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ABSTRACT 
A model is proposed to describe the genetic value of 4x-2x hybrids resulting  from crosses between 

tetraploid  genitors and diploid  genitors that  produce  2n gametes. The model takes into  account  the 
genetic  consequences of the First Division Restitution (FDR)  and Second Division Restitution (SDR) 
meiosis, particularly on  the homozygosity level that  2n gametes contribute  to 4x-2x hybrids. As genes 
can be  identical by descent, numerous parameters are  needed in the classical approach to describe the 
inbreeding effects on  the  mean  and variance of 4x-2x hybrids. Using the  concept of test value, the 
model allows a  large  decrease  in the  number of required parameters. The model gives the  components 
of genetic variance and usual covariances between relatives using these synthetic parameters. The model 
is then used to study the efficiency of a recurrent  breeding  scheme  to improve diploid  genitors for  their 
combining ability with tetraploid  genitors. It appears  that,  in  presence of dominance, ignoring the 
meiosis pattern will lead to  an overestimation of additive variance and  then of genetic advance. Some 
genetic  considerations on  the differences between FDR and SDR mechanisms  lead us to suggest an 
experimental comparison of their respective advantages and disadvantages for  the type of considered 
recurrent selection. An experimental crossing design is proposed to obtain estimates of the genetic 
parameters  needed  for this-comparison. 

T 0 improve commercial varieties, plant  breeders 
need  genetic resources that  are often less  available 

in the  bred material than in the wild ancestral species. 
Many cultivated tetraploid species evolved from diploid 
species, and the germplasm of these diploid ancestors 
can sometimes be integrated in tetraploid breeding pro- 
grams thanks to diploid progenitors  that  produce dip- 
loid gametes. For example, in potatoes the diploids are 
a promising way of improving potato varieties, which 
are tetraploids ( MOK and PELOQUIN 1975a). 

The meiotic processes responsible for  generating 2n 
gametes have been  studied  for several species such as 
alfalfa (VORSA and BINGHAM 1979; PFEIFFER and  BING 
HAM 1983)  and cocksfoot (VAN SANTEN et al. 1986). 
The  phenomenon is  well described for potatoes ( MOK 
and PELOQUIN 1975b).  In this species, diploid geno- 
types  may produce 2n gametes through  either of three 
abnormal meiotic processes, resulting in 2n gametes 
genetically equivalent to Second-Division Restitution 
(SDR)  or First-Division Restitution (FDR)  that  are con- 
trolled by simple genetic systems. These gametes can 
fertilize the  normal gametes of tetraploids and tetra- 
ploid zygotes result from this cross. These progeny are 
known  as  4x-2x  hybrids. 

FDR 2n gametes show important genetic differences 
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compared with  SDR 2n gametes. When the diploid par- 
ent is ( i j )  at a given locus and if b is the frequency of 
single exchange  tetrad ( 0  5 b 5 1 ) , the FDR process 
induces  the formation of 1 - b / 2  heterozygous 2n ga- 
metes ( i j )  , and only b/4 ( ii) and b /  4 ( j j )  gametes 
( TAI 1982, b is called p in his paper).  On the contrary, 
the SDR mechanism permits the same ( i j )  diploid indi- 
vidual to produce homozygous 2% gametes ( ii) or ( j j )  
with a frequency of (1 - b / 2 )  each and heterozygous 
gametes ( i j )  with the frequency of 6. 

Consequently, 4x-2x  FDR progenies benefit by a high 
level  of  heterozygosity that transmits nonadditive effects 
due to favorable interactions between two different al- 
leles ( MENDIBURU et al. 1974). Furthermore, since SDR 
gametes are highly  homozygous,  they  largely  differ from 
one  another,  and the genotypic  values of the resulting 
4x-2x  hybrid progenies are distributed on a larger scale 
than those coming from FDR gametes. SDR gametes 
may also decrease the agronomic performances of  4x- 
2x hybrids  since  they bring inbreeding effects. 

Diploids are tested for their ability  to give valuable 
4x-2x  hybrids. Unfortunately, the value  of the diploids, 
when  evaluated at  the diploid level, is poorly related to 
the mean value of their 4x-2x progeny (ORTIZ et al. 
1991 ) . This latter value can be seen as a test value of the 
diploids that it is essential to improve. To this end, FDR 
gametes have been considered as  having higher potenti- 
alities than SDR gametes. Nonetheless, choosing the 
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most adapted meiotic  process is not easy because the 
few models that dealt with inbreeding among tetraploid 
species ( BOUFFETTE 1966; GALWS 1967,1977) were not 
suited to the 4x-2x feature. More  recently, BOUDEC 
( 1988) adapted the classical tetraploid model ( KEMP- 

THORNE 1957) to study quantitative traits in 4x-2x hy- 
brids, and  he calculated the correspondent kinship 
coefficients. HAYNES ( 1990) described the genetic rela- 
tionship between a diploid 2n pollen producing genitor 
and its 4x-2x  offspring. HAYNES (1992)  then described 
the relation between a diploid genitor and its 4x-2x 
offspring  taking into account many  kinship  coefficients 
in the particular case  of the potato, when diploid and 
tetraploid genetic backgrounds are identical. 

Yet the genetic background of  cultivated tetraploids 
often differs widely from that of diploids. Indeed dip- 
loids usually come from primitive, sometimes wild spe- 
cies. Consequently, their genetic structures and allele 
frequencies differ from the tetraploid gene pool. Thus, 
the variation observed in the 4x-2x hybrids must be 
allotted separately to the wild diploid origin or to the 
cultivated tetraploid origin. 

This paper proposes a model that describes the genetic 
value  of  4x-2x progenies  from  tetraploids  crossed either 
with  FDR diploids or SDR diploids with nonzero single 
exchange  tetrads. The model takes into account different 
genetic  backgrounds.  Using the concept of test  value 
( GALWS 1979, 1989), it also  considers the inbreeding 
effects induced by the homozygosity  coming  from the 2n 
gametes.  This paper also  studies the efficiency  of a recur- 
rent selection  scheme  designed  to  improve the abilities 
of the diploids to produce valuable  4x-2x  progenies. 

It  therefore provides a method for comparing the 
breeding efficiency  of FDR gametes us. that of  SDR over 
different periods. The paper also proposes particular 
experimental designs to evaluate the genetic compo- 
nents  needed for this latter comparison. 

A GENERAL MODEL  FOR  INTERPOPULATION 
CROSSES BETWEEN DIPLOID AND 

TETRAPLOID  POPULATIONS 

The  model: Consider the genetic value  of a cross 
between a 4x genitor, being (Klmn) at a locus, and a 
2x genitor, being ( i j )  at the same locus. The value 
Y(klmnxil) can be written 

Y(klmnxi7) = l /dRY$Y + R y g  + RY$E Ry$: 

+ RY$ + RY$%), (1) 

where RY $$ represents the mean  value  of  individuals gen- 
erated by the different  gametes  from the 2x and the Izl 
gamete  from the 4x. R refers  to the meiosis pattern. A 
gene originating  from 2x  is indexed d, and t when  coming 
from the tetraploid. The 272 gametes  from the diploid  par- 
ent ( i j )  can be either (ii) ( i.e., the two alleles are identical 
by descent) or ( i j )  (the alleles  are not identical). Let 7r 

be the probability,  associated to a meiosis pattern R, of 
having two nonidentical  alleles  in a 2n  gamete.  Among 

FDR gametes, 7r equals 1 - b/2 and among SDR gametes 
7r = b, where b is the frequency of  single exchanging  tetrads 
(TAI 1982). Then the R value, RY g, can  be  written  in 
terms of the value  of the  individuals: 

R Y $  - 7rY$ + (1 - 7 r )  (Y$Y + Y,dak:1)/2. (2 )  &it1 - 

Then, RY $fl can be considered as a test value  associ- 
ated with combinations of i, j ,  k ,  and I genes. Using 
the  concept of  test  value defined by GALWS (1979, 
1989), RY $$ can be written as 

RY$fl = Rp + Rap + + R a k  + Rat 

+Ro~d+, to~+&~+&~~+Roold l f+&~~ 
+ Ry$? f R Y z  + Ry% + Ry$ + R 6 g f l  9 ( 3 )  

with E(Ra:)  = E ( R a k )  = 0, E(&?)  = E(&:l) 
= E ( & $ )  = 0, E ( R y g )  = E(Ry$j)  = 0, and 
E(&$?)  = 0. 

The different a, 0, y ,  and S effects are  defined analo- 
gously to those defined by KEMPTHORNE (1957) : a is 
the additive effect of each allele, is the digenic interac- 
tion effect, y is the trigenic interaction effect, and 6 is 
tetragenic interaction effect. We assume that  none of 
the alleles, either in 2x genitors or in 4x genitors, are 
identical by descent to any of the others.  The two pools 
a F o r i  have different genetic backgrounds (this case 
has been studied for diploids by STUBER and COCK- 
ERHAM 1966).  The populations are considered to have 
an infinite size. There is no epistasis and  no linkage 
disequilibrium in either of the two populations. The 
coefficient of double  reduction equals 0. All terms de- 
scribing the genetic effects are defined for the hybrid 
4x-2x population only.  Finally, the genotypic value is 
obtained by summing the elementary effects of each 
supposed independent locus. 

The genetic value is broken down into terms indexed 
according to the pools. A ( d )  indexed term describes 
the effect of alleles coming from the diploid parent. 
Nevertheless, one must keep in mind  that its value  also 
depends  on  the global background, i e . ,  it also depends 
on the allele frequencies among tetraploid genitors. 
Similarly, the tetraploid origin is noted ( t )  . A ( d t )  , 
( d d t )  , ( dtt)  or ( ddtt)  index means that  the effect origi- 
nates from the interactions between the alleles  of the 
two populations and  the  number of d ' s  indicates the 
number of alleles coming from the diploid pool in the 
interaction terms. 

Correspondence with the  classical  model: Parame- 
ters of the previous model can be related to those of  the 
classical model defined for the per se value. According 
to Expression (2)  we have to consider the expression 
required for Y $fl and Y $2: ( KEMPTHORNE 1957). 

If i and j are  not identical by descent, 

Y$fl = p + a:  + a; + a:  + at + # 
+ p:l+ pa; + 0: + p;; + p;; + y g  + y? 

+ y:;; + y$ + s g .  ( 4 )  
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TABLE 1 

Correspondences  between  the  general  model 
and  the R model 

Mean 

Additive effects 
R P  = + - x)E( f12dd)  

~ f f f  = fff + (1 - x ) / 2 ( P t d  - E(P?)) Allele from  the diploid parent @: = a; Allele from  the tetraploid parent 

R P f  = x Pf 2 nonidentical alleles from 2x 
Dominance effects 

R P f i  = f l t l  2 alleles from 4x 
RPP," = P$ + (1 - r)/2?% 1 allele from 2x, 1 from 4x 

Trigenic effects 
RYF = x Y$ 2 nonidentical alleles from 2x, 1 from 4x 
Ryp:; = yg; + (1 - x )  /26i$ 1 allele from 2x, 2 from 4x 

Tetragenic effect 
R6$ = x 6$ 2 nonidentical alleles from 2x, 2 from 4x 

x is the mobabilitv that  the two alleles from  the 2n gamete are nonidentical by descent knowing that  the 
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diploid genitor is  itself noninbred. 

If i and j are identical by descent, 

Y g f t  = p + 2a: + a ;  + a ;  + p y  + p:l 

+ 202 + 2p$ + + y $  + 27:;; + 62::. (5)  

Replacing Expressions ( 4)  and ( 5) in Equation ( 2)  
allows a term-to-term identification. Results are given 
in Table 1 for any  value  of 7r. The correspondence for 
the ideal FDR and SDR cases ( i . e . ,  b = 0 )  is expressed 
in Table 2. 

The Rat term contains an E (  ptf") term to equate 
E ( R ~ t )  with 0,  since E ( P i d )  has no particular reason 
for being zero. The terms due to the tetraploid genitor 
do  not  depend on  the value of 7r. 

For the mean Rp of the 4x-2x population, as we 
defined R ~ i  so that E(+xi ) = 0,  we have 

Rp = p f (1 - n ) E ( @ 2 d ) .  ( 6 )  

E (  0 id )  measures the mean inbreeding depression ef- 

TABLE 2 

Models in the  ideal FDR case (m = 1)  and in 
the  ideal SDR case (m = 0) 

Mechanism FDR  SDR 

Mean 

Monogenic effects 
R P  P P + 

R f f !  a: + 1/2 (PC - E(P$?) 
R f f :  fff, ff: 
R P f  P? 
RPfL  P:: Ptl 
RPp: 0: Pp: + 1/2 Y 2  

Digenic effects 

Trigenic effects 
R Y $  qk 

R 7% Y 2; y2; + 1/2 6% 

ddt 

Tegragenic effect 
R ykl 

p t t  6 g  

fect introduced by the homozygosity  of the 2n gamete. 
The expectations of other  inbred terms, E (  y2f)  and 
E (  6;fft) equal 0 as demonstrated in the APPENDIX for 

Expression of the  genetic  variance: All R terms are 
independent  and  thus  the variance of the model can 
be easily formulated as  follows: 

Ru:; = var ( R Y $ f )  = Z E ( R ( Y ! )  ' 

E ( Y 3 .  

+ 2E(  ( R a : )  ') + E(#?) ' + E(&&) ' 
+ 4E(&Ol',t)2 + 2E(Ry$)' 

+ 2E(,y$;)' + E(RS$f)' .  ( 7 )  

The additive variance splits up into two independent 
terms: one is entirely due to the  contribution of diploid 
genitors (2x),   2E( ') ; the  other  one is entirely 
due to the  contribution of tetraploid genitors (4x) ,  
2E( ( R ~ ; )  ') . Therefore, by analogy  with the  intrapopu- 
lation model, they will be noted as  follows: 

R a i , d  = 4 E ( ~ a : )  ', 
additive variance originating from 2x, (8) 

R a i , t  = 4E(Ra : )  ' 9  

additive variance originating from 4x. ( 9 )  

The digenic term splits up into  three parts: 

H g z , d  = 6E(#P) '  from 2x only, (10) 

R D ~ , ~  = 6E(&iL)'  from 4x only, (11) 

R a & d t  = 6E(#llkl) ' 
from the  interaction between 2x and 4x. (12) 

For the trigenic variance, Ra%,ddt = 4 E (  (Ry $f) ') is 
obtained from the  interaction between two alleles  com- 
ing from 2x and  one allele coming from 4x, and 
Ra; ' ,d l t  = 4 ~ ( , y  2;) ' from the reciprocal situation. 
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The  tetragenic  variance is given with Ru;.,ddtl 

To sum up,  the total genetic variance is given by 
= E ( , S @ )  only. 

K g : ;  = [ % R f f % d  + Y 6 K f f % , d I  + [ % / < d , l  + ' /sRff?l ,I l  

+ [%31<gb ,d t  + YAK~~;. , ,M + % ~ f f ; . . d t t  + ~ f f ; . , d d u l ,  ( 1 3 )  

R f f ; ;  = R f f L i  + R f f L  + Rff:; ,dr,  (141 

where Kg& is the  genetic variance due to genes  from 
the 2x, Rat,, that  one  due to genes from the 4x and 
Ra:,,dl that one  due to genes from the 2x and  the 4x. 

Then,  the R model uses eight variance parameters 
instead of 14  for  the usual model since E(Ra  t) ' 
includes E ( a ? ) ' ,  E(p$') '  and E ( ( ~ f p ; ~ ) ;  
includes E(p: l ) ' ,  E ( y ; f ) '  and E ( P Z 1  y L L k ) ;  and fi- 
nally, E(Ry,,)* includes E(y :k i )2 ,  E(S$i:)' and 
E (  y$;o$fy). in  the digenic case for which only mono- 
genic and digenic effects are  used,  the R model saves 
three  parameters, i.e., five instead of eight, knowing 
that  the R model partly describes trigenic effects 
through y 22. 

With the given assumptions, the generalization of the 
expressions of variances and covariances to an arbitrary 
number of  loci  is straightforward. The variances due to 
the  contribution of the  diploid  genitors (Rui,d and 

are  dependent  on  the frequencies of the  genes 
in the 2x pool only. They take into  account  the differ- 
ence of frequencies with the  tetraploid  pool and  the 
inbreeding effects introduced by the homozygosity  of 
the 2n gametes according to the meiosis pattern R. The 
values of these variance components vary according to 
T .  Given R and R', two meiosis patterns, respectively 
associated with probabilities T and T ' ,  there is no partic- 
ular reason that Roi,,l = Kra;,,l even if these values are 
correlated. Usually, inbreeding increases the genetic 
variation among offsprings of heterozygous genitors, so 
that if T > T ' ,  then  one expects that R f f $ , , l  5 [ < ' ( T A , d -  

Furthermore, if T = 0, as in the case of ideal SDR, then 
,<a:,,,l equals 0 and when T = 1, as in the case of ideal 
FDR, Ru7;,,L is at its maximum. 

The model can be validated by applying it to the 
intrapopulation case. If the  diploid  parents  are FDR 
with b = 0 [no crossing over, like synaptic individuals in 
potatoes ( IWANAGA 1984) 1 ,  then T = 1 and  inbreeding 
terms vanish. In this case only, and if diploids and tetra- 
ploids have the same genetic  background,  (if  the 2x 
pool is extracted  from  the 4x pool,  for  instance) , then 
the terms due to 2x are  equal to those of  4x. 

dd ddl 

2 

if T = 1, then 

R 0 A . d  = [@; , I  = f f A  R f f K , d  = RuI),l = R f f D , d l  = f f / j  
2 2 2 2 2 

Rff ;.,ddl = RU::. ,dl l  = ff 7' Rff ;.,,/dl, = ff/:. 

f f 2  <; - - f f A  2 + u; + 0;. + ff;., (15) 

2 2 

So that  the  genetic variance ( 13) becomes 

which  is the usual expression of the  intrapopulation 
model ( I ~ M P T H O R N E  1957) . 

Covariances between relatives: A calculation of kinship 
coefficients adapted to the 4x-2x feature has been par- 
tially proposed by BOUDEC (1988)  and HAYNES (1990, 
1992). These authors used different notations. We p r e  
pose here a generalization. The formulae of  covariances 
between  relatives are altered according to the origin of 
the genes that are identical by descent, ie., if  they come 
from 2x or from 4x or from both. For example, the half- 
sib  covariance, cov (HS) may differ according to whether 
the common related individual  comes  from 2x or 4x. 
Since the two populations are disjunctive, there is no par- 
ticular  reason that cov (HS) ,, = cov (HS) (. 

Given ( Y ,  Y ' ) , two 4x-2x individuals, and using the 
R model,  the covariance cov ( Y ,  Y'  ) can be calculated 
first at  the additive level 

cov ( Y ,  Y ' ) * d  = cov ( H Y $  RY:.;:f!r) 

= cov ( ( /<at  + + /<a; + f ia;) ,  

(Ra:, + R f f $  + Ra:' + = 4E(,af,aft) 

+ 4E(,a;Ka:*) + 4E(Ka;Hff:.) 

+ 4E(Ra;RaY:!). (16) 
It is  easy to see that i and k ' ,  also k and i' are two 

completely independent alleles because they come 
from two different populations. So, 4E(Ka  'fxa ,& ) = 0 
and, similarly, 4E ({{a fiKa I". ) = 0. Consequently, if cp : is 
the probability of drawing two identical alleles by de- 
scent, one  among Y ,  the  other  among Y ' ,  knowing  they 
both  come from 2x (and 'pi  if they both come from 
4x),  cov ( Y ,  Y ' )  at  the additive level becomes 

cov ( Y ,  Y')*<, = 4cp:E(Ra32 + 4cp",(/<a:)2 

= p;lRff; ,d + c p : R d , l .  (17) 

These two cp probabilities are conditional on  the 
knowledge of the origin of alleles and  are related to 
their specific variance terms. They are  independent 
and, therefore, easy to calculate. Using the same 
method  at  the digenic level, one finally obtains 

cov ( Y ,  Y')Doln  = p:E(&y)' 

+ pkE(,@&)2 + lGcp:cp{E(&:'kl) 2 ,  (18) 

where cp; and pi are  the probabilities of drawing among 
Y and Y' a pair of alleles identical by descent arising 
either from 2x or 4x. Then, expressed with the variances 
of the model, cov ( Y ,  Y'  ) equals for  the digenic level 

cov ( Y ,  Y' ) Dom 

= 76[cp$ R d 1 . d  + cp: K&I + % cp:cp: Rff?;,<fl. (19) 

Similarly, cov ( Y ,  Y'  ) could be formulated  for 
and ,of. To sum up, 

cov ( Y ,  Y ' )  = cp: . ff i ,d + cpI K P K d  + Y 6  cp; Rff.1.d 

+ %j cp: /<a;,, + Y3 cp:cp: K U Z , d l  + cp:lcp: Kff::.,,i,lI 

+ PI92 R f f ' t , d / I  + cp:cp: Kff; . .ddIl .  (20)  d I  2 
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The cp and cpk coefficients for usual tetraploids (not 
related and  not  inbred) are  the probabilities of drawing 
by descent two identical alleles and two identical pairs 
of alleles, respectively, from Y and Y' (two 4x-2x indi- 
viduals) knowing that  the alleles come from the tetra- 
ploid pool,  that is to say, that they are drawn from 
among  the ( k l )  alleles. Thus, when Yand Y' come from 
the same tetraploid progenitor = ' / 4  and cpk = '/E. 

The cp f and cpg coefficients are analogous  probabilities 
corresponding to the 'pi and cp 4 coefficients but for proba- 
bilities  associated  with  alleles  from the diploid  pool.  When 
Y and Y' have a common diploid progenitor, cp f does 
not  depend  on the type  of the 2n  gamete the alleles  come 
from, whether ij, ii or j j .  That probability  equals %. cpi 
is the probability that ( i j )  equals ( i'j' ) knowing that i 
differs from j among Y, and that i' differs from j '  
among Y'. If the diploid progenitor is  FDR, this means 
that no crossing over occurred between the  centromere 
and the  considered locus, neither  among Y nor  among 
Y'. On the  other  hand, if the 2n gamete was a SDR one, 
this means that two crossing overs make the gamete 
heterozygous for the locus both  among Y and Y'. 
Therefore cpg equals 1. The values  of cpg and cp f are 0 
in other cases. According to (20) ,  half-sib (HS) and 
full-sib (FS) covariances can be written as follows: 

cov ( H S ) l  = ' / 4 R a i , t  + % 6 R g D , t ,  

COV (HS)d = % R g i , d  + 1 / 6 ~ g ; , d ,  (22) 

2 (21) 

cov ( F S ) d l  = Y 2 R n i . d  + % R f f i , t  + ' / G R u ; , d  + % 6 R c ; , l  

+ % R a i , d t  + 1/4RC$,ddt  + % 2 R g $ , d t t  + 1/6R0?.,ddll* (23) 

APPLICATION TO A RECURRENT 
SELECTION  SCHEME 

We can now consider a recurrent selection scheme 
for improving diploids (or tetraploids)  for  their 4x-2x 
combining ability. The 4x-2x  value of a diploid (or a 
tetraploid  progenitor) is the averaged value  of its 4x- 
2x progenies when it is intercrossed with a tetraploid 
tester (or a diploid tester). This mean value is a test 
value. It can be used to evaluate the genetic advance 
realized in a recurrent selection scheme. 

For the tetraploid pool,  there is no difference relative 
to a classical recurrent scheme. To improve their ability 
to give good 4x-2x offspring, one only  has to intercross 
the best tetraploid progenitors of  4x-2x  hybrids. The 
new tetraploids will inherit one-half of the additive 
value and ' / 6  of the  dominance value  of their parents. 

For diploids, the situation may be different from  the 
classical theory. Given a diploid parent being ( i j )  at a 
locus, then its 4x-2x test value RT( i j )  can be written 
as  follows using the R model. 

R T ( i j )  = R Y E !  - @ 

= E k L ( R p  + R a t  + R a f  + R a f ,  + R(YE + . * '1 ,  

~ T ( i , j )  = R p  + R a t  + R a f  + #?. (24) 

The genetic variance of these values  is equal to 
R g & ,  which is given  also by (13) 

R g E , d  = % R g i , d  + 1 / 6 R C ; , d .  (25) 

As both  components of  this variance depend  on  the 
value  of the probability 7r, large differences exist there- 
fore in the test value between the FDR and  the SDR 
features. For FDR, 7r is close to 1. Then Rp is close to 
p, the mean of the  general model [see (4)  and ( 5 )  1 ,  
and a large amount of dominance is transmitted by the 
2n gamete. On the  other  hand, as the SDR feature is 
very close to 7r = 0, R ~ &  is then almost completely 
additive and R p  is greatly altered  through  inbreeding 
brought in by E ( P : d )  [see ( 6 ) ] .  

If one assumes that 7r remains constant over genera- 
tions, then a diploid progenitor transmits one-half of 
the 4x-2x additive value, i.e., %(,a:! + .a:), to its 
diploid offspring but  not one-half of its  own  4x-2x test 
value, that is to say, one-half of R T ( 2 j ) .  Indeed it does 
not transmit one-half of Hpy at the diploid level except 
if 7r = 0. When intercrossing the best diploids, new 
diploids appear whose  4x-2x  value cannot  be directly 
related to the 4x-2x  value  of their diploid parents when 
there  are interactions between  alleles, i .e.,  dominance. 
Then, the genetic advance is explained by the parent- 
offspring covariance that is l/qR~i,d. 

Ignoring the consequences of the meiosis pattern, the 
test  value  Twill be considered as an additive  value, and 
then it is assumed that the progeny receives  one-half'  of 
this  value. Then,  the parent-offspring  covariance for the 
test  value will be y2 Ro& = 72 ( 7 2  R O ; , , ~  + '/6 R ~ ; , d )  in- 
stead of I/qR~i,d. Consequently, the genetic advance 
( AG) in  4x-2x  value among diploid offsprings will be 
overestimated compared to the real potential advance: 

AG Potential 1 / 4 R g i , d  

AG Predicted 72 R a &  

- " 

This overestimation of the genetic advance could be 
large if 7r + o and if R ~ i , d  is high relative to R g A , d .  2 

ESTIMATION OF THE  GENETIC  PARAMETERS 

The latter considerations stress the  need  for an esti- 
mate of R ~ ; , d  and R ~ i , d .  It is, unfortunately, not easily 
obtained using the usual crossing designs. To this end, 
a special design is proposed here  that could also be 
very efficient in a recurrent selection scheme. 

A population of  FS diploid families is crossed  with a 
tetraploid tester (Figure 1 ) , The tested unit is the whole 
4x-2x  family from a diploid individual coming from one 
of the FS diploid families. The unit value is the mean of 
the family. The total genetic variance  of diploid individu- 
als for their test  value is  given  by Expression (25) . 

The variance between FS families is  given by the 
within-family covariance. Using (20)  and taking into 
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2x1' 

L 

2n gametes I 4x-2x 

I 

Full-sib  diploid  family 1 

FS f a m  2 

Diploid 
parents FS fam n 

4x tester 
a 4x-2x family 
= a tested  unit 

"+ -1 J 
cov(within)=cov(FS) 

I 

FIGURE 1.-Crossing  design  using  full-sib diploid families  in 4x-2x hybrid studies. Diploid progenitors are crossed and give 
full-sib  families of diploid genitors able to produce diploid gametes. Each diploid genitor is crossed  with a 4x tester and gives 
a 4x-2x family,  which represents an elementary tested unit. These 4x-2x families are grouped according to the family  of their 
diploid genitor. Two variances could be estimated with this design, oGithin, which quantifies the mean variation among 4x-2x 
families of a given diploid full-sib  family, and oEenuren, which  gives the amount of variance at the 4x level  between these diploid 
full-sib  families. 

account  that  the  gene  pool  from  the tester is the same 
for each FS family and consequently that all compo- 
nents involving genes  from the tester are  zero ( GALWS 
1989) , we obtain  for the additive and  dominance vari- 
ance  terms only 

cov ( Y ,  Y ' )  = ~ p f  13aZ .d  + '/6(~2" Ra?],,,. (27) 

p;" is the probability of drawing out two identical 
alleles from two different tested units knowing that they 
both come from  the same diploid  progenitor. 

Since the two units  are full-sibs from two nonrelated 
parents ( i j )  and ( k l )  , cpf = In  the same way, = 

Thus, 

var (between FS) = oi = cov (within FS) 

= ' / 4 ~ 0 i , n  + Y N R ~ ; , ~ .  (28)  

Subtracting it from  the total genetic variance, the 
following  is obtained: 

var (within FS) = a'&= '/,,o;,, + l/RRo&. (29) 

By relating (28)  and  (29) with the variance analysis 
for  the  experimental design (Figure 1 ) , the following 
is obtained 

FS Family effect = Y4,a',,d + ' / . 2 4 R ~ % , t i ,  (30) 

o;7= ' /4f(aZ,d + 1/8RDg,d.  (31 1 
This way, estimates are  obtained  for two important 

terms needed to predict  the  genetic advance on  the 
4x-2x  value among  the diploids: 

R u ; , , ~  = ~ C T ;  - 20$, ( 3 2 )  

R d A d  = 12 [ o f  - d l .  (33)  

DISCUSSION 

The concepts of varietal ability and test  value permit- 
ted us to simplify the complex expression of the genetic 
value of 4x-2x inbred individuals. The model provides 
a way to compare various selection schemes for  the 
integration of diploid germplasm in tetraploid cultivars. 

We particularly studied  a  recurrent selection scheme 
designed to improve the 4x-2x  varietal  value of the 
diploid pool. The best policy appears to be first the 
comparison of means and variances in 4x-2x  test  value 
of  SDR diploids with those of  FDR diploids coming 
from  the same diploid pool. This  step will require 
adapted crossing designs like those shown in Figure 1. 
The genetic advance could  then  be calculated for SDR 
and FDR. The choice could be discussed according to 
their respective advantages and failings and according 

Family unit within FS family effect to short- and long-term objectives. 
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With FDR diploids and with simple recurrent selec- 
tion schemes, the improvement of the 4x-2x  value 
among diploids could be inefficient if the  dominance 
variance due to diploids (Ra;,,) is large for  the main 
selected traits. The breeding value  of SDR diploids are 
based on their 4x-2x  value  with little bias,  even if domi- 
nance plays an  important role in the selected charac- 
ters. In  the  latter case, the 4x-2x  value of the diploid 
population can be improved by crossing the best dip- 
loids revealed by simple 4x-2x progeny tests. 

Furthermore, it is expected  that homozygosity  reveals 
more variation than  does heterozygosity. So, the genetic 
variance between  4x-2x clones could be greater within 
the 4x-2x progenies of  SDR diploids than within FDR 
progenies. This variability could be exploited and the 
efficiency  of clonal selection increased. 

For these reasons and if inbreeding depression does 
not excessively alter  the mean of the 4x-2x progenies, 
the genetic advance could be larger and predicted bet- 
ter using the SDR mechanism in such a  recurrent selec- 
tion scheme. In any  case, if the  inbreeding depression 
induced by the SDR gametes is too strong to allow their 
use in breeding,  the  breeder has to elaborate  adapted 
schemes for FDR diploids. If the  dominance variance 
due to the diploids can be neglected for main breeding 
traits, a simple intercross of the best diploids is all that 
is necessary because of  its  simplicity and efficiency. If 
dominance effects are  found to be strong, two diploid 
pools could be used in a  “reciprocal”  recurrent selec- 
tion pattern, which is a particular case  of a three-way 
cross recurrent selection as proposed by GALWS 
( 1991 ) . Two diploid progenitors, one from each pool, 
will be crossed and give birth  to FDR full-sib  family, 
which will be tested for its  4x-2x  value. Then, according 
to the results, within each pool, the diploid parents of 
the best FDR full-sib  family will be selected and  inter- 
crossed to found  the two  new pools. Consequently, the 
4x-2x  test  value  of the offspring from the cross  of dip- 
loid progenitors from the two different pools should 
increase with the maximum use  of the variance of inter- 
actions among alleles. Unfortunately, this selection may 
be difficult to manage. 
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APPENDIX 

Demonstration that E( y g )  = 0. 

- x&. - p - 2fft  - - Pid - 2PfL7 ddt - 

where E&. = x, p lyz ik , ,  and pl  is the frequency the allele, 
and 

E ( y % )  = E ( K i k . 1  - p - E ( P $ d )  

= E ( E ( X t k . ) )  - p - E ( P $ )  
i k  

= E(Ki..) - P - E ( P Y )  

= p + E ( P i d )  - p - E ( P f )  
2 

= 0, 

where E ( E i k l )  = x k  x L p i p k p L K i k L .  


