) and nonselective (V,) components of variance are 
constant over generations, E (  s:) = E (  S: ) ( 1 - 1 / 
2N,,l), E ( S 9  = E(S:)(l - 1/2'%,1)(1 - 1/2N,2), 
E ( $ )  = E(S?) ( l  - 1/2'%>1)(1 - 1/2N&2)(1 - 1/ 
2N,,3) , etc., and similarly for E (  0') and E (  @) , where 

is the effective population size in generation t .  Assum- 
ing that differences  between N?,, in consecutive genera- 
tions are small such that ( l - l /2N,,,) = ( l - l /2NQ) 

ing E (  S : ) ,  E ( D : )  and E ( # )  by E (  S ' ) ,  E ( D 2 )  and 
M . . .  = (1 - 1/2Np,,) = (1 - 1/2N,) and denot- 

E ( @ ) ?  

V[Pll = Q ? E ( S 2 )  + E ( D 2 )  + E ( @ ) ,  

V[pZ] = [ Q;E( S2) + E ( D ' )  + E ( P ) ]  + [ Q:E( S2) 

v[gl = [ Q Z ( S 2 )  + E ( D 2 )  + E ( @ ) ]  

+ E ( D 2 )  + E (  P) I [ l  - 1 /2Ne], 

+ [ Q:E(S ' )  + E ( D 2 )  + E(H2)]   [ l  - 1/2N,] 

+ [ Q : E ( S 2 )  + E ( D ' )  + E(H2)]  [l - l /2Nel2,  

and so on. These  equations give the variance of gene 
frequency among infinite conceptual replicates of the 
population  in  each  generation.  Under no selection ( C2 
= 0)  , binomial distribution of  family  size  with large N 
and  random mating (V, = 2, aI  a0 = 0 )  and substitut- 
ing E (  S2) ,  E ( D 2 )  and E (  H z )  by the  three terms in 
Equation 11, we obtain 

as it is expected  in  the ideal population. 
Effective population size considering changes in vari- 

ance of the  gene  frequency  from  generation 0 to 1 can 
be  obtained from 

v[pll - V[pol - Q:E( S') + E ( D ' )  + E ( P )  
pO(1 - Po)  - V[pol PO(1 - Po) 

- 

Substituting the  three  terms in ( 11 ) and  rearrang- 
ing, we obtain  Equation 12, as expected. Analo- 
gously, we can  compute  an effective size considering 
changes  in  variance of the  gene  frequency  from  gen- 
eration 1 to 2 

vip21 - V[pll 1 
& ( I  - h) - V[Pll 2N, 

= { [ @ E (  S*)  + E ( D ' )  + E ( @ ) ]  

- [QYE(S2) + E ( D ' )  + E(H2)]}/ 

- 

+ [ @ E ( S ' )  + E ( @ )  + E(@)]  [l - 1/2N,] 

{&( 1 - &) - [ Q:E( S2) + E ( D ' )  + E ( P ) ] }  , 

which after substitution and  rearrangement gives 

4N 
N . 2  = 2 (1  - a / )  + (V, + 4@C2) (1  + CY, + 2~10) ' 

(15) 

and so forth.  In  general for large t ,  an expression for 
the asymptotic effective  size can be  obtained as 

4N 
N, = 

2 (  1 - ( ~ 1 )  + (V, + 4Q2C') ( 1  + CY/ + 2aO) ' 

(16) 

where 

Hence, if it is assumed that  there is no reduction in 
variance due to selection (i.e., G = 1) and ignoring 
T ,  this gives ROBERTSON'S ( 1961) series Q = 1 + + 

In Equation 16 the term (V, + 4Q2C2) consists of the 
variance of the family  size after one generation of  selec- 
tion (V, + 4C') (see Equation 12) plus the cumulative 
effect of selection on an inherited trait ( 4  [ Q' - 11 C') . 

l/4 + + * = 2. 
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Common environmental variation of  sibs and noninher- 
ited sources of variation  in  family numbers can also be 
included in the noncumulative term of  this  variance. 

Equation 16 can be simplified by noting  that  the 
terms C 2 /  n in Equations 9 and 10 are, in general, very 
small. Thus, neglecting them, V, equals the variance of 
family  size  with random selection, i e . ,  2 with binomial 
distribution of individuals available for selection and 
2 ( 1  - 1 / n) with constant  distribution, which we will 
denote S:, 

4N 
N, = 

2 ( 1  - ( Y I )  + ( S z  + 4Q2C2)( 1 + + 2ao) 

(18) 

For sampling variation binomially distributed ( S: = 2 ) 
and assuming random mating and large N ( aI  a. = 
0 ) ,  (18) reduces to 

N 
Ne = 

1 + Q2C2 

( c j  ROBERTSON 1961 ) . 
Equation 18 has been derived in a  general way.  Now, 

we specift  the value  of the  expected  correlation of  fit- 
nesses between male and female parents ( r in Equation 
17) and the  expected  correlation of genes within indi- 
viduals ( a I )  and between mates ( ao)  for two particular 
cases, random mating and partial full-sib mating of  se- 
lected parents. 

Random  mating of  selected  parents With random 
mating and infinite population size the  expected value 
of rin Equation 17 is zero. However, in a finite popula- 
tion a negative correlation between the  expected selec- 
tive  values of mates is generated under random mating, 
because their sum is fixed. This can be obtained as 
follows.  Because E [  X ]  = 1, CEl ( X  - 1 ) = 0. There- 
fore, EL, ( X  - 1)  + Xi", ( A  - 1) (& - 1) = 0 and 
NC2 + N( N - 1) cov(J, X )  = 0. From this we obtain 
cov(J,J) = - C ' / ( N -  1)  and  hence, 

2 

1 
N -  1 ' 

E ( r )  = -- 

as  would be expected. 
aI  in Equation 18 is the deviation from Hardy-Wein- 

berg  proportions in male or female parents. Under ran- 
dom mating this is not zero but - 1 / ( N  - 1 ) ( KIMURA 
and CROW 1963; see also  ROBERTSON 1965). a. is the 
correlation between genes of male and female parents, 
which  is zero under random mating. 

Partial full-sib  mating of selected parents: The 
structure of the  equations above allows the possibility 
of including  a  certain  proportion of mating between 
relatives. In  particular, we can  consider  the case where 
every generation  an average proportion ,B of the mat- 

ings are between full sibs and  the remaining 1 - ,8 are 
at  random,  the full-sib mating  habit not being  inher- 
ited. When mating is made between full sibs, the  corre- 
lation between the expected selective  values  of both 
parents ( r  in Equation 17) is one  (because full sibs 
have the same expected fvalue) , whereas for  random 
mating  it is approximately zero.  Thus,  the  expected 
correlation between the selective  values  of both  par- 
ents in the new families is approximately r = p X 1 + 
( 1 - , 8 ) X O = P a n d Q = 2 2 / ( 2 - G [ 1 + , 8 ] ) . W i t h  
partial full-sib mating aI  asymptotes very  quickly to 
a value that  approximates p /  ( 4  - 3p)  ( GHAI 1969; 
FALCONER 1989, pp. 97-98) and, ignoring second-or- 
der terms, a. = aI. Thus,  Equation 18 then holds 
except  that  the  term ( 1  + a1 + 2a0) = ( 1  + 3a1) 
(CABALLERO and  HILL 1992a). 

Different numbers of  males and  females: The previ- 
ous approach can be extended  to different numbers 
of  sexes by considering males and females separately, 
because changes in gene frequencies of the  neutral 
gene  are  uncorrelated in  male and female parents. As- 
sume a population with Nm males and N/females, such 
that N, < N, and each generation  one male is mated 
to an integral number Nf/Nm females. 

The effective number of individuals of  sex s after one 
generation of selection can be predicted using a slightly 
corrected version  of the  equation of  CROW and DEN- 
NISTON ( 1988), including  a term 2a0 from CABALLERO 
and  HILL (1992a), 

and considering the  appropriate variances and covari- 
ances of offspring number  for  the case  of selection. N, 
is the  number of parents of sex s, psm( = NJN,) and 
V (  ksm) are  the mean and variance of male offspring 
from parents of  sex s, respectively, and analogously for 
female offspring. Cov( ksm, ksf) is the covariance be- 
tween the  number of male and female offspring from 
parents of  sex s, and aI,s is the deviation from Hardy- 
Weinberg proportions in parents of  sex s. The effective 
size  of the  population is obtained by 

1 1 1 

Ne 4Nm 4Nq 
" " +- 

(CROW and DENNISTON 1988) . 
Thus, we  now derive the expected variances and covari- 

ances  of  offspring number with one generation of  selec- 
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tion  (expressions will be given  only for numbers of male 
offspring but those for female  offspring are analogous, 
substituting  subscripts rn by f )  . By definition, 

where k,, is the  number of male offspring contributed 
by parent i of sex s, and 

We define Jsm as the relative selective advantage of 
parent i of sex s in their  contribution  to male off- 
spring. The  mean  and variance of Jsm over families is 
xz lJsm/  N, = 1 and C', = [ f ;sm/ N,] - 1,  respec- 
tively. Thus,  the  expected  number of male offspring 
contributed by parent i of  sex s is ( N m /   N s )  J s m .  The 
variance of this number (a:,$_) depends, as before, 
on  the  distribution of the  number of offspring  from 
parents of  sex s available for  selection. For a Poisson 
distribution, 

For a  constant  distribution, 

where ns is the number of offspring of one sex  available for 
selection  from  parents of  sex s. For a binomial  distribution, 

where now n, is the average number of offspring of one 
sex  available for selection from parents of sex s. Finally, 
akasm,sf  = 0 if there  are  not any sources of variation other 
than sampling. 

Taking expectations in (22 )  and (23)  over  families, 

and 

Substituting E [  ki,,] = ( Nm/  Ns) Jsm and (T :,,, from ( 24) , 
(25)  or (26)  into (27), we obtain 

for Poisson distribution, 

v ( k.m ) 

for constant distribution, o r  

for binomial distribution. Expressions for female off- 
spring are  the same as (29-31 ) substituting subscripts 
rn by f .  Finally, substituting E [  hsm] = ( N, , , /Ns )Jym,  
E [  = (N f /N , )  Jsf and (Tk,,,,,f = 0 into (28)  and 
assuming that  the selected trait is controlled by the 
same set of genes in  males and females, 

for any distribution of  available  individuals  for  selection. 
Again, the first term in (29-31 ) denotes  the sam- 

pling component, which we  will denote V,, (and V,,for 
the analogous expressions for female offspring) , and 
the second term denotes  the selective one. Equation 32 
only  has a selective component, assuming that  there 
are  not any sources of covariation other  than sampling. 
Therefore, substituting (29-31) as V (  ksm) = V,, + 
CL ( N,/ N1)  ', and analogously for females V (  ksf ) = 
V , , f  + C:,( N,/ N )  ', as  well  as (32)  into (20)  , we obtain 
an expression for the effective number of individuals 
of  sex s in the first generation of selection, 

where C, = ( C,, + Csf) /2 .  
The cumulative change in gene frequency over gen- 

erations is equivalent for both sexes because genes from 
male and female parents  are selected with the same 
intensity in  male and female offspring. Thus,  although 
the remaining proportion of the genetic variance due 
to selection in sons (G,) and  daughters (G,) can be 
different because selection can act with different inten- 
sities in both sexes, the remaining proportion of genetic 
variance in selected descendants of  male parents is the 
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same as in selected descendants of female parents ( G 
= [ Gm + Gf] / 2 ) . As before, only changes in gene fre- 
quency due to selection on an  inherited trait are ex- 
pected to persist over generations.  These changes can 
be expressed as [ covl ( A ,  pjm) + covl (f; , p,) I / 2, where 
pi, ( pq) is the frequency of the  neutral  gene in the male 
(female)  parent of  family i, andf; is the  expected selec- 
tive  value  of  family i. The offspring has the same covari- 
ance before selection, but after selection the covariance 
is reduced, covl (f;,, p i 5 , )  = G covl (f;, pis) , where s is 
m or f and primes denote again selected individuals. 
After mating the selected individuals, the  expected 
change in gene frequency from the first  to the second 
generation within the  set of genes from individuals of 
sex s in generation 0 is 

where Am, and are  the  expected selective  values of 
male and female parents  (from  generation 1 ) of the 
new  families (in generation 2 ) ,  respectively, and p,,, 
and pjsr refer to frequency of genes  that come from 
the individual of  sex s of generation 0,  through male 
and female parents in generation 1, respectively. Thus, 

where Tis the  correlation between the expected selec- 
tive values  of the families from which the male and 
female parents come. 

Thus, following the same arguments as in the case for 
equal  numbers of male and female parents,  a  general 
expression for the asymptotic  effective  size under selec- 
tion is 

combined  for  the two sexes by means of (21 ) . 
As before, if  we neglect the terms in Cz/ n, in expres- 

sions (30  and 31 ) , V,, and Xf  give the variances of 
offspring number  under  random selection, i.e., N,/  N, 
for a binomial distribution of individuals available for 
selection, and ( NJN,) [ 1 - (N,/ Nsns) 3 for a  constant 
distribution (and analogously for female offspring) . 
We  will denote these variances as S:m and S:f, respec- 
tively. Thus, 

The term SSmsf does  not  appear in the derivation be- 
cause it is zero in the absence of any  causes of variation 
of offspring numbers  other  than sampling, but it is in- 
cluded for completeness, because these sources of non- 
inherited variation can also occur. Equation (36) is 
thus equivalent to CROW and DENNISTON'S (1988) ex- 
pression for the variance effective  size  with an extra 
term accounting for selection. Note that if Nm = N, = 
N/2,  (21 and  36) reduce to (18),  as expected. 

APPLICATION  TO  PARTICULAR  SELECTIVE  SYSTEMS 

The derivations shown  above  were carried out in a 
general framework in  which no reference to a particular 
selective and genetic model was made. To predict the 
effective population size under selection, two parame- 
ters must be known, G and C 2 .  The magnitude of these 
parameters is dependent  on the selective  system in- 
volved. We will consider here  the application to an in- 
finitesimal model of gene effects ( BULMER 1980) in 
which descendants are selected according to their phe- 
notypic values ( a  viability model)  and  there is random 
mating of selected parents,  but  the analysis could also 
be  extended to other models (e .g . ,  for a fertility model 
see NEI and MURATA [ 19661 ) . 

Under  truncation selection on a normally distributed 
trait, it has been  demonstrated  that selection reduces 
the additive genetic variance of the selected individuals 
by a  proportion G = 1 - kh2 ( BULMER 1980), where 
h2 is the heritability of the trait, k = i( i - x) , and x is 
the truncation point in the standardized normal distri- 
bution of phenotypes. Moreover, under phenotypic se- 
lection C2 = i2p (MILKMAN 1978), where p is the in- 
traclass correlation of full sibs. 

As both h' and p decline over generations  and we 
are  interested in the asymptotic  effective  size (the effec- 
tive  size under continued selection when the rate of 
increase in inbreeding reaches its  asymptotic value), it 
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is more suitable to use the asymptotic h2 and p, i.e., 
their values in the same period  for which the effective 
size  is to be  predicted. Strictly, h2 and p decline continu- 
ously  over generations  until they are exhausted in a 
finite  population,  but we can consider the nearly steady 
state where this decline is negligible. 

If population size  is not very small  (say N > l o ) ,  a 
good approximation for  the additive genetic variance 
after a few generations of truncation selection with the 
infinitesimal model of gene effects ( V j ,  asterisks will 
denote asymptotic values) is  given  by expression (9.34) 
of BULMER ( 1980) , 

(1 + k)VX2 + (VE-  VA)V,* - VAVE= 0,  (37) 

where VA and VE are  the initial additive and environ- 
mental variances, respectively.  Solving for the positive 
solution of V x  , the asymptotic heritability ( h 2 * )  is (see 
also GOMEZ-RAYA and BURNSIDE 1990) 

h2* = VX (38) 
vz + VE 

and  the asymptotic intraclass correlation of full sibs  is 

(39) 

where V :  is the asymptotic  additive genetic variance 
between families before selection. Assuming that  the 
additive genetic variance within families is constant over 
generations  and  equal to V A / 2 ,  

p* = v: 
v f  + VE' 

V :  = V,* - ( V A / 2 )  = ' / 2V2(1  - kh'"). (40) 

For different  numbers of male and female parents, 
similar approximations can be  obtained  for G, = ( 1 - 
k,h2*) ,  where k, = i, ( i, - x,) , i, is the selection 
intensity, and x, is the  truncation  point in the  standard- 
ized normal distribution for males, and analogously for 
females. From the average  value of G, and Gf ( G )  , Q 
can be calculated with the same formula as  with equal 
number of  sexes (Equation 17).  Accordingly, C:, 
i i p T  and Czf w i ?pT ,  where p p  is the asymptotic in- 
traclass correlation of  families  of  sex s. However,  be- 
cause  with N, e Nf selection intensity in males can be 
very high, it is appropriate to estimate C2 with more 
precision. BURROWS ( 1984) showed that C2 = i 2 [  p + 
p 2 x 2 / 2  + p 3 ( x 2  - 1 ) 2 / 6  + - - - 1 .  Thus, we can use 
a  better approximation to C2, 

Cz,,, = i i [ p T  + ' / 2 p T 2 x :  + ' / s p T 3 ( x ' ,  - l ) ' ] ,   (41)  

and similarly for C:f .  More accurate approximations 
can also be  obtained  from  the work  of MENDELL and 
ELSTON (1974). 

Again, the asymptotic variance can be  obtained from 
the  quadratic  equation of BULMER (Equation 37) sub- 
stituting k = ( k ,  + k f )  /2. Asymptotic heritabilities are 

approximated by (38) and asymptotic intraclass corre- 
lations of families from parents of  sex s by 

With random mating 

(43) 

because the expected genetic value  of  any  family is the 
average  of the genetic values  of male and female par- 
ents, which  were selected with different intensities. 

The equations above can be used in a general way 
for other kinds of selection. The selection coefficient 
of a genotype is approximately equal to the  product of 
the  standard selection differential ( i )  and  the  standard 
genotypic effect (see e.g., FALCONER  1989, p. 202)  . This 
holds for any kind of selection in which fitness is a 
nondecreasing function of a distribution of phenotypes 
(MILKMAN 1978).  The proportion of genetic variance 
that is still remaining in selected individuals ( G )  rela- 
tive to the unselected ones in the same generation is 
the result of selection acting on genotypes ( i . e . ,  their 
fitness values).  Therefore, all the fitness functions that 
produce  the same selection differential i will give the 
same reduction in genetic variance. We can, thus, use 
the same expression for G above for any kind of  selec- 
tion with intensity i. The corresponding x value for any 
of these systems  of selection would be the cut-off point 
in the  normal distribution when truncation selection is 
carried out with the same intensity. Furthermore, the 
property that  the fitness  value is a function of intensity 
of selection and genotypic effect also  allows the utiliza- 
tion of i 2 p  to approximate C2 under any kind of pheno- 
typic selection in  which  fitness is a nondecreasing func- 
tion of phenotypes. It must be noted, however, that this 
formula is only an approximation and it does not  hold 
for very high selection intensities and heritabilities. 

Effective population size for systems of mating such 
as  assortative mating can also be predicted by the equa- 
tions derived in this paper. The appropriate value  of r 
in Equation 17 is the  correlation between the expected 
fvalues of mates. Given that all the descendants from 
the same family  have the same expected fvalue, r can 
be approximated under assortative mating as r = prh 
where p is the intraclass correlation of family members, 
and rp is the phenotypic correlation between  male and 
female parents. Thus, maximum positive or negative 
assortative mating can be approximated by using r~ M 
1 or -1, respectively.  Strictly, the approximation only 
holds when matings are  arranged between unselected 
individuals. Therefore, it is expected  that it will not  be 
very accurate with strong selection. 
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SYSTEM OF MATING  TO REDUCE  INBREEDING 

In  the  model  proposed above, it is assumed that  there 
is no correlation between the  changes in gene fre- 
quency produced by the  three  random processes in the 
same generation, i .e.,  association of the  neutral allele 
with  selective  values of  the families ( S) , sampling varia- 
tion in the selection of individuals to be parents  of 
the  next  generation (D) and random sampling of the 
neutral  gene within families in which one  or both par- 
ents  are heterozygotes ( H )  . However, this does not 
hold  for consecutive generations. We have seen that  a 
fraction  of  the  change in gene  frequency in one genera- 
tion is correlated with changes in the previous ones 
when the selective  values  of the families are  inherited. 
This can be considered as the  consequence of a  deter- 
ministic change. If  we expand  the  population to an 
infinite size, these changes will happen in that  genera- 
tion and in the next  ones. As a deterministic or predict- 
able  change,  one could imagine that  that  change can be 
manipulated to generate negative correlations between 
changes in gene  frequency over generations and, there- 
fore, reduce  the overall effect of the  drift process. 

As was mentioned above, the  number of offspring 
contributed by a given parent i( k t )  can be partitioned 
into two terms: the  contribution due to  its  selective 
value ( 2 J ) and a deviation due to sampling of individu- 
als between families ( d ; )  , i.e., k j  = 2J + d, . The terms 
correspond to S and D changes in gene frequency, re- 
spectively. If in a given generation, selected individuals 
from the families with the largest contributions  are 
mated to selected individuals from the families  with the 
lowest contributions, a negative correlation is generated 
in the new families between the  contribution they had 
due to their selective  value ( 2 J )  and  the deviation due 
to sampling of individuals between families ( d , )  . This 
is a  consequence of the fact that,  under this  system  of 
mating, all the new families in one generation  had  the 
same 2J + d, value in the previous generation.  In  other 
words all the couples  produced by this system of mating 
had  the same contributions  the  generation  before (if 
we average the  contribution of the families from which 
both  parents came). Thus, if the  parents of a given 
family had  a high selective advantage in  the  generation 
before,  their  contributions due to sampling variation 
were small, and vice  versa. The consequence is that, in 
addition to the positive correlation between changes 
due to association between selective  values  of families 
and  gene frequencies ( S  changes) over generations,  a 
negative correlation is generated between the  Schanges 
in one generation and  the D changes due to sampling 
of individuals between families one generation  before. 
These  opposing  correlations  compensate  each other 
every generation,  and, as a result, the cumulative effect 
of selection approximately vanishes. Approximate pre- 

dictions of this situation can,  therefore, be made by 
using Q2 = 1, the first term in the series. In practice 
this system  of mating (compensatory  mating) is per- 
formed by ordering families according to the total num- 
ber of selected individuals and mating males  with the 
highest ranking  to females with the lowest, in sequence. 
With different  numbers of male and female parents, 
individuals can be ordered  according to the sum of the 
total number of their selected half-sibs and the total 
number of their selected full sibs  with  males  given a 
weight N,/N,,, that of females to reflect their  contribu- 
tions. 

TEST OF PREDICTIONS BY SIMULATION 

Stochastic simulation was carried out to check the 
prediction  equations. Artificial selection was made  on 
a trait controlled by an infinitesimal additive model  of 
gene effects ( BULMER 1980) with initial heritability h'. 
In  generation 0 genotypic values  were assumed to  be 
normally distributed with mean zero and variance h'. 
Phenotypes were obtained by adding to the genotypic 
value a random  environmental deviation normally dis- 
tributed with mean zero and variance 1 - h'. Trunca- 
tion selection on  the phenotypes was carried out each 
generation, such that  the best N, individuals of  sex s 
out of the n,N, evaluated of sex s were chosen as parents 
of the  next  generation, where n, is the average number 
of individuals evaluated of each sex from parents of 
sex s. Mating of selected individuals followed different 
procedures:  random mating; mating between full  sibs 
whenever possible, random otherwise; maximum posi- 
tive or negative  assortative mating and compensatory 
mating. Discrete generations were assumed. Genotypic 
values  of the offspring were obtained as the average of 
the genotypic values  of their  parents plus a  random 
Mendelian deviation normally distributed with mean 
zero and variance ( h'/ 2 ) [ 1 - (F,,[ + F, ) / 2 ] , where E, 
is the  inbreeding coefficient of the  parent of  sex s, 
obtained from pedigrees. Because population size is 
assumed to be constant over generations and  the  popu- 
lation is not permanently subdivided, asymptotic  in- 
breeding and variance effective  sizes must be equal, 
because the genotypic frequencies can be predicted 
both from the variance of gene  frequencies  and  the 
inbreeding coefficients. For each generation  WRIGHT'S 
( 1922)  numerator  relationship matrix was constructed, 
and average inbreeding coefficients per generation 
were calculated from the average coancestry of parents. 
Effective population sizes  were obtained from the aver- 
age rate of inbreeding (AF = [F(+, - F,] / [ 1 - f i ] ,  
where FL is the  inbreeding coefficient in generation t )  , 
generally between generations 5 and 14 (when this is 
approximately constant) , as N, = ( 1 / 2 A F )  - ( FAL- 
CONER 1989). Moreover, a  neutral  gene with initial fre- 
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TABLE 1 

Simulated (sirn) and  predicted (fire) effective population  size for a  population 
with 20 male  and 20 female  parents 

B C 

n h' sim pre' pr.? sim pre' pr.? 

3 

2  0.1 37.2 37.0 36.5 48.0 47.7 47.0 
0.2 35.5 35.3 34.6 45.4 45.0 43.9 
0.4 33.4 33.6 32.8 42.5 42.2 41 .O 
0.6  32.7 33.1 32.4 41.5 41.4 40.3 
0.8  32.9 33.4 32.8 41.6 41.9 41.0 

0.1 34.8 34.8 34.1 40.9 40.5 39.5 
0.2 32.3 32.2 31.3 37.3 37.1 35.8 
0.4 29.7 29.8 29.1 33.9 33.9 32.9 
0.6 28.8 29.4 28.8 32.9 33.4 32.6 
0.8  29.2 30.2 29.9 33.7 34.4 34.0 

6 0.1 31.8 31.2 30.2  33.7  33.3  32.2 

0.4  24.8 24.8 24.0 25.9 26.1 25.3 
0.6 23.9 24.4 24.1 25.0 25.6 25.3 
0.8 25.0 25.9 26.0 26.2 27.3 27.5 

0.2 27.9 27.6  26.5  29.3 29.2  28.0 

~ 

prd, full prediction  obtained with Equation 16 and simulated asymptotic heritability  and  intraclass  correlation 
of full-sibs; fn-2, prediction  obtained  with  Equation 18 and simplified or predicted  parameters; n, number of 
individuals  scored  per sex, family and generation; h2, initial  heritability; B, binomial distribution of scored 
individuals per family; C, constant  number of scored individuals per family. Standard errors -0.1. 

~~ ~~~ 

quency 0.5 and Hardy-Weinberg proportions in genera- 
tion 0 was also included in  all simulations. Effective  size 
was computed from the variance of the  gene  frequen- 
cies of the  neutral  gene  among replicates and from 
the  reduction in the frequency of heterozygotes. Both 
estimates were always neither significantly different 
from each other  nor from the estimates from pedigrees, 
as expected. These latter  are, however, those shown 
below, because they had  the lowest standard  errors. Two 
thousand replicates were run for each case simulated. 

Table 1 shows simulated ( s i m )  and predicted (pre) 
values of effective  size for a  population with 20 male 
and 20 female parents,  a  range of initial heritabilities, 
three selection intensities and two distributions of num- 
ber of scored individuals, binomial and  constant 
(multinomial  and multihypergeometric distribution of 
selected individuals, respectively) . 

Two predictions are made. The first (pre' ) is aimed 
at checking the validity of the equations, and, therefore, 
it uses the full prediction with some parameters ob- 
tained from the simulations. Thus, (pre' ) uses Equation 
16, where V, is  given by the first term in (9)   or  ( l o ) ,  
Qis given by (17) with rfrom (19) ,  and G = 1 - kh'*, 
where h'* is the asymptotic heritability obtained from 
simulations as the average  between generations 5 and 
14. Finally, C2 = i2p* ,  where p* is the asymptotic in- 
traclass correlation of full sibs obtained from the simula- 
tions (average between generations 5 and 14) .  The 

value of af for random mating is - 1 / (N - 1 ) and a. 
= 0. The second prediction (pre') is aimed at giving a 
practical simple approximation. It uses Equation 18 
( i . e . ,  terms in C'/ n in (9)  and  (10) are neglected). r 
in Equation 17 is also neglected and  the asymptotic 
heritability and intraclass correlation are  predicted by 
means of (38) and (39  and 40),  respectively,  with 
V,* from (37) .  An example of prediction follows.  For 
N =  40, n = 3 and h2 = V, = 0.4, from standard statisti- 
cal tables i = 1.076, x = 0.408 and k = 0.719. The 
asymptotic  additive genetic variance can be obtained 
by solving (37) ,  V,* = 0.320, and from (38-40), h'* 
= 0.348, V f  = 0.120 and p* = 0.130. Thus, G = 1 - 
kh'* = 0.750, Q = 2 /  (2 - G )  = 1.60 and C2 = i'p* 
= 0.151.  From the variance of a multihypergeometric 
distribution (with random  selection), Sf = 2 ( 1 - 1 / 
n) = 1.33 and, finally, aI  = -1/ ( N  - 1) = -0.026. 
Thus, from Equation 18 Ne = 32.9. 

Simulated values  have standard  errors of -0.1. The 
average absolute error in the predictions relative to the 
simulated values is 1.3% for pre' and 2.5% for pre'. 
Thus, pre' illustrates the validity of the equations, and 
pre2 gives approximations that can be used for most 
practical purposes. 

A case was also run where there was an initial herita- 
bility h' = 0.4 and a common environmental variance 
V, = 0.2,  with 20 pairs of parents and six individuals of 
each sex evaluated per family. The observed  Newas  20.5, 
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TABLE 2 

Simulated (sim) and  predicated (p-e) effective population  size  for  a  population 
with N individuals (half of each sex) 

n = 3   n = 6  

h2 = 0.1 h2 = 0.4 h2 = 0.1 h2 = 0.4 

N sim pre sim Pre sim Pre sim Pre 

10 10.4 10.7 9.1 9.2 9.3 9.2 7.9 7.5 
20  20.6 20.8 17.4 17.5 17.6 17.4 14.2 13.7 
40 40.9 40.5 33.9 33.9 33.7 33.3 25.9 26.1 
80 81.0 80.5 67.0 67.5 65.8 65.7 49.4 51.4 

160 161.8 159.6 133.1 133.6 128.9 129.9 95.1 101.8 

Prediction of Ne by Equation 16 and simulated  asymptotic heritability and intraclass correlation of full-sibs. 
h2, initial heritability. Constant number (n) of individuals scored per sex, family and generation. Standard 
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errors of simulated values "0.1. 

and its prediction with Equation 16 where a  term 4i2Vc 
is added  to  the  term  4Q2C2 was 20.3. 

Table 2 illustrates the  predictions of N, for  different 
population sizes. It is worth noting  that  the  ratio Ne/ N 
is not constant  for all population sizes, but it is reduced 
with increasing Nuntil a limiting value  is reached.  Thus, 
for n = 6 and h' = 0.4, for  example,  the  ratio is 0.79, 
0.71, 0.65, 0.62 and 0.59 for increasing N (from 10 to 
160 in Table 2, respectively). The main reason for this 
is that  the asymptotic intraclass correlation  among full 
sibs  is smaller with smaller N,  or,  more precisely, the 
intraclass correlation decays faster with  small popula- 
tion size. For the cases  above the simulated correlation 
(average between generations  5 and  14) was 0.094, 
0.109, 0.119,  0.121 and 0.123, respectively. Predictions 
in Table  2 use these asymptotic correlations, and, there- 
fore, this effect is mostly accounted  for. 

Table  3 shows simulations and predictions  for maxi- 
mum negative and positive  assortative mating of  se- 
lected individuals. These were obtained by substituting 
r by p*r, in Equation 17, where rp is the  phenotypic 
correlation  among mates obtained  from  the simulation. 
This  correlation was - -0.85 for negative  assortative 
mating and -0.90 for positive  assortative mating. Pre- 
dictions are very close to simulations except  for positive 
assortative mating with  very high heritability ( 0 . 8 ) .  The 
reason for this is that  the  approximation r = p*rp is 
strictly  valid  with no selection and breaks down  with 
very high heritability and intense selection. 

Table 4 shows simulations and predictions  for  popu- 
lations with  20 males and 40 or 100 females. In each 
generation  one male was mated to two or five females, 
respectively, and n offspring of each sex was evaluated 
per mating. The first prediction (pre')  , aimed at check- 
ing  the validity of' the equations, is the full prediction 
using Equations 21 and 35  with V,, and Kf from  the 
first term in (30) .  Cp = [ (C,, + C S f ) / 2 ] * ,  with C,, 
and C,/ from (41 ) and using the asymptotic intraclass 

correlation of  sibs for sex s obtained from the simula- 
tions; a,  = - 1 / ( 2N, - 1 ) . Q is obtained by Equation 
17 with G = ( G, + G f )  / 2, where G,n = 1 - k,h** and 
Gf = 1 - k,h'*, h2* being  the asymptotic heritability 
obtained from the simulations and r from ( 19) substi- 
tuting N by ( N ,  + N, ) / 2 ( as an approximation ) . The 
second prediction (pre') is the simple practical approxi- 
mation obtained by (21)  and  (36), where C: is ob- 
tained with the first term in (41 ) , r is neglected in 
Equation 17, and  the asymptotic heritability and in- 
traclass correlation  are  approximated by (38) ,   (42)  
and  (43),  respectively,  with V,* from (37) using K = 
( K m  + 5) / 2. Prediction errors average 1.2% for  the 
full prediction (pre ' )  and 3.2% for  the approxima- 
tion ( pre' ) . 

TABLE 3 

Simulated (sim) and  predicted (p-e) effective population 
size  for  a  population with 20 male  and 20 female  parents 
and maximum negative  or  positive  assortative  mating 

n = 3  n = 6  

/z sim P-e sim Pre 

Negative 

0.1  41.2 41.0 34.2 34.0 
0.2 38.4 38.3 30.4 30.4 
0.4  36.2 36.1 27.7 27.9 
0.6 36.8 36.3 28.0 28.0 
0.8 39.1 38.3 31.2 30.6 

Positive 

0.1  39.9 39.5 33.1 32.8 
0.2 35.3 35.0 28.0 27.7 
0.4 29.4 30.5 22.5 23.4 
0.6 25.6 26.1 20.3 22.6 
0.8  20.4 28.0 16.8 22.6 

Footnote as in Table 2. 
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TABLE 4 

Simulated ( s i r n )  and predicted ( p e )  effective population  size  for  a  population 
with 20 male  and F female  parents 

F =  40 0.1 
0.2 
0.4 
0.6 
0.8 

0.1 
0.2 
0.4 
0.6 
0.8 

F = 100 

50.5 
45.8 
41.5 
40.5 
41.8 

59.0 
53.1 
47.9 
47.4 
49.5 

49.8 
45.1 
41.2 
40.6 
42.6 

57.8 
52.0 
47.3 
46.9 
49.9 

48.5 
43.8 
40.3 
40.2 
42.5 

56.8 
51.2 
47.4 
47.7 
51.0 

43.5 
37.5 
32.8 
32.3 
34.3 

52.6 
45.9 
40.2 
39.6 
42.7 

43.0 
37.5 
33.1 
32.6 
35.3 

51.9 
45.2 
40.0 
39.7 
43.5 

41.7 
36.4 
33.0 
33.3 
36.4 

51.0 
44.8 
40.9 
41.6 
45.9 

pre', full prediction obtained with Equations 21 and 35 and simulated  parameters; pr2, prediction obtained 
with Equations 21 and 36 and simplified or predicted  parameters; h', initial heritability. Constant number (n) 
of individuals scored per sex, family and  generation.  Standard  errors of simulated values -0.1. 

An example of prediction with different numbers of 
male and female parents follows. Consider N, = 20 
males, N, = 100 females, nf  = 6 individuals of each sex 
scored per full-sib  family and n, = 30 per half-sib  family, 
random mating of selected parents  and initial heritabil- 
ity 0.4.  From standard statistical  tables i, = 2.23, i/ = 
1.50, x, = 1.83 and xf = 0.97. Hence, k ,  = 0.89, kJ = 
0.80 and k = (12, + k,) / 2  = 0.84. The asymptotic addi- 
tive genetic variance can be obtained from (37) ,  V ?  
= 0.310.  From (38) h'* = 0.341 and from (42) and 
(43) V t ,  = 0.065, V z f  = 0.110, pR = 0.072 and p? = 
0.121.  Now, using the first term in (41) ,  CL,,, = i:p: 
= 0.357, C:,,, a7p: = 0.161, C;,,, x i t p 7  = 0.603, 
C;, = i j p ?  = 0.273, CL = [ ( C,, + C,,) / 2 ]  = 0.249 
and C; = [ ( C,, + CJf) /2 ]  = 0.422.  Now, G, = 1 - 

Gf)/2 = 0.711 and 4 = 2 /  (2  - G) = 1.552.  Finally, 
pmm = pfJ= 1, pL,f= 1 / ~ / , ~  = 5, SL, = 1 - 1/n, = 

k,h'* = 0.696, Gf = 1 - kfh'* = 0.727, G = ( G, + 

0.967, SL, (Nf/ N,) (1 - 1 / n,) = 4.167, S;, (N,/ 
4) (1 - l /n , )  = 0.192, S71 = 1 - l / n J =  0.833, Smmm/ 
- Sfm,// = 0, a,,, = -1 / ( 2Nm - 1 ) = -0.026, "1.1 = - 

-1 / ( 2N1 - 1 ) = -0.005 and a. = 0. Substituting into 
Equation 36, Ne, = 17.1, Npr = 25.6, and from (21)  N, 

Table 5 illustrates the case where selected full sibs 
are mated whenever  possible, at random otherwise. 
With  this  system of mating, rates of inbreeding take 
more  generations to reach  constant values than with 
random mating (especially for low heritability) . Thus, 
effective population sizes and  other asymptotic parame- 
ters were obtained from generation  15 to 24 for h' = 
0.1 and 0.2 and from generation 10 to 19 for larger h'. 
Predictions are  obtained by means of Equation 18 with 
a. = a ,  = 0 / ( 4  - 30) ) , where 0 is the average propor- 

= 4NmN@/ ( Ne, + Ng) 40.9. 

tion of full-sib matings per  generation ( -0.5). In addi- 
tion r in Equation 17 is replaced by P. Effective  sizes 
with -50% full-sib mating are  about half the  corre- 
sponding effective  sizes  with random mating (cf. Table 
1 ) .  Predictions are very accurate even for very high 
heritabilities. 

Finally, Table 6 shows the results of the system of 
mating proposed to reduce  inbreeding without loss in 
selection response (compensatory  mating) . In the sim- 
ulations families  were arranged in order according to 
the  number of selected individuals they had. Males 
from the families  with more selected members were 
mated with females from the families  with  less selected 
members, following a sequential procedure. Columns 
one  and  four of Table 6 show the effective  size and  the 
average rate of response to selection between genera- 

TABLE 5 

Simulated (&) and  predicted ( p e )  effective population 
size  for  a  population  with 20 male  and 20 female 

parents  and -50% of the  matings  between full sibs 

n = 3   n = 6  

h' sim Pre sim Pe 
0.0 41.8 42.5 37.0 37.9 
0.1 21.0 20.2 17.4 16.4 
0.2 18.0 17.6 14.9 14.4 
0.4  15.7 16.0 12.9 12.7 
0.6 16.7 17.1 13.0 13.2 
0.8 19.3 19.4 15.7 15.3 

Prediction of N, by Equation 18 and simulated asymptotic 
intraclass correlation of full-sibs. h2, initial heritability. Con- 
stant number (n) of individuals scored per sex, family and 
generation.  Standard  errors of simulated values -0.1 
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TABLE 6 

Simulated (sim) and  predicted ( p e )  effective population  size  and  rate  of  response to selection 
for  a population with 20 male  and 20 female  parents 

Ne AG 

n h2 SamR szmC pre' sim' SamC 

3 0.1 40.9 44.2 44.9 0.09 0.09 
0.2 37.3 42.4 42.8 0.17 0.17 
0.4 33.9 40.2 39.7 0.33 0.32 
0.6 32.9 39.0 37.8 0.48 0.47 
0.8 33.7 38.3 36.8  0.62  0.63 

0.1 33.7 38.6 39.3 0.12 0.12 
0.2 29.3 36.1  36.2 0.23 0.23 
0.4  25.9 33.2 32.4 0.43 0.43 
0.6 25.0 31.6 30.4 0.63 0.63 
0.8  26.2 31.0 29.9 0.83 0.84 

Ne, effective  population  size; AG, rate of response to selection per generation in phenotypic  standard 
deviation  units  (between  generations 5 and 14); R random  mating; C, compensatory mating. Other parameters 
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as  in footnote of Table 2. 

tions 5 and 14 with random  mating of selected parents 
( R )  . Columns two and five show the  corresponding 
values  with compensatory mating ( C) . Rates  of re- 
sponse for  the two methods  are nearly the same in all 
cases, whereas effective  sizes are significantly larger with 
the system  of mating. These  are between 10 and 20% 
larger  for the lower selection intensity, and between 15 
and 30% larger for the higher selection intensity. 

Increases in effective  size are considerably larger with 
compensatory mating  than with negative assortative 
mating ( cf. Table 3 )  , for which there is  also an appre- 
ciable loss in selection response. A small  loss in selection 
response was also observed (data  not  shown) with com- 
pensatory mating when inbreeding is not accounted  for 
in the simulations to generate  the genotypic values each 
generation.  This is  likely to be due to a  certain  compo- 
nent of negative assortative mating in the system  of 
mating  proposed, and  the loss in response is compen- 
sated with the large reduction in inbreeding. 

Predictions of effective  size  with  compensatory mating 
are also  shown in Table 6  (column three) . These were 
obtained by means of Equation 16 with Qz = 1 and the 
intraclass correlation after one generation of selection, as 
it is expected that with  this  system  of mating the cumula- 
tive effect of selection  effectively  disappears. 

DISCUSSION 

WRIGHT (1939) derived a  formula to predict  the ef- 
fective  size  as a  function of the variance of  family  size. 
The derivation assumes that  the process of genetic  drift 
is a consequence of uncorrelated  changes in gene fre- 
quency over generations.  This assumption does not 
hold when selection acts on  an  inherited trait, because 

associations between the  neutral  gene and selective val- 
ues in a given generation  are not removed in one gener- 
ation. A fraction of genetic changes in one generation 
is due to remaining associations created  in previous 
generations. As a result, WRIGHT'S  formula overpredicts 
the effective  size  of populations under selection. Obvi- 
ously, the cumulative effect of changes fades as the asso- 
ciation is removed by segregation and recombination. 
The problem was first addressed by ROBERTSON ( 1961 ) . 
He  introduced  the term Q to take account of this cumu- 
lative process. By using a derivation based on  the 
change of variance in  gene  frequency of a  neutral  gene 
unlinked to the  genetic system, he  obtained  the  equa- 
tion N / N ,  = l + QzC2 for  a multinomial distribution 
of family  size, and to N /  Ne = (1 - 1 / 2 n )  + (1  - 
1 / n) QzCz for  a multihypergeometric distribution of 
family  size, where the limiting value  of Q is 2. Experi- 
mental checks of these predictions showed that they 
are reasonable approximations (JONES 1969; YOO 1980; 
GALLEGO and GARCIA-DORADO  1986;  GALLEGO and CA- 
BALLERO 1990), but  in most cases heritabilities were 
low or selection was not continued  long  enough  for 
effective  size to reach  an asymptote. Simulation data, 
however, have made clear that ROBERTSON'S predictions 
are underestimations of the asymptotic effective  size, 
which become severe  with large heritability and selec- 
tion intensity (HILL. 1985; WwYand  THOMPSON 1990). 

WRAY and THOMPSON ( 1990) derived a  method to 
predict rates of inbreeding based on  the long-term con- 
tributions of ancestors in generation 1 to descendants 
in the limit. They arrived at  the  equation N /  N, = (p:  
+ CT p ) / 2, where pr and CT p are  the  mean  and variance 
of the long-term contributions of ancestors to descen- 
dants, respectively. For a multinomial distribution of 
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family  size and  constant census size each generation, 
we can equate ROBERTSON’S and WRAY and THOMPSON’S 
equations, arriving at  the approximate relation a f = 1 
+ 2Q2C2. WRAY and THOMPSON (1990) also  showed 
that ROBERTSON’S prediction had  a few deficiencies, the 
most important of which was that  the increasing “com- 
petitiveness” of contemporaries as selection proceeds 
was not  accounted for. In  other words  what was missing 
in ROBERTSON’S derivation was the inclusion of the re- 
duction in genetic variance due to selection ( G) in the 
series to account for the cumulative effect of selection 
(Equation 17) . Thus, the cumulative effect of changes 
fades faster than  predicted by ROBERTSON, and the lim- 
iting value  of Q is <2. WRAY and  THOMPSON (1990) 
calculated the  correct Qvalue as the ratio of the regres- 
sion of number of descendants in generation t from 
ancestors in generation 1 to the  corresponding regres- 
sion from descendants in generation 2 to ancestors in 
generation 1. This gives the same result as the term S, 
in  WOOLLIAMS et al. (1993)  and Equation 17 in this 
paper. Other minor problems in  the derivation of  ROE 
ERTSON pointed  out by WRAY and THOMPSON (1990) 
are the use  of an incorrect intraclass correlation of  full 
sibs after one generation of selection and a confusion 
between number of families and  number of individuals 
in the derivation. 

In contrast to WRAY and  THOMPSON’S  arguments, our 
derivation is based on the same principles as that of 
ROBERTSON, i e . ,  in terms of variance of change in gene 
frequency generation after generation. We have in- 
cluded a term accounting for selection in the general 
expression for the effective population size  of CROW 
and  DENNISTON (1988).  Our prediction Equation 18 
reduces to the same as ROBERTSON’S for multinomial 
family  size ( S i  = 2 ) ,  large Nand random mating ( ( Y I  

= = 0)  , but for the multihypergeometric case the 
equation is different,  N/ N, = (1 - 1 /2n) + Q2C2, 
the last term being reduced by ( 1 / n )  in ROBERTSON’S 
expression. This is precisely  what  allows  us to have just 
a single equation for any distribution of family  size. 

We have  split the variance of the  contributions  of 
the families into two terms: selective and nonselective 
components. This partition has been made under  an 
additive model of gene action. More generally, the se- 
lective component should include only the fraction of 
the variance of the  contributions  that is due to the 
selective  values transmitted to descendants (the addi- 
tive component of the genetic variance). Nonadditive 
genetic components  and environmental effects of the 
selective  values should be included into  the nonselec- 
tive component of the variance of the  contributions 
because these effects are  not cumulative. 

WRAY and THOMPSON’S ( 1990)  method  had  the prac- 
tical problem that some recurrence  computing was 

needed to obtain predictions of long-term contribu- 
tions. However,  WOOLLIAMS et al. (1993)  and WRAY et 
ul. (1994) have recently derived expressions to predict 
variances of long-term contributions  and thus, effective 
population sizes under mass and index selection. When 
their basic equation is reduced  to  the simplest case  of 
equal  numbers of males and females and multinomial 
family  size, the result is N/ Ne = 1 + (1 + Q’) C‘/ 2 
(WUY et al. 1994), i e . ,  it has the term (1 + Q’) / 2 
instead of Q’. This difference between our equation 
(or ROBERTSON’S equation)  and  the latter reflects the 
fact  that approximations are based on different ap- 
proaches, as will be shown in what  follows. 

Although the effective  size of interest in this paper is 
that in the asymptotic  stage under continued selection 
(when the rate of change in inbreeding is approxi- 
mately constant over generations), we can express the 
effective  size that would correspond to the change of 
variance in different periods of the process. The effec- 
tive  size for the first generation of selection (Equation 
12) under the simple conditions dealt with  above is 
given by N/ Ne = 1 + C2. We can also obtain an expres- 
sion for the effective  size considering two generations 
of selection as the  harmonic mean of Np,l (Equation 
12)  and NP,‘ (Equation 15) ,  where Q = 1 + [ G(  1 + 
r )  / 2 1 .  Assuming random mating and large N ( aI  = 
a. = 0 )  and considering G = 1 and r = 0, for simplicity, 
the effective  size considering two generations of drift 
is,then,givenbyN/N,= 1 + [ l  + (1.5)2]C2/2.Analo- 
gously,  with the  harmonic  mean of N?,, , Ne,2 and 
weobtainN/N,= 1 + [ l  + (1.5)‘+ (1.75)‘] C2/3for 
three  generations,  N/N, = 1 + [ l  + ( 1.5) * + (1.75) + 
( 1.875) ‘1 C2/4 for four generations, and so on. In the 
limit the result would tend to N/ Ne = 1 + 4C‘, as found 
by ROBERTSON. Therefore,  the simplified equation of 
WRAY et al. ( 1994) is the same as the  equation consider- 
ing two generations of drift ( N/ N, = 1 + [ l  + 
( 1.5) ‘1 C2/ 2 ) ,  except that  the limiting term Qreplaces 
that for the second generation ( 42 = 1 + ’/‘). WRAY 
and  THOMPSON’S (1990) derivation is made in terms 
of the  contributions from ancestors in the first genera- 
tion to descendants in the limit. WOOLLIAMS et al. 
(1993)  and WRAY et al. (1994) worked  with this same 
approach.  Thus, they  use the  equation in the second 
generation  and make corrections to obtain a limiting 
solution (J. A. WOOLLIAMS, personal communication ) . 
The use of parameters (intraclass correlation and heri- 
tability) after one  generation of selection is then 
needed to get accurate predictions with their equation. 
We are using the asymptotic equation where the corre- 
sponding asymptotic parameters are more suitable. It 
is worth noting, however, that  the value of h‘ used to 
predict Qhas little effect on  the predictions of Ne, and 
h‘ after one generation of selection would be  a good 
enough approximation (data  not  shown). 
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Prediction  errors using our equations  are  -3% 
within the range of selection intensities and heritabilit- 
ies investigated by simulation. These are of about  the 
same order of those obtained by the  method of  WOOL 
LIAMS et al. ( 1993). 

Our expressions for  the effective population size in 
terms of KIMURA and CROW’S ( 1963)  and CROW and 
DENNISTON’S ( 1988)  equations allows us to  include  the 
possibility of partial full-sib mating of selected parents. 
Partial full-sib mating can be useful in increasing the 
fixation probability of  recessive mutations (CABALLERO 
et al. 1991) as  well  as improving selection response in 
breeding  programs (CABALLERO and HILL 1992b; TORO 
1993) . To make predictions with this system  of mating, 
it is necessary both to account  for  correlations of genes 
between mates (CABALLERO and HILL 1992a) and to 
include an  appropriate term in the value  of Q. This 
term is the  correlation of expected selective  values  of 
male and female parents, which approximately equals 
the average proportion of  full-sib matings per  genera- 
tion. The inclusion of this correlation into Qalso allows 
predictions  for other systems  of mating, as negative or 
positive assortative mating. With random  mating Qprac- 
tically reaches its asymptotic value in four  generations 
or less.  However, under some systems  of nonrandom 
mating, especially those that increase the  frequency of 
mating between relatives, a  longer  period of time is 
needed  to  reach  the asymptotic Q value. Derivations 
have been  made  for species with separate sexes. Equa- 
tion 18, however, can be readily applied to monoecious 
species under  random mating. 

Finally, a system  of mating has been  proposed in 
which individuals from  high  contribution families are 
mated to individuals from low contribution families. 
The consequence of this system of mating is the effec- 
tive elimination of the cumulative effect of selection. 
Thus, effective population sizes are increased up to 30% 
with little or  no loss  of response. A system  of mating like 
this can be very useful in  breeding schemes, especially if 
combined with a selection strategy to reduce rates of 
inbreeding, like using an upwardly biased estimate of 
heritability in BLUP (Best Linear Unbiased Prediction) 
evaluations ( GRUNDY et al. 1994). 

A similar result to that  obtained with compensatory 
mating, ie., the  disappearance of the cumulative effect 
of selection, would occur if  we could generate  a nega- 
tive correlation between the selective  values  of male 
and female parents ( T = -1 in Equation 17).  With 
negative assortative mating we generate  a negative phe- 
notypic correlation between mates ( T ~ )  close to - 1, but 
the  corresponding genotypic correlation is approxi- 
mately T = pr,, as  was stated above. Thus, if p x 0.2 
(for, say, an initial heritability of 0.4), then T = -0.2, 
and  the decrease in Q‘ is much smaller than with com- 
pensatory mating (cf. Tables 3 and 6 ) .  

Approximations for  the variance of selective  values 
and  the reduction of genetic variance with selection 
used in this paper  refer to the infinitesimal model  for 
mathematical convenience and testing purposes, but 
they can be generalized to other selective and genetic 
systems. Equations are based on  an initial standing vari- 
ation  before selection is carried  out, where there is no 
linkage between the  neutral and selected genes. N. H. 
BARTON (personal  communication ) has investigated 
situations where genetic variance is maintained by dele- 
terious mutation-selection balance or fluctuation of the 
selective forces to produce  a stable polymorphism. 
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