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ABSTRACT 
We present a new  way to  make a maximum  likelihood  estimate of the  parameter 4N4~ (effective 

population  size times mutation  rate  per  site,  or e) based  on a population  sample  of  molecular  sequences. 
We use a Metropolis-Hastings  Markov chain Monte  Carlo  method  to  sample  genealogies in proportion 
to  the  product  of  their  likelihood  with  respect  to the data  and  their prior probability with respect  to a 
coalescent  distribution. A specific value  of 8 must be  chosen  to  generate  the  coalescent  distribution, 
but the  resulting  trees  can  be  used  to evaluate the  likelihood at other values of 8, generating a likelihood 
cuwe.  This  procedure  concentrates  sampling  on  those  genealogies  that  contribute  most of the  likelihood, 
allowing  estimation  of  meaningful  likelihood  curves  based  on  relatively small samples.  The  method can 
potentially be extended  to  cases  involving varying population size, recombination,  and  migration. 

T HE genealogy representing the relationship be- 
tween a set of gene copies  randomly  chosen  from 

a population can be thought of as a  series of  coales- 
cences,  points at which two lineages  had  a  common 
ancestor (see Figure 1 ) . The time  intervals  between 
one coalescence and the next are expected  to have a 
distribution that depends on the effective population 
size  4Ne in  a  diploid population. This paper will  assume 
diploids, but the method is identical  when  applied  to 
haploids, with  4Ne replaced by  2Ne, and to  mitochon- 
dria, with  4N, replaced by  2N-. In the absence of an 
outside standard, molecular  sequence data cannot give 
information on the actual durations of these  intervals 
but only on the amount of change that occurred during 
them. Therefore, instead of estimating 4N,we must  esti- 
mate  its product with the neutral mutation rate p. This 
paper discusses  a  new method for estimating the prod- 
uct 4N&  also  called 0, using sequence data taken  from 
a  random  sample of  individuals  from  a population. 

We  wish to  use the  relationship  between  the  intervals 
in the genealogy and 0 to  make a maximum  likelihood 
estimate  of 8 from genealogies  inferred  from  a  popula- 
tion  sample (for example, of nucleotide sequences). An 
earlier  paper ( FEUENSTEIN 1992b)  approached  this proh 
lem  using  bootstrapping.  Since  the  true  genealogy  is  gen- 
erally  unknown, we wish to  base the  estimate on a  number 
of  plausible  genealogies,  weighting  each one  according 
to  its  plausibility. FIXSENSTEIN suggested  bootstrap  resam- 
pling  the DNA data and using the  genealogies  recon- 
structed  from  each  bootstrap  sample  to  estimate 0, ar- 
guing  that  this  resampling  procedure  effectively  chooses 
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genealogies  in  proportion  to  their  likelihood  with  respect 
to  the  data,  which is equivalent (if a  large  number of 
samples  are taken) to  weighting the genealogies by their 
likelihood.  For  reasons  that will  be  discussed  below,  we 
now  believe  this  approach  to  be  incorrect. 

In the current paper we present a new method of 
sampling  genealogies. The strategy is  Metropolis-Has- 
tings  sampling:  a repeated process of modifying  a  gene- 
alogy and accepting or rejecting it in proportion to the 
ratio of  its  probability  to the probability  of the previous 
genealogy, as described by METROPOLIS et al. (1953) 
and modified by HASTINGS (1970). We present the 
method as it applies  to DNA or RNA sequence data, 
but it could  readily  be adapted to other types  of  infor- 
mation for which  models  of the change  process are 
available,  such as restriction  site  data. As presented, this 
method is appropriate for use  in  cases  where  recombi- 
nation  does not occur,  such as mitochondrial DNA, but 
we hope in the future to extend it  to  cases  involving 
recombination, migration, and varying  population  size. 

We would  like  to compute the likelihood of the oh 
served  sequence  data  for  a  given  value of 0, L(  e), to 
find the value of 8 that maximizes the likelihood of 
the data and to  assess  how  well supported  this  value  is 
compared  to  others.  For  a  given  genealogy, L( 0) is the 
product of the prior probability of the  genealogy  based 
on the coalescent  distribution, P (  GI e ) ,  and the  proba- 
bility  of the sequence  data given the genealogy, P (  Dl G) . 
This product should be summed  over  all  possible  geneal- 
ogies  to  give the overall  likelihood of the data  set  for  a 
given  value  of 0. The prior  probability  has  been  de- 
scribed by KINGMAN ( 1982a,b) and is straightforward  to 
calculate. The probability of the sequence  data  for  a 
given  genealogy  is  also  readily  computable ( FEUENSTEIN 
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FIGURE 1.-A coalescent  genealogy. 

1981). However, computation of the overall likelihood 
L(  8) = CG P(DI G ) P (  GI 8) demands a summation 
over a huge  number of topologies, each with an infinite 
number of  possible branch lengths. 

Rather than sampling all genealogies, we could con- 
sider making a random sample, but in practice most 
genealogies are extremely implausible explanations of 
the  sequence  data and therefore  contribute almost no 
information to  the estimate. To get  an accurate esti- 
mate, the  random sample would  have to be unmanage- 
ably large. Therefore, we use an  importance sampling 
approach: we concentrate sampling on those genealo- 
gies that  are plausible and therefore will contribute sub- 
stantially to  the estimate of 8. 

To use this approach, we need to choose a known dk- 
tribution from which to sample. One approach would 
be  to  sample with respect  to the coalescent prior 
P( GI e), the  prior probability of a genealogy at a given 
value  of 8, without regard to the data. This is  easily 
done,  but most  of the genealogies drawn from P( GI 8) 
do  not contribute substantially to  the likelihood be- 
cause their topology is implausible for  the given data, 
making this type  of sampling very inefficient. 

Another  approach would be to sample genealogies 
from a probability density proportional  to  the probabil- 
ity  of the  data given the genealogy, P(DI G) . One of  us 
( FFLSENSTEIN 1992b) previously proposed  to estimate 
8 by bootstrapping, that is, repeatedly making new data 
sets by sampling with replacement from the original 
one, estimating the genealogy from each new data set, 
and treating each of the resulting genealogies as an 
independent sample from P( Dl C) . Only limited simu- 
lation of this method was undertaken  due  to its  slowness 

and to technical difficulties (when  the  true value  of 8 
is small, some bootstrap replicate data sets contain no 
variable sites, and such data sets disrupt  the  estimate). 
These simulations were not sufficient to establish 
whether or  not this method (the bootstrap Monte Carlo 
method) is unbiased. We  now  know it to be biased for 
the following reason. 

The bootstrap resampling is attempting to sample 
points from a distribution proportional to P(DI G) . 
This is not a legitimate distribution to sample from; it 
has infinite area. Consider the case  of  only two se- 
quences and suppose that  the  data provide no informa- 
tion about  the  correct  branch  length back to their co- 
alescence (for example, zero bases  were sampled). In 
this case, the  branch  length could take  any  value from 
zero to infinity with equal probability, which means its 
expectation is infinitely large. If the  data provide some 
information,  but  not  enough to establish the  branch 
length with perfect certainty, there will be  an upward 
bias in the estimate of 8 because the space of longer 
trees to sample is infinitely larger than  the space of 
smaller trees, and longer trees lead to a higher estimate 
of 8. The proposal by FELSENSTEIN ( 1992b) to use Me- 
tropolis-Hastings sampling based on P(DI G) in place 
of bootstrapping has proven, when implemented, to 
suffer from the same flaw, since it was sampling from 
the same illegitimate distribution. 

The practical consequence of sampling from this  ille- 
gitimate distribution is  always an upward  bias  in the esii- 
mate of 8. This has been verified  empirically by RICHARD 
HUDSON (personal communication) in simulations eval- 
uating the initially proposed form of the Metropolis-Has- 
tings algorithm. HUDSON'S simulations  showed  this  effect 
to be fairly  severe  with  small data sets (200  bp from 
each of  20 individuals), with  estimates two to three times 
higher than the true value (data  not  shown). 

Therefore,  the strategy that we have chosen is to sam- 
ple with respect to the posterior probability of the gene- 
a logy,P(G(D,8)  =P(D(G)P(G18)/P(D18),fora 
specific  value  of 8 that we  will call 8,. Although the 
denominator P( Dl 8) is unknown, we need only  com- 
pute  the ratio of the posterior probability for two gene- 
alogies, allowing this term to be cancelled. To  find  the 
relative likelihood at  other values  of 8, we divide the 
contribution of each genealogy by its probability density 
under  the importance sampling function  (where n is 
the  number of sampled genealogies), 

Use  of the posterior probability as an  importance 
function allows  us to sample genealogies that will make 
a substantial contribution  to  the eventual value of the 
likelihood and thus enables us to make a reasonable 
estimate of 8 by summing over a finite number of gene- 
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alogies. It avoids the bias created by sampling propor- 
tional to P (  Dl G )  , and practical experience suggests 
that it is much less computationally intensive than  the 
bootstrap  approach. 

MATERIALS AND METHODS 

Metropolis-Hastings  sampling: Our sampling strategy is to 
begin with an initial genealogy and make a small modification 
to it, choosing among  a set of possible modifications ac- 
cording to their relative probabilities based on the distribu- 
tion P( GI e,). The probability of the data on  the new geneal- 
ogy ( P ( D (  G ) )  is then calculated and compared with the 
probability on the previous  genealogy to decide whether or 
not  the new genealogy should be accepted. If it is not,  the 
old genealogy is retained. Repeating this  process creates a 
Markov chain of genealogies that, if run long enough, will 
travel among all genealogies in proportion to their posterior 
probabilities (P(D1 G ) P (   G l 0 , ) / P ( D l e 0 )  for the given 80. 

For the  parameter 4N& we have chosen 8 rather than 0 
as  in other studies because we are measuring p in terms of 
mutations per site, not mutations per locus  as  in studies that 
use the infinite-sites model. Time is rescaled in terms of the 
mutation rate such that  in 1 unit of time the expected number 
of mutations per site is 1 (this simplifies  use of the coalescent 
approximation). We consider bifurcating, rooted, clocklike 
(ultrametric) genealogies. Throughout this  discussion, “down” 
is  toward the root. For ease of discussion, we will use the 
following convention: a node’s “parent” is  below it and its 
“children” are above it. In actuality such a child represents 
a  descendent of the  parent  a large number of generations 
later, at the time of the next coalescence event. 

Figure 2 shows the modification process: choosing a neigh- 
borhood (the region of the genealogy to be changed), rear- 
ranging the topology in  that  neighborhood, and choosing 
new branch lengths within the neighborhood. This is the 
fundamental  operation of the algorithm, and if applied re- 
peatedly can transform any genealogy into any other geneal- 
ogy, thus allowing  all  possible genealogies to be searched. In 
practice, making larger  rearrangements would  probably make 
the sampling less efficient, because if a genealogy already has 
fairly high probability, a large rearrangement of it is liable  to 
be much worse and therefore  be rejected. However, such 
techniques may prove  useful in analyzing very large numbers 
of sequences, where the chance that the process will become 
trapped in a local maximum of the posterior probability distri- 
bution is greater. 

To make a  rearrangement,  a  node is chosen at  random 
from among all nodes  that have both parents and children 
( ie., are neither tips nor the bottommost node of the geneal- 
ogy) . This node will be  referred to as the  “target”. The neigh- 
borhood of rearrangement consists  of the target node, its 
children,  parent, and parent’s other child (see Figure 2A) .  
A rearrangement makes changes of two kinds: it may reassort 
the  three  children  among target and parent, and it modifies 
the  branch lengths within the neighborhood. The new branch 
lengths must remain within the constraints imposed by the 
times of the  three  children and of the parent’s ancestor; these 
times define the boundaries of the neighborhood. Conceptu- 
ally, the portion of the genealogy involving these nodes is 
erased (see Figure 2B) and must now be redrawn. The lin- 
eages to be erased and redrawn will be referred  to as “active” 
lineages, and the lineages existing at the same time but out- 
side the  neighborhood as “inactive” lineages. 

To choose the times  of the target and parent nodes, we 
draw from a conditional coalescent distribution with a given 

0, which we call eo, conditioned on the number of inactive 
lineages. For each time interval, the probability of coalescence 
among the active lineages depends  on  the numbers of  active 
and inactive lineages present  in  the genealogy during  that 
interval. A  random walk, weighted by these probabilities, is 
used to select a specific set of times. This procedure is related 
to the VITERBI  state-array algorithm (VITERBI 1967) and is 
explained in detail in  the APPENDICES. When the coalescence 
times  have been  determined,  a topology compatible with 
them is chosen at random  (incompatible topologies are those 
in which a child would  be joined to a  node whose branching 
time is  above the child’s time). 

Once the new genealogy is generated,  the probability of 
the sequence data on  that genealogy is calculated under a 
standard model ( FELSENSTEIN 1981 ) much as is done in  maxi- 
mum likelihood phylogeny estimation. The KIMURA twc-pa- 
rameter model ( KIMURA 1980) of sequence evolution, modi- 
fied to allow unequal base frequencies (algorithm described 
by KISHINO and HASEGAWA 1989; J. FELSENSTEIN unpublished 
results), is used to assess the probability of generating the 
observed data for the given  genealogy. A different model 
could be substituted to handle,  for example, restriction site or 
amino acid data; the rest of the method would  be unchanged. 

The objective of this algorithm is to create a Markov chain 
whose states are genealogies, and whose stationary probabili- 
ties are equal to  the posterior probability P( Dl G )  P( GI 8 )  / 
P( Dl 8) of each genealogy. HASTINGS ( 1970) shows that this 
can be done using the following relation, where G is the old 
genealogy and G’ is the new, 

Q is the probability of generating  the second genealogy 
starting from the first under the sampling strategy used. In the 
simple form of the Metropolis-Hastings algorithm presented 
here,  the terms Q( G’, G)  and Q( G,  G’) are equal (they 
depend  on the choice of target node and of final topology, 
both of which  have equal probabilities in  either  direction) 
and therefore  need  not  be calculated since their ratio is  always 
1. However, more complex versions  of the algorithm, such 
as those dealing with recombination, will probably require 
calculation of the Q terms. 

If r > 1, the new genealogy is accepted, replacing the old. 
If r < 1, the new genealogy is accepted with probability r; 
otherwise the old one is retained. 
Computing the likelihood curve for 8: At intervals, geneal- 

ogies created by this  process can be sampled for use  in  con- 
structing a likelihood curve for 8. The question of  how often 
to sample will be touched on  in DISCUSSION. The genealogies 
were produced using importance sampling based on the 
known distribution P( GI@,). Computation of their likeli- 
hood under  other values  of 8 must therefore take  this impor- 
tance sampling function into account, 

This equation can be reduced to a quickly calculatable form 
that  depends only on  the  structure of the genealogies 

To compute the term P (  GI 8 )  (the prior probability of 
the genealogy for  the given e ) ,  consider the genealogy as a 
set of i time intervals, each with length t and number of 
lineages k ;  the total number of tips is n. The probability of 
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FIGURE 2.-Steps in rearranging a genealogy. (A) Selecting a neighborhood of rearrangement. (B)  Erasing the active lineages. 
( C )  Redrawing the active lineages. 

the genealogy  is a product over  all  intervals ( KINGMAN 1982a, 
b; FELSENSTEIN 1992b) 

A likelihood  curve  can  be constructed using Equation 3 for 
various  values of 8. The maximum of this  curve is a maximum 
likelihood  estimate of €3 and can  be found by standard meth- 
ods. The curve  is not guaranteed to have a single  maximum, 
but in practice we  have found that it generally does as long 
as the Markov chain has had sufficient  time to approach equi- 
librium. 

Combining multiple estimates: The closer the assumed 
value of eo is to the true value of 8, the more efficient  this 
strategy  becomes. Therefore, it will often be  useful  to repeat 
the Markov chain sampling  several  times,  using the estimate 
of 8 from each chain as the eo of the next. For  maximum 
efficiency, the results of the earlier chains should not be  dis- 
carded but combined with the results of the final chain to 

produce an estimate of the overall  likelihood  curve  using an 
appropriate weighting. The strategy we use  is due to GEXER 
(1991)  and treats the genealogies as  having been sampled 
from a mixture distribution of their various  values of 8,. 

Suppose that m Markov chains have been run. For a given 
run j ,  nj genealogies have been sampled and associated  with 
a given  value  of 8, that will be  called e,. The overall L(  ej) 
can  be found by iterating the following relationship, where 
CG represents a summation over  all  of the sampled  genealo- 
gies from all  of the Markov chains, 

When (3, is the eo value at which one of the chains was 
run, this is a nonlinear set of equations in the L (  ej) ,  which 
can be solved  iteratively by calculating new  values  of the L ( e,) 
from the left-hand  side.  Good starting values  of the L(  e,) 
can be obtained using the genealogies  from the final Markov 
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TABLE 1 

Estimates of 8 with 20 sampled  individuals 
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200  500 1000 
Sites: 
8 0  ML  WAT  ML  WAT  ML  WAT 

A. Mean 8 estimate 

0.001 0.01047 0.00948 0.00932 0.00900 0.00991 0.00967 
0.01 0.00975 0.00953 0.01003 0.01005 0.00941 0.01005 
0.1 0.00951 0.00953 0.00964 0.01007 0.01016 0.01006 

B. SDs 

0.001 0.00549 0.00497 0.00364 0.00355 0.00307 0.00358 
0.01 0.00484 0.00482 0.00338 0.00368 0.00293 0.00392 
0.1 0.00460 0.00479 0.00325 0.00401 0.00315 0.00362 

Means and SDs of estimated 8 from samples of 20 individuals  with the  true value of 8 = 0.01. Five short 
Markov chains were run, each running for 1000 cycles without sampling and then 200 cycles sampling every 
10th genealogy; then one longer Markov chain was run, running for 1000 cycles without sampling and  then 
5000 cycles sampling every  20th  genealogy.  Each entry is the mean or SD of 100 replicates. The same data 
were used for the WATTERSON  (WAT) and maximum likelihood (ML) estimations. 

chain. Likelihoods for other values  of 8, can then be interpo- 
lated using the same set of equations. 

The likelihood curves produced by this approach  are not 
guaranteed to be unimodal, but  in practice they  usually are 
as long as enough iterations were done to approach equilib- 
rium. We  have found it best to run a series of very short chains 
whose  results are not used in the combined estimate, so that 
the genealogy and working value of 8, approach  their final 
values. Then a small number of much longer chains can be 
used to make the final estimate. 

RESULTS 

Simulated data: We used computer simulation to ex- 
plore the performance of  this method. Trees were con- 
structed randomly according to the coalescent model, 
and DNA sequence data evolved according to the twe 
parameter model of K”RA (1980) using a transition/ 
transversion ratio of 2.0. The UPGMA phylogeny recon- 
struction algorithm (as implemented in the PHYLIP pro- 
gram NEIGHBOR  v3.5)  was used to construct the start- 
ing tree to  be used by the Metropolis-Hastings algorithm. 
We investigated  several parameters that could influence 
the performance of the method: length of sequence, 
number of  individuals sampled, and closeness of 0, to 
the true 0. The simulations presented are far from ex- 
haustive but can give a preliminary impression. 

Table 1 shows results for samples of 20 individuals 
under  three conditions: 0, 10  times too low, equal to 
the  true 0, and 10 times too high. Results from the 
method of WATTERSON ( 1975)  are provided for com- 
parison. We used an implementation of  WAITERSON’S 
test that scores positions with three segregating nucleo- 
tides as two variable  sites and positions with four segre- 
gating nucleotides as three,  to take into  account 
multiple hits.  Because  WAITERSON’S  test is based on the 
infinite-sites model, even  with  this modification its mean 

and variance are  both expected to be biased  slightly 
downward. In  general,  the two methods  perform  about 
equally  well. The Metropolis-Hastings method shows  lit- 
tle or  no bias  toward 0,. This contrasts with runs in 
which  only a single Markov chain was used, in which a 
substantial bias  toward 8, was seen (data  not  shown). 

Table 2 shows similar results for samples of 100 indi- 
viduals. SDs for the Metropolis-Hastings method  are a 
little lower than those for  the  method of  WATTERSON. 

Maximum likelihood methods in phylogenetics have 
typically been  rather  computer intensive. We timed our 
Metropolis-Hastings runs on a DECstation 5000/125 
( a  workstation of middling speed). A representative 

TABLE 2 

Estimates of 8 with 100 sampled  individuals 

8 0  ML  WAT 

A. Mean 8 estimate 

0.001  0.01  106 0.01023 
0.01  0.01012 0.01002 
0.1  0.01070 0.00980 

B. SDs 

0.001  0.00245 0.00337 
0.01  0.00157 0.00274 
0.1  0.00167 0.0031 1 

Means and SDs of estimated 8 from samples of 100 individ- 
uals  with the  true value  of 8 = 0.01. Sequences were  of length 
1000 bp. Five short Markov chains were run, each running 
for 1000 cycles without sampling and then 500 cycles sampling 
every 10th genealogy; then  one longer Markov chain was run, 
running  for 2000 cycles without sampling and  then 50,000 
cycles sampling every 20th genealogy.  Each entry is the mean 
of 20 replicates. The same data were used for  the WATTERSON 
(WAT) and maximum likelihood (ML) estimations. 
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entry from Table 2 (105,500 steps total along  the Mar- 
kov chains) took 181.4 min. The majority of  the  run- 
time is consumed by likelihood calculations. When a 
change is made, only the likelihoods for  the nodes in 
the  neighborhood of rearrangement and their ances- 
tors down to the  root of the  tree  need to be re-evalu- 
ated. The mean number of such nodes increases slowly 
with number of sequences, and therefore  runtime is 
not strongly dependent  on  number of sequences. For 
a given number of iterations, runtime is expected to 
increase less than linearly with sequence  length, since 
identical sites are collapsed together  during likelihood 
calculation. However, more iterations will be  needed  to 
adequately search the space of plausible genealogies as 
the number of sequences increases. 

When Metropolis-Hastings and related algorithms 
fail to perform well, it is generally because they become 
trapped  in one part of their state space and fail to 
sample other parts. We have found it helpful to begin 
with a UPGMA genealogy rather  than  a  random geneal- 
ogy to avoid  wasting time searching irrelevant parts of 
the genealogy space. 

Mitochondrial DNAsequence data: WARD et ul. ( 1991 ) 
examined 360 bp from the mitochondrial control re- 
gion of 63 Amerindians of the Nuu-Chah-Nulth tribe. 
We analyzed both  the full data  set and two restricted 
data sets, purine-only and pyrimidine-only (there are 
no sites  with both  purines and pyrimidines in these 
data) to allow comparison with the purine-only results 
of GRIFFITHS and TAV& ( 1993). For the purine-only 
and pyrimidine-only data sets,  base frequencies were set 
at 0.49 for bases appearing in the  data  set and 0.01 for 
bases not  appearing;  for  the total data set they  were 
calculated from the  data. The transition/ transversion 
ratio was set to 100.0. UPGMA  was used to generate 
initial trees for each data set separately. The 8 estimate 
of WATTERSON ( 1975) based on  the  number of segre- 
gating mutations was used as the initial value for 80. 
We did 10 short  runs of 1500 steps (sampling every 
tenth genealogy from the final 500 steps)  and two long 
runs of 12,000 steps (sampling every twentieth geneal- 
ogy from the final 10,000 steps) ; the final estimate used 
only genealogies from the  long runs. 

For the full data  the final estimate was 0.0396; the 
likelihood curve is shown in Figure 3. Note that in this 
case 8 = 2Nfp,  where Nf is the  number of females, 
since mtDNA  is haploid and maternally inherited. This 
is substantially higher  than  the estimate of 0.0186 pro- 
duced by the  method OfWATTERSON ( 1975) ; this differ- 
ence is expected, since some of the sites in this data 
set have  clearly had multiple substitutions. Purine sites 
alone  produced an estimate of  0.00466  (WATTERSON 
estimate 0.00808) and pyrimidine sites alone  produced 
an estimate of 0.05237 (WATTERSON estimate 0.02217). 
Proportionally more of the pyrimidine sites are variable, 
suggesting that  there may be  a difference in mutation 
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e 
FIGURE 3.-Likelihood  curve for the WARD et al. ( 1991) 

Nuu-Chah-Nulth mtDNA data. 

rate between the two classes. An appropriate extension 
of our  method would be  to assign purine  and pyrimi- 
dine sites to different mutation rate categories. 

DISCUSSION 

practical considerations: The Metropolis-Hastings 
sampler requires an initial  value  of eo and  an initial 
genealogy. The results presented in Table 1 suggest that 
the initial  value  of eo is not critical as long as several 
Markov chains are  run. However, the  method is more 
efficient if eo is not too distant from 8, and therefore 
we recommend using the method of  WATTEMON ( 1975) 
or other quick estimators to select an initial  value for 
8,. The  method is somewhat more successful  when it 
begins from  a reasonable genealogy (data  not  shown). 

We found  the most successful search strategy to be 
running  a fair number  (5-10) of  relatively short Mar- 
kov chains to provide a good working estimate of @, 
and a good genealogy, and  then  one  to two much 
longer chains to give the final estimate. Genealogies 
from the  short chains should not be used in the final 
estimate, because such chains have not  had time to 
approach equilibrium and can produce distortions in 
the likelihood curve. 

Successive iterations in the Markov chain produce 
genealogies that  are  not  independent. This is not a 
problem for likelihood estimation of 8 (except  that 
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the  number of genealogies sampled may sound  more 
impressive than it actually is),  but should  be  considered 
when using the sampled genealogies for other pur- 
poses. A sample of 100 successive genealogies is not  an 
adequate  replacement  for 100 bootstrap samples, for 
example. It is not clear how  many iterations are  needed 
to make successive sampled genealogies approximately 
independent. Minimally, n - 2 iterations are  needed 
to transform any genealogy into any other  (where n is 
the  number of sequences). Practical experience sug- 
gests that on most data sets about 5 of the  proposed 
modifications are  accepted, so a minimal sampling in- 
crement for bootstrap use  would be  at least 3n steps 
along  the  chain. 

Each individual step of the Metropolis-Hastings pro- 
cess  is relatively quick, since it requires a likelihood 
evaluation of the genealogy rather  than a likelihood 
maximization. However, more steps will be required as 
the  number of individuals sampled increases to make 
an  adequate search of the region of plausible genealo- 
gies. We do not have an exact measure of the  number 
of steps required. 

Comparison with other  approaches: It has been shown 
( FELSENSTEIN 1992a) that nonphylogenetic methods for 
estimating 8 do not make the most  efficient  possible  use 
of the information present in the data. The advantage of 
phylogenetic methods will increase as the value  of 8 per 
locus  increases,  since  this  advantage is primarily due to 
additional information provided by the tree structure, 
and the higher the value of 8 ( i.e., the longer and more 
variable the sequences), the more information about the 
tree structure is available. In Table 1 a considerable ad- 
vantage  over the method of WATTERSON  is seen with  1000 
bp; shorter sequences would  be expected to  show  such 
an advantage if the value of 8 were higher. 

A method based on a single genealogy has been pro- 
posed by FU ( 1994a) ; he uses a UPGMA reconstruction 
of the genealogy, correcting  the resulting estimate by 
a factor derived from simulations. For the WARD et al. 
(1991 ) Amerindian mtDNA data, Fu’s estimate of 8 
was 13.32 per locus (8 of  0.037 per  site), extremely 
close to our estimate of  0.0396.  Fu’s method is computa- 
tionally simple in cases where the genealogy is known or 
can be confidently reconstructed.  It has recently been 
extended (Fu 1994b) to cases  in  which migration or 
recombination are  occurring,  although genealogy re- 
construction presents greater difficulties in such cases. 

GRIFFITHS and TAVARP ( 1993) have proposed a 
method  that also sums across  possible genealogies but 
uses a random sampling rather  than a Metropolis-Has- 
tings approach. For the infinite-sites model it is  very 
fast (the set of  possible genealogies is  relatively small), 
but its performance under  more complex models is not 
yet  known. This method has been used to analyze the 
purine sites  of the WARD et al. ( 1991 ) data ( GRI~ITHS 

and TAV& 1993), omitting some sequences to make 
the  data conform to the infinite-sites requirement. 
Their estimate of 0 per locus was 1.19, corresponding 
to a 8 of  0.007 per site, slightly higher  than our 0.005 
per site. Further testing is needed  to clarify the relation- 
ship  among these methods. 

Future directions: The basic method described here 
has several  possible extensions. Since it uses a maximum 
likelihood genealogy evaluation, it can take advantage 
of  any improvements which are developed in likelihood 
models, such as the work  of FEUENSTEIN and CHURCHILL 
(unpublished data) on using Hidden Markov  Model 
methods to deal with mutation rates that vary from one 
site  to another. 

Other forms of data, such as protein sequences or 
restriction sites, can be analyzed  as long as an appro- 
priate likelihood method is available, for example the 
amino acid likelihood model of KISHINO et al. (1990) 
or the restriction site likelihood models of  SMOUSE and 
LI ( 1987)  and FELSENSTEIN ( 1992) ; the rest of the algo- 
rithm will be  unchanged. 

A more complex model of genealogy structure is also 
possible. The genealogy space that  the program 
searches could be  extended to include genealogies in- 
volving population size changes, migration, recombina- 
tion, or genetic rearrangement. This would  allow  simul- 
taneous estimation of the parameters controlling these 
processes. We are currently working on a version  of the 
method  that allows recombination and gene conver- 
sion. This will be very useful  in  analyzing nuclear DNA 
samples from sexual populations. 

Finally, the collection of genealogies produced can 
be used to test other hypotheses; for example, it can 
be used  in the same way as a bootstrap to measure the 
strength of support for a particular group or rooting 
by counting  the  number of sampled genealogies that 
show that  group or rooting, as long as the interval be- 
tween sampled genealogies is generous  enough  that 
they are reasonably independent. 

Availability of software: The Metropolis-Hastings 
Monte Carlo algorithm described here is available from 
the  authors as program COALESCE in the package LA- 
MARC, which  uses the same input/output formats as 
the PHYLIP package. The program is written in C and 
can be obtained by anonymous ftp from evolution.genet- 
ics. washington.edu in directory pub / lamarc. 
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modification algorithm, ELIZABETH THOMPSON for helpful discussion 
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comments on the manuscript, RICHARD HUDSON for testing the algo- 
rithm and commenting on the manuscript, and SEAN LAMONT and 
PETER BEERLI for programming  assistance. This research was sup 
ported by National Science Foundation grants BSR-8918333 and DER 
9207558 and National  Institute of Health grant 2-R55GM41716-04 
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APPENDIX 1 

Calculating  probabilities of coalescence: We use a 
modified VITERBI state-array approach (VITERBI 1967) 
to select coalescence times for  the active lineages in 
the  neighborhood of rearrangement. The strategy is to 
create a lattice showing the probability of each possible 
set of coalescences and  then to select a path  through 
this lattice in a manner  proportional to the probability 
at each step. This has the effect of sampling randomly 
from  the  conditional coalescent distribution that is con- 
strained by the limits  of the  neighborhood.  It differs 
from  the  standard VITERBI algorithm in that it chooses 
a random  path, not the  optimum  path. A legal set of 

coalescences is one in which  all three active lineages 
have coalesced with each other by the time of the bot- 
tom of the  neighborhood, and  none have coalesced 
with  any  inactive lineages. 

The genealogy is divided into a series of intervals  with 
an interval boundary at each node. We can calculate 
the probability, within interval i, of no coalescence, one 
coalescence, or two coalescences among the active  lin- 
eages. We  will refer to these as Pj,? (the probability that 
the  number of  active lineages is j at the top of the inter- 
val and j at the bottom), Pj,y-i, and Pj,&, respectively. 
APPENDIX 2 gives the full form of these probabilities. 

At the  top of the  neighborhood  there  are two or 
three active lineages, depending  on  the genealogy 
structure. We work our way down the genealogy, calcu- 
lating the cumulative probability of the presence of 
three, two, or one active lineages ( sii), si’), sii), respec- 
tively, for interval i) at the bottom of each interval. 
Figure 4 shows the  structure of these probabilities. If 
only two lineages were  active at  the  top of the neighbor- 
hood,  the  third is added  at  the interval in which it first 
becomes active.  For example, the probability that  there 
are two active lineages at  the  end of interval 4 is the 
sum of two components: the  chance  that interval 3 
ended with two lineages and  no coalescences occurred 
in interval 4 ( Si3) X Pi$) ) ,  and the  chance  that interval 
3 ended with three lineages and  one coalescence oc- 
curred  among  them  in interval 4 ( Si” X Pi$) ) . This 
example is shown by the bold arrows in Figure 4. 

The SI entry of the bottom-most interval provides the 
total probability of an allowed series of events in this 
neighborhood, as opposed to the disallowed  events of 
coalescence with an inactive lineage, or failure of the 
active lineages to coalesce  with one  another. Starting 
from this bottom-most entry and working  back upward, 
we make a weighted random walk (choosing a specific 
set of coalescences) based on the cumulative probabili- 
ties in the state array and  the transition probabilities 
among  them. This is shown in Figure 5. For example, 
if the state in interval i has one active lineage, the state 
in the previous interval ( i  - 1 ) might have had  one, 
two or three,  corresponding to transition probabilities 
P ( * ) ,  J.1 Pj,?-i and Pj,:c2, respectively. The  chance  that j 
lineages in interval i came from j‘ lineages in interval 
i - 1 (where j’ 5 j) is 

S;i-I)p(:) 
9 

Sji) . (7 )  

At each interval a random choice is made proportional 
to the transition probabilities. A complete series of such 
choices  chooses a random path whose bottom end is in 
state 1 and thus defines a legal set of coalescences. 

Once  the interval in which coalescence occurs has 
been  determined,  the exact time  of coalescence within 
that interval is needed. For  cases in which two lineages 
coalesce during  an interval, this can be solved  explicitly 
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s1 s2 s3 bottom of ...................................................................................................... 
nelghborhood 

by setting the integral of the density  equal  to a 
random  fraction and then solving for the length x. For 
cases  in  which three lineages  coalesce during the same 
interval, a similar approach can  be  used, although an 
explicit  solution is not available and iteration must  be 
used  to find the correct length x for the first  coales- 
cence. See  Appendix 2 ,  Equations 10 and 11, for the 
full  form  of  these equations. 

APPENDIX 2 

Transition  probabilities: Pi:; ( t )  gives the probabil- 
ity for a genealogy of TZ individuals that in  time  interval 
i (counting downward  from the tips  of the genealogy), 
which is of length t ,  the number of  active lineages will 
change  from x to y. 

These  probabilities do not sum  to one because of the 
possibility ( disallowed  in our procedure ) that the active 
lineages  could  coalesce with  inactive  ones. 

Pj,;) ( t )  is derived  directly  from the coalescent  theory 
as the probability of no coalescence  in  interval i with 
duration t .  Pj,;Ll ( t )  is then the probability of no coales- 
cence  from the start of the interval up to a time x, times 

the probability  density  of a coalescence  at x, times the 
probability of no coalescence  from x to the end of the 
interval.  This is integrated over  all  possible  values  of x. 
Pj,7-2 ( 1 )  is constructed  similarly by integrating over  all 
possible  values  of the two coalescence  times. 

In  these equations, z = TZ - i + 1, the number of 
inactive  lineages during an interval. 
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FIGURE 5.-One  path  through  the  state  array. A tree  structure  corresponding to  this  path  through  the  array is shown  on the 
right. Only  active  lineages  are  indicated. 

To select a time within an interval where one coales- to a random  fraction and solving for  length,  then use 
cence occurs, we set ( 8 )  equal  to a random  fraction T ,  (10) to  find the time of the  upper  one. We  have not 
then solve for the  length x: been  able to find a noniterative solution to this equa- 

3 e-2 nt/ e 

( n  + 1) (2n - 3)  (Pj,i-z(t)) 
(11) x =  

- 
r e - ( 4 n + 6 ) ( x / 8 ) - 1  

In  an interval where two coalescences occur, we find 
the time of the lower coalescence by setting (9)  equal - 1 [ e -  l .  (12)  e - [ 2 n + 2 1 1 / e   [ 2 s + 4 l ( x / e ) - 1  


