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ABSTRACT 
An approach to  increase  the  resolution  power  of  interval  mapping  of  quantitative  trait (QT) loci is 

proposed, based  on  analysis  of correlated  trait  complexes.  For a given set of QTs,  the  broad  sense 
heritability  attributed  to a QT  locus (QTL) (say, A /  a )  is  an  increasing  function of the number of traits. 
Thus,  for some  traits x and y,  H $  ( A / a )  2 HH ( A / a )  . The  last  inequality  holds  even  if y does  not 
depend  on A /  a at all, but x and y are correlated within the  groups AA, Aa and aa due to nongenetic 
factors  and  segregation of  genes  from other  chromosomes. A simple  relationship  connects H' (both in 
single  trait  and  two-trait  analysis) with the  expected LOD  value,  ELOD = - ' /nN log( 1 - H ' )  . Thus, 
situations  could  exist  that  from  the  inequality H $  ( A /  a )  2 HH ( A /  a )  a higher  resolution is provided 
by the  two-trait  analysis as compared  to  the  single-trait  analysis, in spite of the  increased  number of 
parameters. Employing  LOD-score procedure to  simulated  backcross  data, we showed that  the  resolution 
power  of the QTL  mapping  model can be  elevated if correlation between  QTs is taken  into  account. 
The  method  allows us to test numerous  biologically  important  hypotheses  concerning  manifold  effects 
of genomic  segments  on  the  defined  trait  complex (means, variances  and correlations). 

T HE resolution of marker analysis  of quantitative 
trait variation is a major factor affecting practical 

applications of quantitative trait locus (QTL) mapping. 
A detailed discussion of the issues concerning  the 
power of  tests for  detecting linkage can be found  in 
many publications (e .g . ,  SOLLER and  GENIZI 1978; DE- 
MENAIS et al. 1988; LANDER and BOTSTEIN 1989; SOLLER 
and BECKMANN 1990; WELLER and WYLER 1992; CARBO- 

NELL et al. 1993). The precision of the  parameter esti- 
mation depends  on  the effect of the  QT locus in ques- 
tion relative to the total phenotypic variance of the trait 
in the  mapping  population.  In  other words, the  higher 
the discrepancy between the  distribution densities of 
the  QT locus groups [fu (x )  and ha( x) for  a back- 
cross],  the  better is the expected resolution. Several 
procedures have been  proposed to improve the preci- 
sion of mapping,  including the multimarker  (interval 
mapping) analysis (LANDER and BOTSTEIN 1989; KNOTT 
and HALEY 1992), selective sampling ( LEBOWITZ et al., 
1987; CAREY and WILLIAMSON 1991; DARVASI and 
SOLLER 1992), replicated progeny testing ( SOLLER and 
BECKMANN 1990),  and sequential  experimentation 
( BOEHNKE and MOLL 1989; MOTRO and SOLLER 1993) . 

Recently, much  attention has been paid  to  improve 
the efficiency  of marker analysis  of QTL  by taking into 
account  the  dependence of the quantitative trait on 
many QT loci (genomic  segments) (JANSEN and STAM 
1994; ZENC 1994). A situation when one QT locus (or 
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a chromosome segment defined by a pair of flanking 
markers) affects  simultaneously  several  QTs could also 
be considered. Such analysis may be of major importance 
in formulating marker-assisted breeding strategies, dis 
secting heterosis as a multilocus multitrait phenomenon, 
developing optimized programs for evaluation and b i e  
conservation of genetic resources, revealing genetic ar- 
chitecture of fitness  systems in natural populations, etc. 
Multivariate approach in segregation and linkage analy- 
sis  of quantitative traits was recently used in human ge- 
netics (e.g. ,  AMES and LAINC 1993)  but has not yet been 
applied for QTL mapping. 

In  mapping  QT loci, the  experimental design usually 
includes simultaneous measurements of  many  QTs and 
subsequent  treatment of these individual traits. Results 
obtained in many recent studies showed that some ge- 
nomic segments indeed affect several traits (e .g . ,  ED- 
WARDS et al. 1992; DOEBLEY and STEC 1993) . Multi- 
maker analysis  allows multiple effects of  any segment 
being estimated, if measurements of many traits are 
available. Nevertheless, in many current QTL mapping 
methods  each trait is  analyzed separately (but SeeJIANG 
and ZENG 1995). As will be shown in this paper,  a sub- 
stantial amount of genetic transmission information 
available in the  data may be lost by this approach. Con- 
sequently, an increase in resolution power of QTL- 
marker linkage analysis can be achieved by accounting 
of correlations between the QTs, i.e., when one consid- 
ers joint distributions of  several traits in  the QT locus 
groups [faa ( x, y )  andha  ( x, y )  rather  than  the marginal 
distributions faa ( x) and fAu (x )  , or A',, ( y )  and f A d  ( y )  1 . 
Earlier we showed the increased efficiency  of the 
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FIGURE 1.-Joint distribution f (  x ,  y )  of two correlated 
traits, x and y ,  in backcross population. Even  with the clear- 
cut bimodality o f f (  x ,  y )  [when  the  components f a (  x ,  y )  
and f A n  ( x ,  y )  are far enough  and  the correlation is high]  the 
marginal distributionsf( x )  andf(  y )  are unimodal. (A)  The 
QT locus affects both traits, x and y. ( B )  The  QT locus affects 
only one of the traits, x. 

multitrait analysis for  different progeny types in estimat- 
ing linkage between a  QT locus and a single marker 
locus ( KOROL et al. 1987, 1994; RONIN et al. 1995). 

The objective  of this paper is to demonstrate  the 
advantages of the multitrait analysis  within the frame- 
work of interval mapping of QTL (see also JIANG and 
ZENG 1995). Besides  of increased power of the statisti- 
cal  test and higher precision of estimation of the ge- 
netic parameters, the proposed approach allows for an 
integral evaluation of the effects of genomic segments 
on defined trait complexes (mean values,  variances and 
covariances). Because  of the internal balance of the 
organism's systems ( SCHMALHAUSEN 1942), such an ap- 
proach for QTL mapping seems to be much more justi- 
fied  biologically than  the usual  trait-by-trait  analysis. 

GENERAL DESCRIPTION OF THE METHOD 

The model: Consider  a  genomic segment carrying a QT 
locus (with alleles A and a) that affects two quantitative traits, 
xand y. We  will confine  our analysis to  the backcross situation. 
Any other type of mapping  population may be treated in  a 
similar way. In  the illustration presented  in Figure 1, the mar- 
ginal  densities are strongly overlapped.  Without  accounting 
of any additional information, based only on  the observed 
marginal  distributions f( x )  and f (  y )  , one would hardly as- 
sume that  the progeny is polymorphic for  an oligogene ( A /  
a). Nevertheless, the presence of an oligogene can easily be 
seen from  the  joint distribution f (  x ,  y )  . 

In  general,  one may assume that  the putative QT locus 
affects not only the  mean values of the traits but also the trait 
variances and covariance. In such a case, the two-dimensional 
phenotype ( x ,  y )  of an arbitrary individual of a backcross 
progeny  can be modeled as  follows: 

x = m, + 0.5 d,g + e,, y = my + 0.54g + e,. 

x and y are  the individual's phenotype scores of the analyzed 
QTs, m, and m, are trait  means, d, and 4 are  the effects of 
substitution aa --t Aa with respect to mean values of x and y 
( i . e . ,  d, = pxAa - px,, and 4 = pyAI, - pya), g denotes  the 
genotype at locus A /  a (g  = - 1 for aa and 1 for A a )  , e, is a 
random variable with zero mean  and variances a:, and a& 
for g = -1  and g = 1; similarly, er is a random variable with 
mean zero and variances a:? and a:?. The variables e, and er 
are assumed to be  correlated with correlation coefficients Rlq 
and &q for g = -1 and g = 1 ,  respectively. Correlation be- 
tween the traits x and y within the QT locus groups may be 

due to other segregating QTLs or nongenetic correlation. 
Although we  may assume that locus A/  a can also affect trait 
variances and covariance, in this paper however we will deal 
mainly with the situation of equal variance-covariance matrix, 
2, in the groups aa and Aa, i e . ,  2, = X' = 2. 

In  one trait analysis, the power and precision of QTL map- 
ping analysis depend  on  the  proportion of the variance 
caused by segregation of the putative QTL  in the total vari- 
ance of the trait x in the  population, H: .  Indeed,  the ex- 
pected LOD value for a backcross when the position of the 
closest marker  coincides with that of the QTL is (see LANDER 
and BOTSTEIN 1989) 

where gfxp is the trait variance associated with the putative 
QTL ( uexp = d') and aKr is the residual variance, so that 
H: = o:xp/ ( asx, + a$.). As shown in APPENDIX A the same 
relationship holds for  the bivariate case, with a  properly  de- 
fined H:, a two-dimensional analogue of H: , 

where 

- [ R ,  + d , 4 / ( 4 a f l Y )  J 2 .  

The  parameter H $  obtained in APPENDIX A coincides with 
a natural bivariate analogue of H :  based on  the  standard 
multivariate generalization of variance as a  measure of  vari- 
ability. Namely, in  measuring variability, determinant of the 
variance-covariance matrix, I Z 1 ,  is considered as such a  gen- 
eralization ( SOKAL 1965 ) . If so, then  one may formulate the 
multivariate (e.g. ,  bivariate) analogue of H:  as the propor- 
tion of the  determinant of the variance-covariance matrix 
caused by segregation of A /  a (assuming = CAa = X ) ,  
relative to that of the variance-covariance matrix of the total 

fined  in this way coincides with H$ from ( 3 )  derived from 
the ELOD (see APPENDIX A ) .  

Due to ( 2 )  , one could  expect the resolution power of the 
analysis increases as H i ,  does. Clearly, statistical aspects con- 
cerned with possible increase in the  number of parameters 
to be  estimated and  changes in the degrees of freedom  should 
be taken into account. Given fixed d x / a x ,  or HZ = 
'/,dp / ( ' / *d :  + a:), how could we increase the resolution 
by taking into  account  other traits? Clearly, if R, = 0, the 
effect of an additional trait is simply due  to  the increased 
euclidian  distance between the (two-dimensional)  centers of 
the  groups aa and A /  a. It is  easy to see from ( 3 ) ,  that if dr 
f 0, & f 0 and sign ( G , d x 4 )  < 0, then H $  2 H: and 
one could expect a respective increase  in  resolution. More- 
over, the inequality H $  > H ;  holds even if &, = 0, but & 
f 0, no  matter what sign of correlation we have. 

It is  easy to show (APPENDIX B )  that ( 3 )  is invariant with 
respect to nondegenerate  linear transformation of the vari- 
ables. Consequently, one may assume that  mapping problems 
with the same level of H i ,  could be  considered as formally 
equivalent with the only complication due  to  the possibility 
of different number of the degrees of freedom. For instance, 
it may be of interest to  compare equivalent ( i .e . ,  with the 
same value of H $  , while  with different values of other param- 
eters) situations: (1, f 0, d, f 0 and R, f 0 (locus A /  a affects 
two correlated traits) ; d, # 0,  4 = 0 and R, f 0 (locus A /  
a affects x but  not y ,  while within each of the  groups Aa and 
aa the traits x and y are  correlated); d, f 0, 4 f 0 and R, 
= 0 (locus A / a  affects two noncorrelated  traits)  etc.  The 
proximity of different  situations with the same level of H ;  
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will be demonstrated  on different  examples both  for  the 
power of the log-likelihood ratio test and  for  the precision of 
parameter estimation. 

Mixture-model  formulation for multitrait interval analy- 
sis: Interval mapping of QTL based on multitrait analysis can 
be  conducted employing the same techniques that were devel- 
oped  for  the single-trait analysis (e.g., LANDER and BOTSTEIN 
1989; JANSENS and STAM 1994). The only difference is the 
increased number of parameters  to be  estimated and tested. 
Our pilot analysis with available experimental  data  on sweet 
corn (Y. TADMOR, Y. RONIN, A. KOROL, A. BAR-ZUR, and E. 
NEVO, unpublished results) shows that  in many situations im- 
proved  resolution makes up  the  latter drawback. 

Assume that a QT locus A / a  resides in  some interval 
flanked by  two marker loci, MI / ml and M2/ m, with recombi- 
nation rates rl and r2 in intervals Ml /ml  - A / a  and A / a  
- M 2 /  T .  Different  modes of exchange  interference in the 
interval could be considered; we  will confine ourselves to  the 
no  interference case, so that r = rl + z2 - 2rlr2, where r is 
the  rate of recombination between MI / ml and M2 / m. Based 
on  the  marker scores and  the measurements of traits of inter- 
est ( x  and y )  for individuals from  the  mapping  population, 
we should test whether  or  not variation of x and/or y indeed 
depends  on  the interval MI / ml - M2 / m, and, if yes, identify 
the  corresponding locus A / a .  For a backcross case, the ex- 
pected  joint distributions of the traits x and y in each of the 
marker  groups, Umlrn' (x ,  y )  = UI ( x ,  y )  , U, lm2  (x,  y )  = U, (x, 
y ) ,  L S ~ I M Z ( X , Y )  = G ( x , y ) a n d  U,I .MZ(X,Y) = &(X,y) ,can  
be  written as  follows: 

the  proportions 7 r t  = T ,  ( rl , r2)  being  dependent of the  un- 
known recombination  rates rl and rz. With no  interference, 
7rl = (1 - rl)  (1  - a ) / ( l  - r) ,7r2 = rl (1 - r z ) / r , 7 r 3  = 1 
- 7 r 2 ,  and x4 = 1 - 7 r l .  The specification of the densities 
A'.( x, y )  and ha( x, y )  depends  on  the assumptions made 
about  the genetic control of the traits. Thus, if one assumes 
that  no  other oligogenes affecting x and/  or y are segregating, 
then two-dimensional normal density could  be  a  good  approx- 
imation, 

&,(X, y )  = [ 2 ~ 0 ~ ~ ( 1  - R')]"'' 

x exp{ - 1 ( x  - bxl)2 
2 ( 1  - R')[ u: 

x e x p { -  2 ( 1  - 1 R')[ ( x  - 0: PL30L)2 

here px, and pyt ( i = 1, 2 )  are  the  expected  mean values of 
x and y in groups aa ( i  = 1 )  and Aa ( i  = 2 ) ,  ux, uy and R 
are  the  standard deviations and correlation between x and y. 
The assumption of normality could also be suitable if several 
QTLs affecting the traits in question are segregating indepen- 
dently of A /  a.  To take into  account possible deviations from 
normality caused by a strong  gene  on  another  chromosome 
we can represent each of the densities, fna ( x, y )  and fAa ( x, y )  
as a sum of two bivariate normals (see also KNOTT and HALEV 
1992). 

LOD-score  test and parameter  estimation: Assuming that 

locus A /  a is situated in  the interval MI / ml - M 2 /  nq!, the 
log-likelihood for a  sample of two-dimensional measurements 
xh ,  y k  in marker  groups with  sizes N, ( i  = 1, 4 )  can be written 
as 

In L(8nl)  = C C In U ( x k ,  y k )  

4 N* 

, = I  k = l  

4 Nt 

= In [ r r f a a ( X k ,  Y k )  + ( l  - 7 r z ) f A n ( X k ,  yk)]. 
t=1 k = l  

In  the  general case of d, f 0,  d, f 0, and X,,, f X A a ,  so that 
Q n l  = {TI,  p x l ,  p x ~ ,  pyl,  pp, uxl ,  ux2, uylr uy2, Rl,  R21 is the 
vector of n1 = 11 unknown  parameters, specifymg recombina- 
tion rate and  joint distributions of traits x and y in the QTL 
groups aa and Aa (in case of F2, Q n l  could include  up  to 16 
parameters).  The assumption of no effect of genes from  the 
interval MI / ml - M2/  q on  the traits (x,  y )  can formally be 
presented by another  set of parameters, Q = On, = { p x ,  py, 
ox, uy, R) (the null hypothesis { H,: 0 = Q n o )  as contrasted to 
the alternative one {HI : 8 = /In1 1) .  According to  the likelihood 
ratio test approach (WILKS 1962), if H ,  is true,  the statistics 

X' = 2 ln[max L(Q, , )  /max L(QnO)]  ( 5 )  
8 n 1  E SI Qno E $1 

is distributed asymptotically as chi  square with nl - no degrees 
of freedom, where & and SI are  the  parameter spaces corre- 
sponding  to Ho and H I ,  respectively (WILKS 1962). Thus, if 
X' exceeds  some critical value, corresponding to a  preset level 
of significance a ,  the null hypothesis can  be  rejected. In such 
a case, the numerical values providing  maximum to L (  Bnl ) 
could  be  considered as maximum  likelihood estimates of the 
parameters  characterizing our  QT locus A /  a ( K N O ~  and 
HALEY 1992). However, in the multi-interval mapping  the 
problem of the exact asymptotic distribution of the test statis- 
tics remains unsolved even in the single trait analysis (see 
ZENC 1994). If so, one could use extensive Monte-Carlo simu- 
lations to obtain  an empirical critical value of the statistics for 
each  considered  situation. Two additional  points are worth 
mentioning  here. 

Introduction of any (additional)  parameter ( s )  specifylng 
the QTL mapping model  should  be  justified statistically by 
comparison to  the  corresponding  reduced model.  This is 
relevant to any complication of the QTL mapping model 
including  the  replacement of single-trait mapping analysis 
by its multitrait  analogue. Thus, if one starts with the full 
formulation of HI : {Q = Q,,l, nl = 11) specifylng the puta- 
tive QTL, then consequently reduced versions of HI should 
be  tested, e.g., those with X,, = XAo ( Bnl  = { rl , pxl, p%, 
pyl ,  py2, ox, cry, R ) ,   n l  = 8 ) ,  etc.  Parameters that do  not 
affect the significance level should  be removed from  the 
mapping model. 
An increase  in the  number of parameters  in the two-trait 
mapping model  does not necessary mean a substantial in- 
crease in the  number of degrees of freedom of the test 
statistics. That is because the  number of parameters speci- 
fymg the null hypothesis Ho = (no  QTL in the considered 
interval) also increases. 

SIMULATION  PROCEDURE AND OPTIMIZATION 

Generating the data: Monte-Carlo simulations were 
used to produce  the observations. For each situation 
studied, 200 repeated  mapping populations have been 
generated using pseudorandom  numbers. Bivariate 
normal distribution was used for the trait groups aa 
and Aa. However, our numerical results  show (see be- 
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low) that bivariate QTL mapping analysis  is rather ro- 
bust with respect to deviation from normality assump- 
tion caused by independent segregation of other QTLs. 
For comparative analysis  of different  methods and situa- 
tions we used the same set of data. The ~ composition of 
the  marker  groups  (mixtures U,, i = 1, 4 )  were mod- 
eled as binomial distributions with expected  propor- 
tions 7 r t  ( q ,  3) and 1 - 7 r t  ( q  , r 2 ) .  For most of the 
experiments,  parameter values used for simulations 
were in the following range: 0 5 d, = xArr - x,, 5 0.6, 

0.7, N = 250. The length of the  marker interval 20 cM 
with the  QT locus in the middle. No interference was 
assumed in the  data  presented below (and HALDANE'S 
mapping  function is suitable) , but this restriction is not 
essential and  the proposed  method of  analysis can be 
conducted with any other  mode of multiple exchanges. 

Obtaining numerical  solutions: The target of this 
work  was to compare the above described approach 
with the single trait analysis, or to put it more exactly, 
to estimate the gain in accuracy when the  correlation 
between the quantitative traits is taken into  account. 
Therefore, we do  not dwell enough in this study on 
problems of numerical procedures of  multi-extrema1 
multidimensional optimization. The main objective 
here was to check how the  correlation between the 
considered traits affects the  detection power of the like- 
lihood ratio test and closeness of the  optimal points 
(representing  the estimate of the  parameter vector H )  
to the  true  parameter set. For this specific goal, we do 
not have to search the solution starting from arbitrary 
points. The simplest way to obtain  the necessary  esti- 
mates is to use  as an initial point in the optimization 
procedure  the  parameter values equal to the  true  ones 
of the  considered sample (e .g. ,  TITTERINGTON et al. 
1985). Based on  numerical analysis  of the described 
functionals, we found  that  for  the  studied  combinations 
of the  model  parameters this initial point lies in the 
domain of the  attraction of the global maximum of the 
ML-functional. Of course, it could not be true  for small 
sample sizes ( TITTERINGTON et al. 1985) . As tools for 
local optimization we employed different modifications 
of the  gradient and Newton methods. 

Estimation of the  power of the  test: To estimate the 
power of the log-likelihood ratio test, we used the criti- 
cal  level  of the test  statistics (5)  X' = X 2  critical based 
on  the asymptotic distribution (chi square with df = nl 
- The goodness of  fit  of the  expected distribution 
was tested by simulations of the  mapping  population 
under H,, (no QTL in  the  considered  interval) using 
5000  trials. The  proportion of  cases where the  QT locus 
was revealed when it really  exists was measured  for dif- 
ferent situations using critical values obtained in these 
simulations and those from the asymptotic (chi-square) 
distribution.  These two estimates of the power hap- 
pened to be very close. They were  also complemented 
by an  additional  indicator ( P )  , the  proportion of  cases 

0 5 dy = yAn - yrLn 5 0.6, uno = 1, uAn = 1, 0 5 1 RI 5 

where the highest value  of the test statistics was achieved 
in the  proper interval (not in the neighboring ones). 

Estimating  the  accuracy of obtained solutions: Usu- 
ally, variances or SE of the estimates are employed as a 
means  for accuracy comparison of the estimation proce- 
dures. However, in addition to random fluctuations 
around  the  mean,  another possible source of distur- 
bances, the bias of the estimates, should also be taken 
into  account.  Thus, one should simultaneously take 
care of the estimation variance and estimate bias.  More- 
over, each of these two components of the deviation of 
the estimates from the  true value could depend  on the 
level of the parameters. To allow for possible differ- 
ences in biases  of the estimates, we employed the abso- 
lute error of the estimate, averaged over the  repeated 
experiments: 

1 "  
6u = - - u J ,  

k = l  

where & and u are, respectively, the estimated and ex- 
pected values  of the parameter u ( i.e., u can be any  com- 
ponent of the vector 8, say q ,  p x l ,  d,, pyl, 4 ,  u:, etc). 

SIMULATION RESULTS 

For the backcross case, we have simulated and ana- 
lyzed a number of situations when a QT locus ( A /  a )  
residing in  a  marker interval (MI / ml - M2/  m )  affects 
simultaneously two correlated QTs, x and y. To show 
the advantages of the  proposed  approach, we compare 
the resulting characteristics (test power and precision 
of the  estimates) with those obtained using single-trait 
analysis as well  as two-trait  analysis  with no correlation 
between the QTs. Two versions  of Ho (no QTL in the 
interval in  question) will be considered: no  other QTL 
in  the  genome, so that  the  normal distribution could 
be used, and  another  QT locus with a  strong effect 
segregates independently of the  marked  chromosome, 
preventing  the applicability of the  normal approxima- 
tion. In this case, numerous modes of (epistatic)  inter- 
action between the two QTLs might, in principle, be 
considered  in  the framework of multitrait linkage analy- 
sis.  However, we will restrict our attention  here only to 
additive cases. 

No other QT loci  segregating in the  mapping  popula- 
tion: This means  that first version of HO is suitable and 
bivariate normal  approximation could be used. In this 
case, the log-likelihood ratio will be distributed asymp 
totically  as chi  square with df = nl - no (difference 
between the  number of parameters under HI and HO 
formulations) . Based on simulations of 5000 backcross 
populations, we found  that  the distribution of X' from 
( 5 )  when H ,  holds, is indeed close to chi square with 
the  corresponding  degree of freedom (not shown ) . 
Thus, df = 11 - 5 = 6 for full models Hl and Ho with 
H n l  = { T I ,  pxl, p q ,  py1, py.~, u,1, 0,2,  U ~ I ,  us', RI, & I  
and e,,, = { p x ,  py, u,, uy, R ] ,  or df = 8 - 5 = 3, for 
the  model with HI assuming 2, = xAn ( i . e . ,  = { T I ,  
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FIGURE 2.-Illustration of the  effect of the  within-group 
correlation ( R )  between  the  analyzed QTs on the  resolu- 
tion of  bivariate interval mapping. Locus A / a  has equal 
effects  on  both  traits, d, = dy = 0.25d2 (so that its total 
effect is d = 0.5) ;  ~7~ = oy = 1 in each of the QT  locus 
groups of the backcross.  Total  population size was N = 
250. Three independent Monte-Carlo trials (A-C) with the 
above  parameters  are presented. Note, that with increasing 
R the maximum  of the LOD  also  increases and the bias of 
the  estimated  position of the  putative QTL decreases (for 
the same sequence of pseudo-random numbers used to pro- 
duce the sample of size N )  . 

pxl ,  11x2, pyI, pyz, uxt uy, Rl) and  the Same Ho: e,,, = 
(px ,  py, C X ?  uy, Rl. 

Figure 2 illustrates the behavior of the LOD score 
along  the interval MI / ml - My / and in  neighboring 
intervals. Note, that with increasing I Rry [ the maximum 
of the LOD also increases and  the bias of the estimated 

position of the putative QTL decreases, provided sign 

Averaged characteristics for  a series of simulation ex- 
periments described above are  presented in Table 1. 
These results obtained  under  the assumption of equal 
variance-covariance matrices in the QT locus groups 
Aa and aa ( X A a  = Xcz,L = Z)  clearly demonstrate  the 
superiority of the bivariate linkage analysis, provided 
sign ( d,d,&) < 0 (Table  1 ) . This is manifested in  a 
considerable increase in  the power of the log-likelihood 
ratio test and a decrease in deviations of the  parameter 
estimates from the  expected values. The closer the cor- 
relation between the involved traits the  higher is H i ,  
(and the ELOD value) and  the  better  the  resolution, 
given d,d, f 0 and sign ( dXd&) < 0. 

Paradoxical on the first glance is the significant in- 
crease in resolution power of mapping of the  QT locus 
affecting trait x, due to the  information provided by a 
correlated trait y ,  when y does not  depend  at all on A /  
a ,  i e . ,  when dy = 0 (Table  1 ) . Nevertheless, this is 
exactly  what  follows from the comparisons of H &  [see 
( 2 )  and ( 3 )  ] . Indeed, in spite of the fact that dy = 0, 
in all  cases where the  information  supplemented by y 
results in increased resolution, we have an increased 
level of bivariate broad sense heritability attributed to 
A /  a as compared to the univariate (or no  correlation) 
case, Le., H i ,  2 Hf , or for any sign (4,) when either 
d, = 0 or d, = 0. Note,  that in  cases  with no correlation, 
the power of the test is only 33-37% at  the 0.1% sig- 
nificance level  usually  used when many intervals are 
treated simultaneously in  a multi-chromosomal ge- 
nome. The difference between the LOD  values in the 
proper  and adjacent intervals ( ALOD) also increases 
several times when correlation is taken into  account. 
This coincides with a  decline in the  proportion of  cases 
where the maximum of the LOD function does not lie 
in the  proper interval (equal to 100 - P )  (from 41 - 
44% at R = 0 to 13-21% at R = -0.7). 

Another QT locus is segregating in the popula- 
tion: Denote this additional locus as B /  6. If the effects 
of B/ 6 on x and/or y are  strong  enough,  then  the 
normality assumption is no longer suitable. The Ho hy- 
pothesis “no QT locus in the  considered interval” 
should  be  formulated, similarly to the univariate case 
( e.g., KNOTT and HALEY 1992), as if all of the  four 
marker groups have the same distribution 0.5 j,,,( x, y )  
+ 0.5 f,,, ( x, y)  . The components J,,, and f i t ,  of the last 
mixture may be bivariate normals or any other bivariate 
densities. We come to the bivariate analogue of the 
joint interval mapping and segregation analysis: testing 
for  the  presence of a QT locus ( A /  a )  in some marked 
interval and estimating its effects, while  allowing an- 
other  QT locus ( B /  b )  segregating independently of A/ 
a. In fact, the accessibility of many dozens of molecular 
markers throughout  the  genome makes it reasonable 
to include  them as cofactors in interval mapping models 
(JANSENS and STAM 1994; ZENC 1994). We believe that 
multitrait analogues of these new algorithms will pro- 

(dxdy%,)  < 0. 
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TABLE 1 

Effect  of  correlation (R) between  the  QTs  on  the  resolution of interval  mapping of the  QT  locus 

Situation P = P(ff) 
dx 4 R H ;  LOD ALOD df P a = l  a = 0 . 1  6r 6 dx 

d2/4  d2/4 0 0.06 3.05 ? 0.10  0.44 t 0.06 3 59 6 4  33 45.1 ? 2.2 111.0 ? 6.1 
66' 35 

-0.5 0.14 5.43 ? 0.14 0.87 ? 0.07  3  75 96 80 34.1 ? 1.9 110.9 ? 6.1 
98 82 

100 100 

71  37 

82 56 

97 85 

-0.7 0.17 8.44 ? 0.17 1.46 ? 0.09  3 87 100 100 26.8 ? 1.5 109.0 ? 6.1 

1/2 0 0 0.06 3.12 ? 0.11 0.48 ? 0.06 2 56 65  37  44.2 ? 2.2 11 1.3 ? 6.2 

-0.5 0.08 3.87 i- 0.12  0.60 2 0.06 2  66 79 55 40.8 ? 2.1 110.3 i- 6.1 

-0.7 0.11 5.66 t 0.15  0.98 ? 0.08 2 79 91 73 33.6 t- 1.8 114.0 ? 6.3 

In simulated 200 replicates of backcross progeny (250 individuals in each), A / a  locus resides in the middle of a  marked 
interval (length 20 cM) with the effect on  the traits d = (d :  + d;)''' = 0.5 or d = d, = 0.5 (d, = 0). In  the first case H', = 0.03 
and in the  second  one H:  = 0.06, &and 6d, are  the  mean absolute errors (multiplied by 1000) of the  corresponding  parameter 
estimates, LOD is the  mean value of the maximum lod-score in the interval, ALOD is the  mean excess of the maximum LOD 
in the  true interval over that in the  neighboring  ones, P ( % )  is the power of the test at  the significance level a(%), and P(%)  
is the  proportion of cases where the maximum of LOD-score resides in the  true interval. 

" Estimates obtained employing asymptotic distribution of the test statistics. 
' Estimates obtained employing 5000 simulation runs  under H+. 

vide further increase in the efficiency of marker analysis 
of quantitative variation (see also JIANG and ZENG 
1995). 

Different situations could be considered,  depending 
on  the effects  of A /  a and B /  b on  the correlated traits: 
each of the loci  affects both traits; A / a  affects both 
traits, while  only one of the traits depends  on B /  b; A /  
a affects one of traits and B /  b the  other  one; etc. We 
will refer to the effects of A /  a and B /  b on  the traits as 
d,and d,, and D,and Dy,  respectively. We have restricted 
our consideration here only to two situations: d, f 0 
and 4, = 0, and DX f 0 and Dy = 0 (Table 2 ) ;  and d, 

f 0 and d y  f 0, and 0, f 0 and D, = 0 (Table 3 ) .  
In  both cases, the results obtained -by the  proposed 
procedure of bivariate analysis  obviously demonstrate 
the positive effect of correlation on  the resolution 
power. 

Consider the case, where both loci affect the same 
trait, i.e., d, f 0 and d, = 0, and 0, f 0 and Dy = 0 
(Table 2 ) .  Let us first compare  the upper  and lower 
parts of the table. Clearly, ignoring  the  dependence of 
x on locus B / b ,  i e . ,  assuming bivariate normality of 

JLa ( x ,  y )  and f A n  ( x ,  y )  , does not decrease seriously the 
resolution. This is manifested in proximity of precisions 

TABLE 2 

Effect  of an  independently  segregating  QT  locus on the  resolution  power of bivariate  interval  analysis: 
the  involved  QT loci  affect the  same  trait 

R LOD ALOD P a = l  ff = 0.1 6r 6 dx 6Dy 

Ignoring B/b  

0 2.05 ? 0.08 0.37 ? 0.04 60 45 18 46.6 2 2.2 128.3 t 7.3 
-0.7 2.87 f 0.10 0.51 ? 0.05 67 73 40 42.5 5 2.0  104.6 +- 6.0 - 

- 

Including B / b  into  the model 

0 2.09 ? 0.08 0.39 ? 0.04 67 45 18 47.8 ? 2.2  126.1 ? 7.0  290.0 ? 20.8 
-0.7 3.15 ? 0.10 0.57 ? 0.05  72 80 51 43.5 ? 2.0  97.9 ? 5.6 119.8 -+ 9.5 

In these simulations the effects of A / a  locus on  the traits x and y were d, = 0.5 and d, = 0, respectively, and  the effects of B/ 
b on x and y were DX = 1.5 and DX = 0. In all subgroups (aabb, Aabb, etc.) ox = ov = 1. All other characteristics are as described 
in Table 1. In  the first case with R = 0, the vector of genetic  parameters for Hl is e,, = { r ~ ,   XI, p q ,  py, ox, or) while for f i ~  8 0  
= (px, py, ox, oJ, ie., df = &4 = 2, with R f 0, = [rl, pxl, px2, py, ox, o?, R )  and 8, = (px, py, ox, ov, Rl, so that d / =  2 
again. In the second case with R = 0, e,, = {rl, p x l ,  p%, py, ox, oy, 0,) and On0 = {/AX, py, ox, oy, DX},  thus df = 2, clearly, with 
R f 0, d/= 2 as  well. 
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TABLE 3 

Effect of an independently  segregating QT locus  on the resolution  power  of  bivariate  interval analysis: the  putative QTL 
(A/u) affects both traits (x and y), while  the  independently  segregating locus (B/b)  affects only one  of the traits (x) 

P = P(a) 

R LOD  ALOD P a = l  a=O.l  6r 6 d, 64 6D 

Ignoring B/ b 

0 2.83 2 0.10  0.46 ? 0.05  61  52  27  47.0 5 1.8  186.0 ? 9.9  164.5 ? 8.3 
-0.7  5.50 ? 0.14  0.96 5 0.07  81  96 

- 
86 33.6 ? 1.7  183.1 2 8.6 166.3 ? 9.5 - 

Including B / b  into  the model 

0 2.84 2 0.10  0.47 ? 0.05  66 53 28 47.1 5 2.0 183.2 ? 9.6  164.6 ? 8.4 283.9 ? 20.8 
-0.7  5.86 ? 0.14 1.06 ? 0.05  84  97 89 34.6 ? 1.9 179.3 ? 9.0  166.3 ? 8.5  119.6 t 9.2 

In these  simulations  the effect of A / a  locus on  each of the  traits, x and y, was d2, and  the effect of B / b  on x was 1.5. In 
all  subgroups (aabb, Aabb, etc.) ox = oy = 1. All other  characteristics are as described in Table 1. The  number of degrees of 
freedom is determined in  the  same way  as it is shown in Table 2. For  example,  in  the  second  case with R # 0, O,, = {rl, pxl, 
p%, py1, py2, DX, ox, oy, Rl and = h x ,  py, DX, ox, oy, Rl, so that df = 9-6 = 3. 

of estimates, LOD  values, as well  as the  proportion of 
the repeats where the maximum of the LOD function 
was achieved in the  proper interval ( P )  . Such a proxim- 
ity coincides with the  earlier claimed robustness of the 
interval mapping  procedures  to disturbance of the  nor- 
mality assumption. The criteria presented in Table 2 
demonstrate  a tendency for  an increased power  of the 
bivariate model, in spite of an increased number of 
parameters  to be estimated and  rather small effect of 
the putative QTL. 

Basically, the same results and conclusion about use- 
fulness of the information provided by a covariate trait 
are  obtained in a qualitatively different situations, e.g., 
in the second situation where A / a  affects both traits 
and B /  b only one of the traits (Table 3 ) . For example, 
as the  correlation increases from 0 to 0.7, the mean 
LOD score increases from 2.8 to 5.9. The power of the 
test at  the 0.1% significance level increases from 28 
to 89%. Similarly, the  proportion of cases  with wrong 
interval location diminishes from 34 to 16%. 

An additional  point,  common  to  both considered sit- 
uations of combined interval mapping and segregation 
analysis, should be mentioned  here. Quite unexpect- 
edly there seems to be  an  apparent  reduction  (though 
a  rather small one) in the power of the test for exis- 
tence of A / a  when the  effect of B / b  on  one of the 
traits is taken into account. This reduction is character- 
istic  only to situations with  small correlation (i .e. ,  at 
lower resolution). We could assume, that in such cases, 
neglecting the effect of B / b  differentially affects the 
log-likelihood for HI and H,, resulting in upward bias 
of the LOD score. Seemingly, the  nominator of the test 
statistics (5) corresponding to Hl is more robust to 
inadequate specification of the  model,  than  the  denom- 
inator  (which is, in fact, the likelihood of  bivariate nor- 
mal distribution of the  observations). 

Resolution  power  of  bivariate  interval analysis when, 
in  addition  to  trait  means,  the  putative QT locus  affects 
also correlation: The problem of identification QTL 

effects on trait variances  has already been discussed  in 
the case of single quantitative trait analysis (e .g . ,  ZHU- 
CHENKO et al. 1979; WELLER and W ~ E R  1992 ) . A similar 
question about  the  dependence  of resolution (preci- 
sion of parameter estimates) on the assumption of 
equal variance-covariance matrices was considered in 
the multitrait analysis, but with single marker ( KOROL 
et al. 1994; RONIN et al. 1995). For the sake  of  simplicity, 
one may assume that no such effects are  presented in 
the  data and  put in the model x, = EA,, or o:, = 
oi, for both traits, xand y, as well  as &, = R A a .  However, 
in both single- and multitrait analysis, such kind of  sim- 
plifications lead to a considerable loss  in the test power 
and precision of the estimates, if these assumptions do 
not fit the data. On the  other  hand,  the resolution 
could be improved significantly if indeed E,, f ZAa and 
this fact is taken into  account ( KOROL et al. 1994; RONIN 
et al. 1995) . 

Consider an example of one-trait analysis. One can 
compare two situations, o;, = 0% = 0' and c ia  > 
a:, = 02, with  all other parameters remaining the same. 
Clearly, a reduction in the resolution power is expected 
in the second case, and this indeed will be  the case, if 
the fact oi, + 0% is ignored in the model. Let the 
effect of the putative QTL on trait variance be large 
enough. For instance, one may think of a QTL  with 
linear effect ~ x A ,  = qpx,, + Q ( KOROL et al. 1994) with 
opposite additive ( G) and multiplicative ( ( c1 - 1 ) px,) 
effects.  Given q > 1 and Q < 0 ,  the ratio I dl /o,, = 

I ~ x A ,  - px,I / f f ,  = I (GI - l)pxa, + Q//O,, may be 
relatively  small  as compared  to q = oAa/ om [and such 
situations are  not unrealistic, e.g., ZHUCHENKO et al. 
( 1979) 1. Then, allowing for f a$ in the model 
seriously increases the resolution when cria > o: = o2 
as compared  to  that when n ia  = 02, = o2 ( KOROL et 
al. 1994; RONIN et al. 1995) , 

We showed  above the positive effect of correlation on 
the power of the QTL detection test in interval analysis 
provided E, = E A a  ( e.g., Table 1 ) . What will happen 
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TABLE 4 

Effect  of  nonequal  correlation  on the efficiency  of  bivariate  interval  mapping 

Assumption 

Rea = RA, %, * R A ~  

Situation P = P ( f f )  P = P ( a )  
-~ 
%<' RA<, LOD a = l  a!=O.l  Sr LOD a = l  a = 0 . 1  6r 

0 0 1.68 ? 0.04 19 6 56.8 ? 2.3 2.42 t 0.06 16 4 62.2 ? 2.2 
-0.4 -0.4 2.41 ? 0.06 42 19 50.0 ? 2.2 3.14 ? 0.08 34  12 56.3 t 2.3 
-0.4 0 1.94 ? 0.05 27 10 54.3 ? 2.3 4.66 ? 0.10 69 38 48.5 ? 2.1 
-0.7 -0.7 4.21 ? 0.09 84 57 39.1 t 2.0 4.92 ? 0.10 70  45 40.9 ? 2.1 
-0.7 0 2.26 ? 0.06 38 15 50.9 t 2.3 12.05 ? 0.16 100 100 32.7 5 1.4 

In the simulation experiments the traits of interest were assumed to depend only on the QT locus A/a,  with d, = 4 = (3d2)" 
= 0.23. For other details see Table 1. 

to the power if the  correlation  in one of the QT locus 
groups is reduced ( e.g., I RAaI < I R,,I ) with  all other 
parameters  remaining  the same? The results presented 
in Table 4  demonstrate  that this reduction, as expected, 
seriously diminishes the resolution when the inequality 
RArr f %, ( i e . ,  X,, f EA,) is ignored. However,  what 
would be less expected is that  the  reduction in correla- 
tion, if included  into  the  model, could considerably 
increase the resolution power as compared to the initial 
situation with RAa = &,. Thus, in all  cases presented 
in Table 4, the resolution power of interval analysis 
increases across the situations as follows: p[ R,, = 0, RAIL 

These results are in agreement with our previously 
suggested explanation of an analogous effect of non- 
equal variances gL f g2(L in single trait analysis ( KOROL 
et al. 1994). It employs a notion of discrepancy of the 
QT locus group distributions, D (  Jza ( x) , f A r i  ( x) ) , as a 

= 0 )  < p[ R,, = R, RA, = R )  < p( R,, = R ,  RA, = 0) .  

function of d = xAa - x,, and crzn/uia. We found  that 
both D ( JuL ( x) , ( x) ) and resolution power may  grow 
not only  with increasing d = xA0 - x,,, but also  with 
deviation of from unity as well (provided d is 
relatively  small ) . This consideration could be extended 
on  multitrait analysis.  Namely, it seems reasonable to 
assume that  the resolution capacity of the marker analy- 
sis in the case of  two correlated QTs depends  on  the 
discrepancy between the bivariate distributions JZrL ( x, 

not calculate the effect of changes of different parame- 
ters of J;lrr  ( x, y )  in reducing I XAn1 [ e.g., increased 
a ? , ( x )  or reduced R A ( ~ ( X ,  y )  1 on D ( & ,  J d ,  this as- 
sumption seems to be a reasonable explanation  for  the 
obtained results (see also KOROL et al. 1994). 

y )  and ha( x, y )  , D ( &  (x, y )  > f A n (  x, y )  ) . While we did 

DISCUSSION 
Usually, the effect of  QTLs on  the trait mean values 

is the  target of mapping efforts. In a such a case, differ- 

TABLE 5 

Invariance of the  resolution  capacity of interval Q'JL mapping  with respect to  bivariate  heritability (HL)  
and  comparison  with  corresponding  univariate  analysis 

Situation P = P(a)  

HZ - QTs included 
4 a, R H ;  H:y into  the  model df LOD br a = 1 a = 0.1 

0.3 0.3 -0.6 0.022  0.1 x,  Y 3 4.96 ? 0.13 35.8 ? 1.9 94 73 

X 2 1.27 2 0.07 57.9 -t 2.2 19 7 
0.53 0 -0.6  0.066 0.1 x, y* 3 4.91 ? 0.10 36.0 ? 2.0 94 74 

2 3.21 2 0.11 41.6 ? 2.1 78  50 
0.53 0 -0.6  0.066  0.1 x, y** 2 4.63 ? 0.13 35.0 ? 1.9 95 79 

- 
0.022 

- 
0 x*** 

- 
0 

0.6  0.6 0.6 0.083 0.1 x,  Y 3 4.98 2 0.11 35.9 ? 1.9 94 77 - 
0.083 

X 2 3.98 ? 0.12 38.3 2 1.9 88 71 

The results presented  in * and ** illustrate the reduction  in the test power due  to unjustifiable increase in the number of 
parameters. In  the *, = ( r l ,  p x I ,  ,us2, pyI, p ~ ,  ox, oy, R] and 8, = {px, py, ox, oy, R}, so that df = 3. In the **, e,, = {q, 
p x l ,  psi, py, ox, oy, R} and = {px, py, ox, oy, R},  so that d f  = 2. The value of x" for  the effect of A / a  on  the trait y is 1.3 ( d f  
= 1), which is nonsignificant. Therefore, ** is the  true model that allowed to increase the power of the test for detection of' A /  
n from 50% *** up to 79% due to the  information provided by measuremen& of the correlated  trait y. 
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ence measures like ( xu - x m )  / uX or equivalently pro- 
portion of the trait variance caused by segregation of 
the QT locus in  question (e ) , are of primary interest 
when discussing the resolution power of linkage analysis 
[see above ( 1 ) ] . Among several  possibilities suggested 
to increase the efficiency  of marker analysis  of QTs, 
simultaneous analysis  of  many  loci (genomic seg- 
ments), either  linked or unlinked (JANSENS and STAM 
1994; ZENC 1994), seems to be especially promising. 
Complementary  to this approach is our suggestion to 
employ joint distribution of a set of correlated QTs to 
achieve a further increase in resolution power  of QTL 
mapping. Earlier, this idea was proven to work in single- 
marker analysis (using as examples backcross, f l2  and 
recombinant  inbred  lines) (KOROL et al. 1994; RONIN 
et al. 1995) . Here we demonstrated  the efficiency of 
the  multitrait  approach  in interval QTL mapping, using 
simulated backcross data  (see also JIANG and ZENC 
1995). Clearly,  it may be  applied to much  more compli- 
cated  structures of mapping  populations, e.g., those aris- 
ing  in genetics of trees or animals as  well  as in  human 
genetics. 

For a given set of  QTs, the  broad sense heritability 
attributed  to  a QTL ( e .g . ,  A /  a) is an increasing func- 
tion of the  number of considered traits. Thus, for some 
traits x and y ,  H ;  (A/a) 2 H: (A/a) . The last in- 
equality holds even if y does not  depend  on A /  a at all, 
but x and y are correlated within the QTL groups ( A A ,  
Aa and aa) due to nongenetic factors and segregation 
of genes  from other chromosomes (see also GINSBURG 
1983). According to the equality ( 2 ) ,  the  higher  the 
portion of bivariate variability in  the  mapping  popula- 
tion attributed to the QT locus in question,  the  better 
will be the resolution. And indeed,  the results presented 
above (Table 1 ) qualitatively confirm this expectation. 
Moreover, one could  further assume that  the  increment 
in H g  ( A /  a), as compared to H: ( A /  a), even quanti- 
tatively determines  the increase in resolution (in spite 
of complications due to certain statistical nonequiva- 
lence)  no  matter how this increment in I?;, (A/  a) was 
produced  either  (i)  due to the pleiotropic effect of A/ 
a on x and y ,  (ii) due to correlation between x and y 
within the Aa and aa groups caused by nongenetic ef- 
fects or segregation of unlinked genes, or (iii) due  to 
combined effect of both factors (i)  and (ii) . The param- 
eter H:. ( A /  a) could be considered as a kind of an 
invariant in determining  the resolution capacity  of  bi- 
variate interval mapping (at least with an additional 
assumption of X(La = ZAn) . This is illustrated numerically 
in Table 5 .  It is  easy to see that  the  three  rather  different 
situations with the same level  of H ;  ( =  0.1 ) are very 
close  with respect to the LOD value, power of the test 
for  the  presence of a QT locus in  the  marker interval, 
and precision of estimates. 
As we could see from Table 5, with  relatively high 

correlations between QTs (say, R = -0.6)  a  good test 
power is  possible even if the effect of the putative QT 
locus on either of the traits is too small to allow the 

detection of the QTL  by each single-trait interval analy- 
sis (in spite of the increased number of parameters). 
This may be  the case in many practically important 
situations: (1 ) when manifold consequences of a seg- 
ment transfer from donor  to recipient genotype should 
be taken into  account, ( 2 )  in  predicting  the best geno- 
types (lines) in  marker assisted selection (see also 
LANDE and THOMPSON 1990),   (3) in dissecting hetero- 
sis  as a multilocus and multitrait phenomenon, ( 4 )  in 
estimating effects of individual segments on genetic cor- 
relations of multitrait complexes and their role in trans- 
gressions for trait combinations (DE VINSENTE and 
TANKSLEY 1993; KOROL et al. 1994), etc. Due to the 
high cost of molecular marker typing, many QTs are 
usually measured within one experiment. Genetic dis- 
section of quantitative variation of genome expression 
with respect to  the  amounts of many individual proteins 
( DAMERVAL et al. 1994) seems to be among  the most 
appealing applications of the  proposed  multitrait ver- 
sion of interval analysis. 

In conclusion, we would  like to stress that  higher 
statistical resolution provided by the  proposed  mapping 
strategy is not  the only advantage of the  method  for 
mapping QTL and, probably, not  the most important 
advantage. This approach allows  us to test numerous 
biologically important hypotheses concerning manifold 
effects of genomic segments on  the defined trait com- 
plex (means, variances and  correlations). Because of 
the  internal balance of the organism’s systems 
( SCHMALHAUSEN 1942) , multiple trait analysis seems to 
be  much  more  justified biologically than  the usual trait- 
by-trait  analysis. 
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APPENDIX A 

Expected  lod  score as a function of H$ 
For the case  of a backcross population  let us make 

the following simplifylng assumptions: ( 1 ) A  saturated 
map of markers is available, so that we can consider a 
marker located exactly at  the position of the putative 
QT locus (see also LANDER and BOTSTEIN 1989; JIANG 
and ZENG 1995 ) . ( 2 ) The expected value  of  LOD score 
(ELOD) is evaluated by substitution the statistics in the 
likelihood functions by their respective parameters. ( 3 )  
The  joint distribution of the traits within the QTL 
groups ( aa and A a )  is bivariate normal. 

With these assumptions we  will show that 
ELOD -'/2NlOg(l - H L ) ,  

where E is a symbol  of mathematical expectation. In 
the above consideration H L  was proposed as a  natural 
bivariate analogue of a single trait measure of the pro- 
portion of variance attributed to the putative QT locus 
( H : )  . This was done for the case  of no effect of the 
QTL ( A /   a )  on the variance-covariance matrix of the 
traits x and y ,  i e . ,  CAn = Ea('. Here we  will obtain  the 
expression for ELOD without the last constraint. This 
allows  us to evaluate the  upper  bound of the expected 
resolution power ( i .e . ,  at absolute linkage between the 
marker and QTL) and  to estimate how it depends  on 
the effects  of the QTL not only on  trait(s) mean val- 
ue ( s )  but also on the variances and correlation. More- 
over, this will allow us to propose H ;  as an analogue 
of ~f for this more  general case. 

Because of the assumptions ( 1-3) the  expected LOD 
score can be presented as 

ELOD = E(log(B/ C) ) ,  
N /  4 

B = n I/ [ 2 r ( T x k g y k d (  1 - R'k)] 
k = l 2  
i= l  

N /  2 

C =  f l  1/[2ra:g;J( l  - R " ) ]  
k = 1 , 2  

2 = 1  

x exp{ - 
2 ( 1  - R r 2 )  
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and k = 1 and 2 stands  for QTL groups aa and Aa, 
respectively. It is  easy to show that 

P: = l/?(Px1 + P X 2 )  9 P; = l/?(Pyl + Py2) > 

a:' = '/2(a:1 + a:. + ' / .d:) ,  

o:2 = ' / , (o;I  + a;, + ' / ' d ; ) ,  

R ' = ( ~ x ~ ~ ~ l ~ ~ + a x ~ ~ y n ~ + 1 / ~ d x d y ) / ( 2 a : ~ j . ) .  ( A 2 )  

Then, E{log B )  = -l/.N(2 + 10g{47r2axl~x~ffyl~y2d[ (1 
- R: ) ( 1 - R i )  ] ) ) . Let us assume, for  a  moment,  that 
the putative QT locus has no effect on  the variance- 
covariance matrix: axl = c r x 2  = ax, ayl = ay2 = cy, R1 
= RL = R. In  such  a case 

E{log BJ = -N{1 + log[27rffpp,d( 1 - R')]  ] ; 

Ellog C) = -N[1 + log[Zra:ajd(l  - R " ) ] } ,  

so that 

ELOD 

= 1/2Nlog{a:agd(1 - R r 2 ) / [ o ~ ? d ( 1  - R ' ) ] ) .  

Using ( A 2  ) , we obtain 

x (1 - @ )  1 1  + I / 4 ( 0 x I 0 ? 2  - f f x 2 f f y l )  9 
2 

Ss = '/?(aE1 + a',,) 1/4d;  + '/2(a51 + a ;2 )  I /4d : ,  

S4 = l /qdxdy(f fx~~y~RI + ~ X P ~ , ~ R L ) .  

Thus, from (A3) we have the following expression for 
bivariate : 

H E Y ( A / a )  1 - SI / (SI  + SA + S, - &).  

The last expression could be proposed as a  natural bi- 
variate analog of H :  attributed  to  the putative QTL, 
covering the case of variance-covariance effect of the 
QTL. 

APPENDIX B 

Invariance of H: with respect  to hear  
transformation of the  variables 

Consider  the case  of equal variance-covariance matri- 
ces, i.e., a,.] = ax2 = ox, a,' = CT,,. = oY, R1 = R2 = R. 
Consider an arbitrary nondegenerative  linear transfor- 
mation, 

x = a1u + agv + a,; y = p1u + pzv + p:3 
(Det = alPz - a2Pl z 0 ) .  

Clearly, 

a? = & 2  2 x I f f u  + a;a: + 2ff1azauff,,&,,, 

0;  = PTff2, + P;a: + 2P1P2U1,ffu&,,, 

akoy&) = a I P l a u  + a?P2ff: + (fflP'2 - a2P1) auaT,&',,. 9 

d,. = du + and,,, dy = P I  d ,  + Pzd,,.  

Substitution of these relationships into ( 3 )  gives for 
the  nominator, 

oEo, '  (1 - RL)  = ( ( ~ $ 2  - a,Pl)~eaf(l - R' Ul, ) ,  

for  the  denominator, 

(0-f  + d : / 4 )  (a,' + 4 / 4 )  - a',.: 

[h, + d x d y / ( 4 f f ~ ~ ) l ~  = (aIP. - 

{(at + d 2 , / 4 )  (a: + d z / 4 )  - ~T:~o: 

[R,,,, + dud,,/ (4aua,,)I21. 

This proves the  statement. 


