
Copyright 0 1995 by the  Genetics  Society of America 

Properties of Statistical Tests of Neutrality for DNA Polymorphism Data 

Katy L. Simonsen,* Gary A. Churchill*.+ and Charles F. Aquadro: 
*Center for Applied Math, iBiometrics Unit, :Section of Genetics and Development, Cornell University,  Ithaca, New York 14853 

Manuscript received February 13, 1995 
Accepted for publication June 9, 1995 

ABSTRACT 
A  class of statistical  tests  based on molecular polymorphism  data  is studied to determine size  and 

power properties. The class includes TAJIMA’S D statistic  as  well as the D* and F* tests proposed by Fu 
and LI. A new method of constructing critical  values for these tests  is described. Simulations indicate that 
TAJIMA’S test  is generally most powerful  against the alternative hypotheses of selective sweep, population 
bottleneck, and population subdivision, among tests  within  this  class.  However, even TAJIMA’S test  can 
detect a selective sweep or bottleneck only if  it  has occurred within  a specific interval of time  in  the 
recent past or population subdivision only when it  has  persisted for a very long time. For greatest  power 
against the particular  alternatives studied here, it is better to sequence more alleles than more sites. 

G IVEN a set of aligned DNA sequences from a sam- 
ple of n individuals of the same species, we would 

like to make inferences about  the evolutionary history 
of the species. The neutral equilibrium model of se- 
quence evolution is often considered as a null hypothe- 
sis against which specific alternative models can be com- 
pared. The neutral hypothesis is rejected if the observed 
data  are unlikely to arise under this model. A  problem 
of interest is to  construct  appropriate test statistics that 
will reject the  neutral model with high probability when 
specific alternative models hold. We consider a class  of 
test  statistics that includes TAJIMA’S D statistic (1989a) 
and  the P and E“ tests proposed by FU and LI (1993). 
The power properties of these tests against specific  al- 
ternative hypotheses are  studied using simulated data 
to  determine how often and  under which alternatives 
each test is able to reject the  neutral model. 

Critical  values (rejection regions) of  statistical  tests 
are  determined by the distribution of the statistics un- 
der the null hypothesis. The distributions of the test 
statistics we  wish to examine are  not known, but we can 
sample from these distributions by simulating data from 
the  neutral model. Estimating the critical values is com- 
plicated because the distributions depend  on  the  un- 
known  value  of a  parameter 8 which is proportional to 
the  product of the effective population size and the 
mutation rate. 

Our goal is to  determine which  statistical  tests are 
most powerful against different alternatives and to de- 
termine  the sample sizes  necessary to achieve a reason- 
able power. We also address the issue  of larger sample 
sizes vs. greater  number of  sites sequenced with respect 
to improving statistical  power. 
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This work was motivated in part by studies of natural 
populations of Drosophila. These studies have  shown 
that levels of DNA polymorphism observed for  a  gene 
region are strongly correlated with regional rates of 
recombination, (e.g., AGUADE et al. 1989; STEPHAN and 
LANGLEY 1989; BEGUN and AQUADRO 1991,1992; BERRY 
et al. 1991;  AQUADRO et al. 1994). One hypothesis to 
explain this correlation is that hitchhiking associated 
with the fixation of advantageous mutations leads to a 
reduction in linked neutral variation, (e.g., KAPLAN et 
al. 1989; MAYNARD SMITH and HAIGH 1974). However, 
in many  of the cases cited TAJIMA’S D test did not reject 
the  neutral model. This suggests the following question: 
is TAJIMA’S D powerful enough to detect deviations from 
the  neutral model or is its behavior indistinguishable 
from neutrality even  when the  neutral model is  vio- 
lated?  The hitchhiking effect is simplest in the total 
absence of recombination when  all variation at  a locus 
is eliminated due to the fixation of a completely linked, 
advantageous mutation. Such a “selective  sweep” event 
is one of the alternative hypotheses we investigate here. 
It must be emphasized that it is not  the goal of the 
present  paper  to accept or reject the hitchhiking hy- 
pothesis for particular data sets. To do that, it would 
be necessary to set up hitchhiking as the null hypothesis 
and to explore  the full range of possible parameters 
(including  strength of selection, recombination rate, 
population size, dominance,  neutral mutation rate, 
time since fixation) affecting this model. Here we  vary 
only a few  of these parameters to construct different 
alternative hypotheses against which the power can be 
estimated. 

In  the  remainder of this section, we summarize the 
coalescent model of neutral evolution in order both to 
introduce  notation and to make clear those assump- 
tions that  are violated by the alternative hypotheses. In 
MATERIALS AND METHODS, first we describe a class  of 
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test  statistics and a  method by which critical values for 
statistical  tests  of the  neutral model can be  obtained; 
then, we describe how data was simulated under alterna- 
tives to the  neutral model. The RESULTS section summa- 
rizes the outcome of these simulations, showing the 
effect of these alternatives on the distributions of the 
test statistics and  their power. In  the final section, we 
discuss the implications of these results to performing 
statistical  tests. 

The neutral model: The  neutral  data were generated 
according to the coalescent model as described by HUD- 
SON (1990,1993). This model is based on  the  standard 
Wright-Fisher model and makes the following assump 
tions: ( 1 )  a large constant diploid population size  of N 
individuals or 2N alleles (where fl % N) , (2) random 
mating, (3) nonoverlapping generations, (4)  no recom- 
bination, and (5) an infinite-sites, constant rate neutral 
mutation process whereby an offspring differs from its 
parent allele by a Poisson-distributed number of muta- 
tions with mean p. 

Under these assumptions, the probability that two 
particular individuals have the same parent in the previ- 
ous generation is 1/2N. The probability that any two 
individuals in a sample of  size j have the same parent 
is p = ( 4 )  /2N. Thus, for a sample of j individuals in the 
current  population,  the probability that  the first  coales- 
cent event between  any two of them occurs exactly t + 
1 generations ago is p (  1 - p)'. That is, the time in 
generations during which there  are exactly j lineages in 
the genealogy of the sample is geometrically distributed 
with mean l/p. It is convenient to  treat time as a contin- 
uous random variable. To this end, we approximate the 
geometric distribution with an  exponential distribution 
with the same mean, because p (  1 - p)' = pe?' for small 
p and large t .  The assumption (1) that M2 % Nensures 
that p is sufficiently small. It is also convenient to mea- 
sure time  in units of 2N generations, with the result 
that p is replaced by ( 4 ) .  Thus  the time tj in units of 2N 
generations during which there  are exactly j lineages is 
exponentially distributed with mean 1/($) .  The total 
time in the  tree, T,,,, is equal  to Cy=, jt,. 

The  number of mutations that occur on a lineage of 
length t is, by assumption ( 5 ) ,  Poisson-distributed with 
mean 2Npt = 8t/2, where 0 = 4Np. The assumption of 
infinite sites ensures  that each mutation is observed as 
a polymorphic or segregating site. Therefore  the  num- 
ber S of segregating sites in a sample is Poisson-distrib- 
uted with mean 0T1,,,/2. 

As HUDSON (1993) has pointed  out,  the fact that  the 
true value of 0 for data sets is unknown presents a prob- 
lem  when using simulation to estimate critical values 
for a test. Three  methods of generating  data  are de- 
scribed by HUDSON (1993): conditioning on 8, condi- 
tioning on 8 and S, and  conditioning on S. The first 
method is the  one consistent with our model,  but it 
requires knowing 0. The  other two methods would re- 

quire modifymg the null hypothesis: instead of a  neutral 
mutation process with rate p, we would  have to postu- 
late a fixed number of mutations that is independent 
of the total time in the  tree. To apply the first method, 
we use the  information  contained in S to compute  a 
range of  values for 8 that  are consistent with the ob- 
served data. We then use  values  of 8 in this interval to 
simulate the test statistic under the  neutral model, and 
thus obtain critical values. 

MATERIALS AND  METHODS 

Statistical tests 

From n nucleotide sequences, statistics such as S, the num- 
ber of segregating sites, k, the average number of painvise 
differences, and q,, the number of singletons (mutations ap- 
pearing in only one sampled allele), may be calculated. These 
are  random  variables  whose  distribution depends on a param- 
eter Q whose  value is unknown, and each provides an unbiased 
estimate of 8. Let 

n-l 1 n-' 1 
a n =  C 7 ,  b,= C 7 .  (1) 

,=I r = l  

Under the  neutral model, E(S) = anQ, E(k) = 0, and E(qJ  = 
[ n/ ( n  - 1) 3 0. Their variances  are 

Var(S) = a,@ + b,02 (WATTERSON 1975) (2) 

Var(k) = ~ 

(n + I )Q  + 2(n2 + n + 3)02 
3 ( n  - 1) 9n(n - 1) 

(TAJIMA 1983) (3) 

Var(qJ = - 
n 

n -  1 n -  1 (72- 1 ) 2  

(Fu and LI 1993). (4) 

Therefore, S/a,, k, and [ ( n  - 1)  /n] qs are unbiased estimators 
of 8, and 

m: = S(S  - l ) / (& + b,) ( 5 )  

d z  3nk(3(n - l ) k  - n - 1) 
l l n 2  - 7n + 6 

are unbiased estimators of 0'. 
In the following section we define a class of test  statistics 

that includes three previously described test  statistics and six 
new ones. 

Test statistics: From the three statistics S, k, and qs, we can 
calculate  test  statistics such as those of TAJIMA (1989a): 

and of FU and LI (1993): 

S /a ,  - %(") n -  1 
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W k ,  S, 71,) = (10) LG-a 
where the coefficients u and v are given in  the APPENDIX. we  
refer to the coefficients for TAJIMA’S  statistic as uT and vT 
rather  than uD and uD to distinguish them from those for Fu 
and LI’S D statistic (1993), which is not studied in this paper 
because it requires an outgroup. The formula for up given in 
the APPENDIX differs slightly from that given in Fu and LI 
(1993, unnumbered equation p. 702) due to  a typographical 
error in  their paper. Under the neutral model the  three sta- 
tistics D, L F ,  and F* all  have expected value approximately 0 
and variance approximately 1. 

Each of these statistics is constructed in the same way. Un- 
der neutrality, the  three quantities S/a,, k, and vs[ (n - 1) /  
n] all  have expected value 8. Thus  the difference between 
any two of these statistics will have expected value 0. The 
variances of the differences are of the form ye + E O 2 ,  where 
y and E depend  on the statistic in question. The variance of 
the difference is estimated using S/a,  and rn; as unbiased 
estimates for 8 and 02, respectively. The result is an estimated 
variance of the form US + vS2 where u = y/a,  - v and v = 
E /  (d  + b,). Each  test  statistic is constructed by dividing the 
difference by the square  root of  its estimated variance. Note 
that because this denominator  depends on the data,  the ex- 
pected value of the statistics is not exactly 0; simulations show 
that the mean is slightly  negative.  Because it is possible for 
the  denominator to be 0, for purposes of this  study we define 
D, P, and F* to be 0 when S = 0. This has the effect of 
making rejection of the neutral model impossible  when no 
variation is observed. 

The statistics D, L F ,  and F* use S and rn; to estimate 8 and 
8‘ in  the variance term ye + EO’. It is also  possible to use k 
and 4 or vs and 4 to make this estimate. S has been used 
because S/a, has a smaller variance under neutrality than  the 
other possibilities. In nonneutral situations, however, the be- 
havior of S, k, and 7, is more complex, so that k or 71, could 
make a  better estimator of 8 or O2 in some cases. We can 
construct six  new test  statistics,  as  follows 

k - S/a, 
Tz(k,  s) = (11)  

G ( k ,  s, 71,) = 
k - S/a, 

(12) 
JUT371, + VT$ 

S/a, - v3( e) 
@(k, s, 173 = (13) 

S/a, - 7, n-l 
@(St 71s) = ( n )  

(14) 
JUd7IS + vLg7I: 

k - %(e) 
G(k, 7s) = & G g s  

k - 71~(%) 
G(k, 71,) = 

J U F m  + vqv: 

The subscript 2 or 3 indicates that  the estimate of 8 uses k 
and Q, or q, and %, respectively. The coefficients u and v 
are defined in the APPENDIX. The properties of these tests will 
be  investigated along with those of the standard tests. For 
convenience, we again define these statistics to be 0 when 
their  denominator is 0. 

Hypothesis testing issues: Because neither S, k, nor qs is a 
sufficient statistic for 8, the variance of any  of the above  test 
statistics will not be one  and will vary  with 6’ (HUDSON 1993). 
Thus, computed critical values for these test  statistics  must 
account for  the unknown 8. Furthermore, even  when 8 is 
known, the exact distribution of the statistics under the null 
hypothesis is not. To perform twmided tests of  level a, the 
critical  values required are  the boundaries of a (1 - a )  confi- 
dence interval for the test  statistic. That is, for the statistic D 
we require Da and DL, independent of 8, such that the sum 
of the pvalues pL = ProbH, (D 5 DL) and pa  = Prob, (D 2 
Da) is  less than or equal to a. We note that because S, (2“) k, 
and 77 are integers, the test  statistics will  have a discrete distri- 
bution, and so any non-randomized test will not precisely 
achieve the desired level. Other authors have suggested meth- 
ods to determine critical  values  as described below. We pre- 
sent an alternative method. 

TAJIMA (1989a) computed critical  values by assuming D to 
have a beta distribution with mean zero and variance one, 
scaled to the interval [Dmin, Dm,].  TAJIMA’S justification is 
based on  a visual comparison between beta densities and his- 
tograms of simulated data. We  have found  that TAJIMA’S criti- 
cal  values are often too conservative, particularly at the upper 
tail  of the distribution. While it is true  that the probability of 
false rejection is not increased by using  conservative  critical 
values, it can result in a serious reduction in  power. Thus this 
method of obtaining critical  values  is  less than satisfactory. 

Fu and LI (1993) used simulated data with  known  values 
of 8 and n to locate appropriate percentiles as estimates for 
the critical value  of the statistic. Then for each value  of n, 
they  took the most extreme of these critical  values  over  all 
8’s in  the interval [2, 201. The effect of this technique is to 
reject only  when the data cannot be explained by neutral 
evolution for any  value  of 8 in this interval. The interval [2, 
201 for 8 was chosen somewhat arbitrarily to represent “most 
cases  of interest.” 

While FU and LI’S approach is an improvement over  TAJI- 
MA’S, there  are still some problems remaining. First, the criti- 
cal  values are  not applicable when the  true value  of 6’ is not 
in [2,20],  and we cannot know, for a given set of data, whether 
this is the case.  Because 0 is a per-locus  value, it changes with 
the  number of nucleotides being sequenced, as  well as with 
the underlying mutation rate. Thus it is difficult to justify why 
8 would  have to be confined to this range. The test may  falsely 
reject when 8 is not in  this interval. Further, their technique 
does not take into account the information about 8 inherent 
in the data. We will attempt to address these problems below. 

The problem of the unknown parameter 8 may  be ad- 
dressed using the technique proposed by BERCER and  Boos 
(1994). Ideally, we would  like to reject only if the data cannot 
be explained by any  positive  value  of 8. For a test of  level a 
this  would mean choosing critical  values [D,~,  Du] for D such 
that 

@€[OF) 
sup [Probe@ 5 DL) + Prob#(D 2 Du)] 5 a (17) 

However, we cannot perform simulations for infinitely  many 
values  of 8, nor is it reasonable to do so because extremely 
large values of 8 are unlikely. Instead, for some small number 
p < a, we use the data to estimate C,, a 1 - p confidence 
interval for 8, and require critical  values to satisfy 
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sup[Probn(D 5 DI.) + Probo(D 2 Du)] 5 cy - p. (18) 
n E  c, 

For each 8 in a grid covering C, we estimate level (a - 0) 
critical  values [L$, &] using the percentiles of neutral data 
for that 8. We take the most extreme of those critical  values 
over all 8 in C,: 

Dl> = min D;,, Dc, = max Dt. (19) 
nE co BE co 

The result is a level a test, as shown by BERGER and BOOS 
(1994). This approach is similar to that of Fv and Lr (1993), 
except that instead of arbitrarily  using the interval [2, 201  we 
use an interval that reflects our knowledge  of 8 for the data 
set being considered. This  has the advantage of  giving us a test 
with  known  level for any  value  of the unknown parameter 8. 

To construct this 1 - p confidence interval for 8, we use 
the exact distribution for S given 8, as  given by T A V ~  (1984). 
We  wish to find  a two-sided interval C, = [ S ,  e,] such that, 
for  a particular observation S = s, and for fixed n, 

Prob(S 2 s i 8  = 8,) = p/2 (20) 

Prob(S 5 510 = e(,) = p/2. (21) 

The cumulative distribution function for S given 8 is 

F(s, n, 8) = Prob(S 5 518) 

So, (20) and (21) may be written as 

F(s - 1 ,  n, 0,) = 1 - p/2 (231 

m,  n, 0,) = p/2 (24) 

Thus we must solve (23) and (24) for Or, and OU for  the 
particular values of S = 5 and n observed in  the data. This is 
computationally intensive for large values  of n and requires 
high precision to compute accurately in many  cases.  We used 
the variable-precision capabilities of the symbolic computa- 
tion package Maple (CHAR et al. 1991) to perform the calcula- 
tions. The results of these computations are given in RESULTS. 
Note that when S = 0 is observed, it is appropriate to set Or 
= 0 and solve F(0, n, 0,) = ,8 for OUin  place of (24); however, 
because  all the test  statistics are defined to  be 0 in this case, 
the resulting critical  values will be irrelevant. 

In summary, there are three distinct steps to computing 
critical  values for the test  statistics  in this fashion. (1) For the 
values  of n and S required, compute C,, a 1 - ,8 confidence 
region for 8 given S. (2) For a grid of 8 values  in C, and for 
each n, simulate a large number of samples and estimate level 
(a - p )  critical  values for each test statistic from the simulated 
empirical distributions. ( 3 )  Take the maximum upper critical 
value and minimum lower  critical  value  over  all  values  of 8 
in C , ,  for each value  of n and S and for each test  statistic. 
This gives critical  values of a-level  tests for each n and S. 

Simulations 

To evaluate the power of the statistical  tests described 
above, we require data simulated under a  number of different 
alternative models. The alternatives considered here:  a selec- 
tive  sweep event, a population bottleneck, and a subdivided 
population, represent  a few simple deviations from strict neu- 
trality and  are  meant as examples rather than as a  comprehen- 
sive study.  Because balancing selection is similar to population 
subdivision from a coalescent perspective (HUDSON 19901, we 

MRcAA I past 
/ \ I t  

1 2 3  4 5 present 

FIGURE 1.-An example of a coalescent tree for a sample 
of  five alleles. 

expect the results for  a subdivided population to be applicable 
to the corresponding balancing selection alternative as  well. 

Neutral simulations: A sample of  DNA sequences is gener- 
ated by simulating a  random gene genealogy according to 
the algorithm developed by HUDSON (1990, 1993). There  are 
three components to this genealogy:  topology, branch 
lengths, and mutations. First, a  random tree topology is gener- 
ated for the genealogy.  From n individuals in  the sample, 
two are chosen at  random to be  the first  to coalesce. A new 
individual is designated as their parent, and the process is 
repeated on the remaining n - 1 individuals. The process 
stops when only one individual, the most recent common 
ancestor (MRCA) of the entire sample, remains. This gives 
the topology of a binary tree with n tips. Next, the  branch 
lengths are chosen: 4,  the time (in units of 2N generations) 
during which there are exactly j lineages, is an exponentially 
distributed random variable with mean 1/({) as described in 
the  Introduction. These two steps define a tree such as that 
shown in Figure 1. Finally, mutations are  added to the tree. 
The number of mutations S that have occurred during the 
history of the sample is generated as a Poissondistributed 
random variable with mean 8Ttot/2. For each mutation, the 
branch of the tree on which it occurred is chosen randomly, 
where the relative probability of each branch is proportional 
to its length.  The mutation is transmitted to each offspring 
descended from that branch. Thus each individual is assigned 
a "sequence" of nucleotides designated, for example, 
-+--++-,where "-" indicates that the nucleotide is iden- 
tical to the ancestral sequence at  that site and "+" indicates 
a mutation. Under  the infinite-sites model, each mutation is 
assumed to take  place at  a distinct nucleotide site, and thus 
each sequence generated is composed only of polymorphic 
or segregating sites. 

Selective sweep simulations: A highly  favorable mutation 
with  selective advantage s and dominance h that occurs at  a 
time T, is assumed to sweep through  the population and reach 
fixation in  a deterministic fashion, such that  the  proportion 
x ( t )  of  individuals carrying the mutation at time t follows 

PNs.41 - X)[X + h(1 - ZX)]  1 
X(t)  = 

1 + s [ 2  + 2hx( l  - x)] 
, x(T,) = - . (25) 

2N 

This result can be found in (MAWARD SMITH and HAICH 1974, 
equation 18). We  have inserted a multiplicative factor of 2N 
to correct for the measurement of time in units of 2Ngenera- 
tions. We assume that the initial frequency of the selected 
allele is x(TJ = 1/2N, that the process is deterministic even 
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when the frequency is  low, and that  the allele has been fixed 
in the  population when the frequency reaches 1 - 1/2N. 

The selective  sweep alters the coalescent process by reduc- 
ing  the effective population size  of the parental generation 
at time t from 2N to 2Nx( t), because only genes carrying the 
selected mutation may be chosen as ancestors of the sample. 
The per-generation coalescent probabilities change from 
(4)/2N to (4)/[2Nx( t)]. Thus the total size  of the tree is re- 
duced, and the effect of the selective  sweep is to reduce varia- 
tion at  and  around the selected locus. We are assuming no 
recombination between the selected and sampled loci. 

To generate coalescent times under a sweep, we generate 
times according to the neutral model, and then scale them 
appropriately, as described below. This approach was  sug- 
gested to us by R. R. HUDSON; also see GRIFFITHS and  TAVAR~ 
(1994, equation 3).  To convert a time from one time scale to 
another, we must perform a  change of variables. Suppose U 
is a time measured in units of 2Nx(t) at time t. We  wish to 
convert this time Uback into the standard units of 2Ngenera- 
tions. The instantaneous change of variables at time t is 
2Nx(t)du = PNdt, where dt is the interval in regular units 2N 
and du is the time interval in units 2Nx(t). This becomes 

and thus, if T represents the same  time  as U but  in regular 
units, we integrate over the whole interval to obtain 

Therefore, to generate  a coalescent time T under a selective 
sweep described by x ( t ) ,  we generate  a time U under the 
neutral model and then find Twhich solves (27). This is done 
for each coalescent time in a  tree, to generate  a coalescent 
tree for  a selective  sweep. 

If the selective  sweep began quite recently, it is possible 
that  the selected allele has not yet been fixed in  the popula- 
tion. The length of time Td this sweep  takes to complete de- 
pends on N, s, and h; for example when h = '/*, the sweep 
lasts Td = 2 ln(2N - l) /sN If T, > Td, then  the allele has 
become fixed by the  present time (0), and so the MRCA of 
the sample has to occur more recently than T,, because it 
must be  descended from the initial selected mutant. If the 
sweep began so recently that  the selected allele has not yet 
completely reached fixation (T, < T d ) ,  then  there are two 
types  of  alleles  in the  present population, those with, and 
those  without, the selected mutation, in the ratio x(0):l - x(0). 
In this case we assume the  number of sampled individuals 
having the selected mutation is binomially distributed with 
parameters (n, x(0)). The selected alleles  follow the above 
sweep model, while the rest of the sample is drawn from a 
population of  size  2N[1 - x(  t)]  at time t. This requires a shift 
in time units similar to that described above, with x(t) re- 
placed by 1 - x( t ) .  Before the selected mutation occurred, ( t  
> Ts) all ancestors follow a neutral model. 

Our model of the selective  sweep is defined in terms of 
four parameters: h, s, N, and its starting time T,. For this study, 
we chose to fix h = 0.5, N = lo6,  and s = and allow T, 
to vary over the range 0-2 (in units of  2N,  back in  time from 
the  present). This is  relatively  weak selection on  a  codominant 
allele; for comparison we also performed the simulations with 
s = lo-*. For combinations of n (10, 20, 50, loo), 0 (10, 20, 
50), and T, (in increments of  0.01 from 0 to 0.3, then in 
increments of 0.05 from 0.3 to 0.5, then  in increments of 
0.1 from 0.5 to 2.0), 5000 samples were generated and the 
proportion of rejections for each of the tests recorded. 

A selective  sweep  is expected to reduce polymorphism at 
linked sites, because any  observed polymorphism must  be the 
result of mutations that have occurred since the sweep. These 
newly arisen mutations will at first  be rare and will increase 
in frequency as the time since the sweep increases. Because 
S takes into account only the  number of mutations, while k 
is also affected by their frequency, it is expected that S will 
recover more rapidly than k from the effects of a sweep. This 
will  have the effect of reducing the expected value  of  TAJIMA'S 
statistic  below  its neutral expectation of 0. The magnitude of 
this reduction has not been predicted by theory, and is one 
of the subjects of the present investigation. 

Population bottleneck simulations: A population bottle- 
neck is assumed to occur when the population, originally of 
size  2N,  is suddenly reduced to a fraction f of  its former size 
for a length of time I ,  then instantaneously regains its initial 
size. Let Tb be the time (in units of 2N generations) at which 
the bottleneck ended, so that it began at  a time Tb + I, which 
is further from the  present time 0. Coalescent times under 
this model are obtained by scaling neutral coalescent times  in 
the same way as the selective  sweep. In this case, the changing 
population size  2Nx( t) is a  step function rather than a smooth 
curve as it was for  the sweep, so the integration in (27) is 
easy.  We generate  a time u, under the neutral model, and 
then use  as the coalescent time 5 given by 

This is equivalent to the following probability density for the 
coalescent times t,: 

where p = (4). The density can be derived by considering the 
per-generation probabilities of coalescence during the three 
stages of the bottleneck. 

For purposes of this study, we kept f fixed at 0.01, 1 fixed 
at 0.1, and varied Tb, the time since the bottleneck ended, 
from 0 to five. These are bottlenecks of the same  severity but 
lasting ten times the length of those considered by  TAJIMA 
(1993).  The fraction rejected out of  1000 simulations was 
recorded. 

A population bottleneck is expected to reduce polymor- 
phism throughout  the  genome, because a drastic reduction 
in population size  is  likely to eliminate many rare variants. As 
in the case  of the selective  sweep,  most  of the polymorphism 
will be a result of  new mutations, which  will be rare. Thus a 
reduction of unknown magnitude in the expectation of  TAJI- 
MA'S statistic is predicted (1989b). 

Subdivided population  simulations: The third alternative 
modeled was a subdivided population with no migration. We 
expect the results of this model to apply to balanced polymor- 
phism as well, because the two are similar from a coalescent 
perspective. We start with an ancestral population size  of 
2NM.  At a certain time T, this population is assumed to split 
into two isolated populations A and B, of  size NA and NB, 
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respectively,  which  evolve independently from then on. Here, 
the sample of n alleles  consists of nA alleles of  type A, and nB 
of type B, with n = nA + nB. 

The coalescent tree for such a subdivided population is 
generated in the following manner. As usual we work  back- 
ward  in  time  from the present to the time of the MRCA of 
the sample.  Let jA  and jB be the number of lineages of  type 
A and B remaining at any  given  time.  Initially, we let jA  = nA 
and jB = nB, and at each coalescent  event, one of them is 
decremented. We need to know the distribution of the time 
back to the next coalescent  event. 

In the subdivided model, the coalescent  probabilities  be- 
fore and after the population split are different. When the 
two populations are disjoint, the probability per generation 
that two A individuals  coalesce is PA = ($ ) /2NA while for the 
B population it is pB = (li5)/2NB. The probability that both 
populations will coalesce in the same generation is negligible 
[ O ( l / P ) ]  compared with PA and pB, and so the per-genera- 
tion  probability of a coalescent  event in either population is 
approximately pl = PA + pB while the two populations are 
disjoint.  When the two populations are mixed, we have a 
single population of  size 2NAB, with jA  + jB  sample  lineages 
present. Thus the per-generation probability of coalescence 
for the mixed population is P, = (j49/2NAB. 

As before, t, is the time during which there are exactly i 
lineages of any  type present. Let S, = t , ,  with S,+, = 0. S, 
keeps  track of the total  time generated so far. To generate 
the time $A+jB to the next event, it is necessary  to  know the 
relationship between SjA+j,+l and T,. In particular, if SjA+JB+l 
> T,, then we have  passed the subdivision point and we  may 
generate subsequent times 5A+lB simply  as exponentially dis- 
tributed random variables wth parameter p .  On the other 
hand, suppose  SjA+JB+l < T,, say T, - $A+jlr+l = M > 0. Then 
the time $A+jB generated could  be less than or greater than 
M. The probability of coalescence after a given  time t < M is 
(1 - pl)'fi = ple?I'. But for a time t > M, the robability of 
coalescence is (1 - p,)"( 1 - p)'"p = p$""" J ( t ' x - p l ) .  Thus 

where I is an indicator function and M = T, - 
Once a time  has been generated from  this mixture of expo- 

nentials, two individuals  must  be chosen to  coalesce at that 
time. If the total  time 4A+j,+l is still  less than T,, then we must 
choose  between group A and group B with  relative  probabili- 
ties PA and pn. If the time is greater than T,, we  have only 
one group. Once the group is chosen, two of the appropriate 
group are selected at random, and the corresponding j is 
decremented. The process  is repeated until only one individ- 
ual remains. 

When a population is subdivided, the average  pairwise  dif- 
ference k is inflated relative to the total number of mutations 
S, because of the large  divergence  between subpopulations. 
Thus the qualitative expectation is that D will  have a positive 
mean in this situation. As with the selective  sweep and bottle- 
neck, we chose  time  since the subdivision  event as the primary 
variable  to  investigate,  fixing NA = NB = NAB/2, nA = nB = 
25. and 0 = 20. 

RESULTS 

Results of neutral  simulations: Simulations  of the 
null  hypothesis were used  to  provide  new critical  values 
for  the test statistics. Our technique uses confidence 
intervals for 8 given S, as described  in MATERIALS AND 

METHODS. These 1 - p confidence intervals  were  com- 
puted using  40  digits of accuracy to solve equations 23 
and 24. Tabulation  here  of  these  confidence intervals 
for  different values  of n, S, and p would be prohibitive, 
so we show  only a sample:  the case n = 50, p = 0.01 in 
Table 1. This  table shows, for  example,  that if S = 23 
is observed  from a sample  of size n = 50, and  the  neutral 
model  holds,  then with 99% certainty 8 is between 2 
and 12.5. For  other values  of n and p, O L  and 8, may be 
closely approximated by linear  functions of S, especially 
when S is large.  For  example,  when n = 20, Co.ol = 
[0.121S-  0.481,0.709S+ 2.8581 and Co.ool = [O.O94S- 
0.473, 0.904s + 4.4181. The coefficients of these  linear 
approximations  are given in  Table 2, and can  be  used 
to  approximate  the values corresponding  to  Table 1 for 
other values  of n and p. 

Table 3 shows tables  of level 0.05  critical values for 
TAJIMA'S test  for a range  of  Svalues,  for n = 10, 20,  50, 
100,  using (Y = 0.05 and p = 0.01. For  comparison,  the 
values from  the  beta  distribution (TAJIMA 1989a) are 
also  shown. Corresponding values for LY and P (Fu 
and LI 1993) are given in  Tables 4 and 5 ,  along with 
the values that  assume 8 E [2, 201 from (Fu and LI 
1993). 

There is no  simple  pattern  to  the way in which the 
new  critical  values  differ from  those of the beta distribu- 
tion.  Generally  speaking,  for  small n the  beta  distribu- 
tion  values are  too  large, while for  larger n the beta 
distribution values are  too small. The  important differ- 
ence is that the new  values are based on a sound statisti- 
cal  framework  that  does  not  depend  on  fitting the statis- 
tic to a particular  distribution,  as TAJIMA did, or on  the 
true value  of 8 being  between 2 and 20, as FU and LI 
assumed. 

The size of these  tests (the probability  of  rejecting 
when  the  neutral  model is true), based on  the new 
critical values, was estimated by applying  each  test  to 
10,000  simulated  neutral  data sets for  each value  of 8. 
The  number of false rejections was computed  (data  not 
shown).  The size for  most values of 8 is between 3 and 
496, out of a maximum  of (Y = 5%. This  shortfall is 
attributable  to  three factors.  First,  because the statistics 
have discrete  distributions, we cannot  expect  to  pre- 
cisely achieve the  desired level with any  nonrandomized 
test. Second,  there is some  error  in  estimating  the (a 
- 0) critical  values  using the  empirical  percentiles, be- 
cause we used a finite number of  simulations  (10,000). 
This  source  of  error  could  be  diminished,  though  not 
eliminated, by using a larger  number of simulations. 
Third, the Berger and Boos confidence  interval  proce- 
dure is conservative;  using it may reduce  the size of  the 
test by as much as p. Our  choice of was arbitrary, and 
the effect  of  this  choice on  the size of the tests is not 
clear.  Thus,  the critical  values might  be  improved by 
using a different value  of p. 

Results of selective  sweep simulations: The effect  of 
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TABLE 1 

The 99% confidence  intervals  for 8 
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Confidence  intervals for 0 given Swhen n = 50, ,B = 0.01. C, = [e,, e,]. 

a selective  sweep on TAJIMA'S D, S/a ,  and k is shown in 
Figure 2 for two different  strengths of selection: s = 

(weak, a and  c); s = lo-' (stronger,  b and  d); for 
5000 simulations with n = 50 and 0 = 20. The horizontal 
axis is T,, the time at which the sweep began. Because 
the  present time is 0, this is also the  amount of time 
since the sweep began. In Figure 2, a and b, the thicker 
curve is the  mean of TAJIMA'S D, while the  thinner 

TABLE 2 

Coefficients of linear  approximations to a 
1-/3 confidence  interval for 8 

P n b C q r 

0.01 10 0.133 -0.484 1.236 3.787 
20 0.121 -0.481 0.709 2.858 
50 0.108 -0.474 0.441 2.302 

100 0.101 -0.484  0.341 2.039 
0.001 10 0.102 -0.483 1.782 6.304 

20 0.094 -0.473 0.904 4.418 
50  0.087 -0.468 0.519  3.408 

100 0.081  -0.856  0.389 3.420 

Co = [bS + C, qS + r ] .  

curves are  the 2.5 and 97.5 percentiles. For comparison, 
the critical values from TAJIMA'S (1989a) beta distribu- 
tion are also  shown (horizontal  lines),  though  the criti- 
cal  values from Table 3 were used to  determine rejec- 
tion. The expected  trend towards more negative values 
of D is observed. There is also a  pronounced decrease 
in the variance of the  distribution even when the sweep 
is  very ancient. When T, is  very large (six or seven, not 
shown),  the  percentile curves eventually level  off  close 
to the critical values. Figure 2, c and  d, show the values 
of S/a ,  (solid) and k (dotted) associated with a and b 
respectively. The thicker lines represent  the means, 
while the  thinner lines are  the 2.5 and 97.5 percentiles. 
For large T, the  means converge close  to their  neutral 
expectation of 0 = 20. It can be seen that  a selective 
sweep  affects k more strongly than S,  and that k recovers 
more slowly both  in  mean  and variance. Comparing 
Figure 2, a and c with b and d shows the effect of 
the  strength of selection: stronger selection results in  a 
more  immediate decrease in  the  expected value of D, 
and a  stronger  reduction  in S and k. Note, however, 
that  the  length of time Td (=2 ln(2N) /Ns  when h = 
0.5) it takes the sweep to  complete must be taken into 
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TABLE 3 

Level 0.05 critical values of TAJIMA'S D test 

0 
1-26 

27-41 
42-48 
49- 63 
64-71 
72-135 

beta 

-1.79 
-1.80 
-1.80 
- 1.80 
-1.79 
-1.78 
- 1.78 

- 1.733 

1.84 
1.84 
1.83 
1.81 
1.79 
1.78 
1.74 

1.975 

0 
1-3 
4-14 

15-20 
21-28 
29-36 
37-45 
46-86 
87-144 

145-147 

beta 

-1.78 
-1.82 
- 1.83 
- 1.84 
-1.84 
- 1.84 
- 1.84 
- 1.84 
-1.85 
- 1.85 

- 1.803 

1.97 
1.97 
1.97 
1.97 
1.96 
1.90 
1.88 
1.87 
1.87 
1.82 

2.001 

0 
1-22 

23-31 
32-41 
42-50 
51 -73 
74- 155 

beta 

-1.70 2.11 
-1.77 2.11 
-1.77 2.06 
-1.77 2.00 
-1.73 1.97 
-1.73 1.95 
-1.75 1.95 

- 1.800 2.044 

0 
1-24 

25-34 
35-44 
45 - 74 
75 - 78 
79- 159 

beta 

-1.58 
-1.70 
-1.70 
-1.70 
-1.70 
-1.68 
-1.69 

-1.781 

2.21 
2.21 
2.15 
2.07 
2.04 
2.01 
2.01 

2.073 
Values  based  on a 99% confidence  interval for 0 given S for  several  sample  sizes n. 

account; this  is a0 .3  and 0.003 for  the weak and  strong 
cases,  respectively (shown inset in Figure 2, a and  b). 
Thus in a and  c, when T, < 0.3, the selected allele has 
not yet been fixed at time 0 when we take the sample. 
The apparently  neutral behavior when T, < 0.15 is due 
to the low frequency of the selected allele in the popula- 
tion, and  hence  a low probability that they will be found 
in  the sample. When 0.15 < T, < 0.3, we see the effect 
of a selective  sweep in progress, while when T, > 0.3, 
we have the result of a  completed selective  sweep. In 
Figure 2, b and  d,  on  the  other  hand,  the sweep is 
virtually instantaneous  compared with the scale shown 
(though it takes 6000 generations), so the effect is seen 
immediately. 

The power of TAJIMA'S D test against the selective 
sweep alternative is shown in Figure 3: 8 = 10, s = 

s = lo-' (d).  The horizontal axis is T, as in Figure 2, 
but  note  that  the scale is enlarged. The different curves 
are  for  different values  of n as labeled on  the graphs. 
Figure 3 shows that  the sample size has a  profound 
effect on  the power to reject. While a sample of  size  50 
or 100 can give a substantial power, no significant result 
can be expected from a sample size  of 10 in most cases. 
It appears  that even with large sample sizes, it is  only 
possible to detect selective  sweeps that  occurred in a 
specific  window  of time. For example, if n = 100 and 
8 = 20, TAJIMA'S  test will reject with probability 90% 

(a); e = 20, s = iop4 (b); e = 50, s = 10-~  (c); e = 20, 

TABLE 4 

Level 0.05 critical  values of FU and LI'S (1993) D* test 

n = 10 n = 20 n = 50 n = 100 

s Le @" S @ OTi S Le P" S Le a 
0 -2.06 1.41 0 -2.4 1.40 0 -2.57 1.48 0 -2.68 1.32 

1-48 -2.08 1.42 1-2 -2.49 1.44 1-13 -2.58 1.51 1 -2.68 1.51 
49-63 -2.08 1.40 3-7 -2.59 1.44 14-17 -2.59 1.51 2-4 -2.68 1.55 
64-78 -2.06 1.36 8-13 -2.67 1.44 18-19 -2.61 1.51 5-24 -2.68 1.59 
79-861 -2.06 1.35 14-41 -2.70 1.44 20-24 -2.71 1.51 25-44 -2.54 1.59 
87-108 -2.06 1.34 42-45 -2.73 1.44 25-42 -2.72 1.51 45-49 -2.50 1.59 

109-135 -2.06  1.32 46-53 -2.73 1.43 43-50 -2.76  1.51 50-52 -2.52 1.59 
54-61 -2.73 1.42 51-60 -2.76  1.50 53-58 -2.54  1.59 
62 -2.73 1.38 61-68 -2.80  1.50 59-64 -2.56 1.59 

63-84 -2.76 1.38 69-71 -2.80 1.45 65-74 -2.56 1.57 
85-86 -2.78 1.38 72-73 -2.84 1.45 75-103 -2.56 1.54 
87-102 -2.78 1.36 74-77 -2.92 1.45 104-123 -2.56 1.51 

103-111 -2.78 1.35 78-114 -2.92 1.41 124-143 -2.56 1.49 
112-135 -2.78 1.34 115-151 -2.92 1.39 144-146 -2.57 1.49 
136-144 -2.78 1.33 152-155 -2.92 1.35 147-159 -2.58 1.49 

(1993) -2.02 1.38 (1993) -2.43 1.37 (1993) -2.45  1.44 (1993) -2.33 1.53 

Values based  on a 99% confidence  interval  for 6' given S for several  sample sizes n. 
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TABLE 5 

Level 0.05 critical values of FIJ and LI’S F* test 

n = 10 n = 20 n = 50 n = 100 

S E f l l  S E E7 S f l  f i  S E ET 
0 -2.22 1.60 0 -2.54 1.65 0 -2.57 1.74 0 -2.52 1.67 

1-48  -2.26 1.61 1-2 -2.62 1.67 1-6 -2.60 1.74 1-24 -2.52 1.83 
49-63  -2.26 1.58 3-7 -2.69 1.67 7-19 -2.61 1.74 25-44 -2.47 1.83 
64-71  -2.25 1.57 8-13 -2.74 1.67 20-24 -2.62 1.74 45-64 -2.42 1.83 
72-101  -2.25  1.53  14-42 -2.76 1.67 25-41 -2.72 1.74 65-103 -2.40 1.83 

102-108  -2.25 1.52 43-45 -2.78 1.67 42-50 -2.72 1.72 104-113 -2.40  1.82 
109-135  -2.25 1.51 46-61 -2.78 1.62  51-60 -2.72 1.71 114-125 -2.40 1.81 

62 -2.78 1.58 61-68 -2.77 1.71  126-159 -2.43 1.81 
63-102 -2.81 1.58 69-73 “2.77 1.70 

103-144 -2.81 1.56 74-133 -2.85 1.70 
145-147 -2.81 1.55 134-155 -2.85 1.68 

(1993) -2.21 1.59 (1993) -2.57 1.61 (1993) -2.43 1.66 (1993) -2.30 1.73 

Values based  on a 99% confidence interval for 8 given S for several  sample sizes n. 

only if the sweep  (weak selection) began between T, = 
0.18 and T, = 0.27, which, with N = lo6, corresponds 
to between 360,000 and 540,000 generations ago. It 
must be emphasized that these results apply only to the 
particular model of  sweep and  the  parameter values (s 
= h = 0.5) used in the simulation. For clarity, the 
graphs in Figure 3 are shown  with T, in the range 0- 
1. However, simulations were  actually performed with 
T, as large as 10. It can be seen in Figure 3 that  the 
power drops well  below the  neutral expectation of 0.05 
when T, is close to one.  In fact, a selective  sweep reduces 
the power  even when T, is four  or five. For these T,, 
the sweep was long  enough ago that new mutations 
have had  a  chance to reach intermediate frequency in 
the  population, but polymorphism is still quite  reduced. 
In other words, the difference between the expectations 
of k and S/u, is fairly  small, but  the variance of that 
difference is still reduced well  below one. This has the 
paradoxical result of making the test less  likely to reject 
under  the alternative than  under the null hypothesis, 
when T, takes on intermediate values. In  other words, 
TAJIMA’S D test is biased. 

Figure 4 shows the power  of  all nine tests against the 
selective  sweep alternative when n = 50 and 8 = 20; s 
= (a), s = lo-‘ (b). Among all the tests considered, 
TAJIMA’S test showed the most  power against the selec- 
tive  sweep for each value  of n and 8 we simulated. The 
tests T2 and F3 were almost as powerful  as D, and were 
more powerful than Fu and LI’S P and LY tests, Al- 
though TAJIMA’S test statistic does lack  power  in  many 
cases, it appears  to  be  the most  powerful  test  of this 
class against the selective  sweep alternative as modeled 
here,  both for weak and strong selection. We cannot, 
of course, generalize this result to any alternative 
hypotheses that we did not simulate, such as other val- 
ues of N, h, and s, or models of hitchhiking which  allow 

recombination,  but lacking evidence to the contrary it 
would be reasonable to assume the result holds at least 
for parameters within the  range of those used in the 
simulations, such as s between and lo-‘, and 8 
between 10 and 50. 

Results of population  bottleneck  simulations: The 
results for the  population bottleneck are summarized 
in Figures 5 and 6. Each figure represents  a bottleneck 
lasting 0.1 (units  2Ngenerations)  and  dropping to 1% 
of its original size. The horizontal axis in each case is 
the time Tb at which the bottleneck ended,  and each 
data  point is based on 1000 simulations. Figure 5 shows 
the mean and 2.5 and 97.5 percentiles of  TAJIMA’S  statis- 
tic D, us. Tb, for n = 50 and 8 = 20. Figure 6 shows the 
fraction rejected by TAJIMA’S  test for the cases 8 = 10 
(a), 8 = 20 (b), 8 = 50 (c), and by Fu and LI’S F* test 
for the case 8 = 20 (d). The results are similar to those 
for the selective  sweep. A bottleneck is only likely to be 
detected if it is  very recent, and if the sample size  is 
large. Again,  TAJIMA’S test performs the best of  all the 
tests considered. The similarity of the results to those 
for a selective  sweep is to be expected, since the effect 
on the coalescent process of the two situations is similar. 

Results of population  subdivision  simulations: Popu- 
lation subdivision  has an effect opposite to that of a 
selective  sweep on the statistics being studied. A subdi- 
vided population results in a  higher value  of k than 
would be  expected under neutrality, while the effect 
on S is  less severe. Thus population subdivision tends 
to produce positive  values  of the test statistics D, P, 
and P. The  more  ancient  the division, the  greater this 
effect becomes. A  plot of the median and 2.5 and 97.5 
percentiles of TAJIMA’S D against the time  of separation 
T,, for a sample size of 50 (nA = nLI = 25) and 8 = 10, 
with  NAB = NA + Ns,  is shown  in Figure 7. Power  curves 
for all nine tests are shown in Figure 8. It can be seen 
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FIGURE 2.-The  effect of a selective  sweep on TAJIMA'S D statistic, S, and k us. the time T, at which the sweep began. The 
mean and 2.5 and 97.5 percentiles of D are shown in  a and b. Horizontal lines are TAJIMA'S (1989a) critical  values. The means 
and 2.5 and 97.5 percentiles of S/u, (solid) and k (dotted)  are shown  in c and  d. Each data point is based on 5000 simulations 
of a selective  sweep  with parameters 6' = 20, n = 50, h = 0.5, and N = lo6: (a  and c )  s = (b  and  d) s = lo-'. The length 
of time it takes the selected allele to reach fixation is also depicted (inset); a sweep beginning at T, ends at  the given distance 
to the left of T.. 

from this figure that  the probability of detecting this 
type  of population subdivision  with these tests is quite 
small  unless the division is fairly ancient. Again,  TAJI- 
MA'S D is the most powerful  test against this alternative, 
with T2 having almost identical power to D, and Fu and 
LI'S Fy the  next most powerful. The above  results  were 
gven for nA = n, = 25. When we choose nA f nB, (e.g. 
nA = 10, nB = 40) the power is even  less,  with  all other 
parameters held fixed (results not  shown). 

Some  comments  on  sample  size: We  have  shown that 
sampling a greater number of individuals  increases the 
power of the test.  But,  sampling longer sequences  (effec- 
tively increasing 0) should also  increase the power.  Which 

is better: longer sequences or more individuals? To answer 
this question, we must  assign a relative  cost  to  these two 
options.  Let us  assume that the cost per nucleotide  se- 
quenced is the same whether that nucleotide comes  from 
a new individual or from extending the sequenced region. 
This  ignores  costs  associated  with both the acquisition and 
preparation of a new individual and the analysis  of longer 
regions. Further suppose that the per-locus  mutation rate 
is proportional to the length of the sequence, so that 
doubling the number of  bases doubles 8. Under these 
assumptions, the cost is proportional to the product of n 
and 8. Therefore, we compare power  cumes  where  the 
product of n and 19 is the same. 
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FIGURE  3.-Power of TAJIMA’S D against  a selective sweep us. the  time T, at  which the sweep began for n = 10, 20, 50, and 
100: (a) I9 = 10; (b) I9 = 20; (c) I9 = 50; (d) I9 = 20. Each  data point is based on 5000 simulations of a  sweep  with  parameters 
h = 0.5, s = and N = lo6, except (d), which  uses s = lo-*. 

In Figure 9, we show the power of TAJIMA’S test 
against a selective  sweep  (weak selection) for the  prod- 
uct & = 200, 500, and 1000. Note that in this context, 
increasing 0 means increasing the size  of the region 
examined (and thus p )  for a given N .  These results  show 
that, against this particular selective  sweep alternative, it 
is better to sequence  more individuals than  more sites, 
so long as the  number of  sites is not too small. For 
example, against the selective  sweep alternative as mod- 
eled  here, TAJIMA’S test is  always more powerful when 
n = 20 and 0 = 10 than when n = 10 and 0 = 20. 
Similar results hold  for other tests. 

DISCUSSION 

The new method of calculating critical values for  the 
class  of  tests presented  here allows us to eliminate from 

the null hypothesis the  requirement (Fu and LI 1993) 
that 0 is between two and 20. If the  true value  of 0 for 
a studied locus is indeed  in  that  range,  there is  very 
little difference between the two methods. However, 
our method has the advantage that rejection cannot  be 
explained by a too-small or too-large 0. If  FU and LI’S 
published critical values are used, it should be with the 
understanding  that  the  true level  of the test should have 
added  to it the probability that 8 is not in that range. 
For TAJIMA’S test (1989a), our critical values are a clear 
improvement over the beta distribution method.  In 
many  cases,  TAJIMA’S published values are  too conserva- 
tive,  with the result that rejection is almost impossible. 
Our new critical values result in a more powerful  test. 

As an alternative method of examining the behavior 
of D when 8 is unknown, other  authors  (HUDSON 1993; 
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FIGURE 4.-Power of all nine  statistical  tests  against a selec- 
tive  sweep us. the time T, at  which the sweep  began  for n = 
50 and 0 = 20.  Each  data point is  based  on 5000 simulations 
of a sweep  with  arameters h = 0.5, and N = lo6: (a) s = 
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BRAVERMAN et al. 1995) have suggested sampling from 
the  conditional  distribution of D given S, where S is 
obtained  from  the  data  set to be tested. With S fixed, 
D is  simply a linear transformation of k and may there- 
fore have a smaller variance under neutrality because 
the  contribution of S to  the variance is eliminated. Both 
methods  choose  a genealogy at  random,  but their 
method fixes S for all genealogies, whereas we  fix 8 and 
from this generate  a value  of S based on  the total time 
in the genealogy. The contrast between the two meth- 
ods of generating S is most evident when simulating 
data from alternative hypotheses to estimate power. The 
two methods  represent two different views  of the power 
of a test: as a  function of the  parameter 8, and as a 
function of the statistic S. We investigate the behavior 
of D after a selective  sweep,  with  several different,  but 
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FIGURE 5.-The  effect of a population bottleneck on TAJI- 
MA’S D statistic.  Shown  are the mean (thick  line) and 2.5 and 
97.5 percentiles (thinner lines) us. the time Tb at which the 
bottleneck  ended.  Horizontal lines are  approximate  critical 
values for  rejection.  Each  point is based on 1000 simulations 
of a population  bottleneck with parameters 8 = 10, n = 50, 
f =  0.01  and I = 0.1. 

fixed, mutation rates. Their  method would examine  the 
effect of a selective  sweep after which a fixed number 
of mutations has occurred. 

Among all the tests considered, TAJIMA’S test (with 
the new critical values) was the most powerful against 
the specific alternatives we simulated. Certainly we can- 
not extrapolate  from this to say it is more powerful 
against all possible alternatives and parameter values. 
Because the  chance of spurious rejection increases with 
the  number of  tests performed, we want to  perform 
only the test with the greatest chance of rejection. In 
the absence of other evidence, that would appear to be 
TAJIMA’S test. The new test statistics described above do 
not perform as well  as  TAJIMA’S test, although they do 
have more power than FU and LI’S tests in many  cases. 
Thus we do  not recommend  their use. BRAVERMAN et 
al. (1995) also found TAJIMA’S D (conditional  on S) 
to be  more powerful than FU and LI’S P against the 
alternative of recurrent  hitchhiking with recombination 
(KAPLAN et al. 1989) and very recent,  strong selection. 

Our results indicate  that sample sizes  of at least 50 
are typically  necessary to achieve any reasonable power. 
Many sample sizes for  sequence  data  seen in the litera- 
ture  are  much smaller than this.  However,  even for 
large sample sizes, the probability of detecting  a selec- 
tive sweep that is not  recent is quite small. 

We have  shown that  the  expected value of TAJIMA’S 
D is in fact negative at linked neutral sites after the 
selective fixation of an advantageous mutation in a 
model with no recombination. This agrees both with 
theoretical  prediction and with the findings of BRAVER- 
MAN et al. (1995) for a  different  hitchhiking model. It 
is also apparent  that  the ability  to detect  the selective 
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FIGURE 6.-Power of statistical tests against a population bottleneck us. the time Tb at which the bottleneck ended  for n = 
10, 20, 50, and 100. The tests are (a) 0, I3 = 10; (b) 0, I3 = 20; (c) 0, I3 = 50; (d) F * ,  I3 = 20. Each data  point is based on 1000 
simulations of a population bottleneck with parameters f =  0.01 and I = 0.1. 

sweep by either TAJIMA'S (1989a) or FU and LI'S (1993) 
test statistics is strongly influenced by the  strength of 
selection and by the  amount of time since the selective 
sweep occurred. With an effective population size  of 
lo6, selective  sweeps  of codominant mutations with a 
selective advantage of result in distributions of  vari- 
ation that  are unlikely to be  found incompatible with a 
neutral model using these tests. Increasing the selective 
advantage 100-fold to IO-* leads to a certain increase 
in the power  of  available  tests. Nonetheless, there exists 
a defined window  over  which the tests  have reasonable 
(say, >go%) statistical  power to reject the  neutral 
model. For strong selection, this window appears  to  be 
from roughly 40,000 to 280,000 generations when n = 
50 and 8 = 20 (Figure 3d). More recent sweeps are 

undetectable because there has been too little time for 
sufficient new variants to arise, and sweeps too distant 
in the past are  hidden by the accumulation of  new 
neutral variants. 

These results  suggest that while recent,  strong, selec- 
tive  sweeps are likely to produce a significant TAJIMA'S 
D if the sample size  is large enough, in general the 
selective  sweep explanation for reduced levels of varia- 
tion cannot  be  ruled  out based  solely on the observation 
of a nonsignificant TAJIMA'S  test. Furthermore, nonsig- 
nificant values  of  TAJIMA'S D are consistent with  less 
recent sweeps and weaker selection, as  well as with the 
neutral model. For example, in a sample of Drosophila 
melanogasterfrom North Carolina (AGUAD~ et al. 1994) 
with n = 50, D = -0.40 and S = 17 were  observed for 
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FIGURE 7.-The  effect of a subdivided  population  on TAJI- 
MA’S D :  the  median  (thick  line)  and  2.5  and  97.5  percentiles 
(thinner lines) us. time of separation T,. Horizontal  lines  are 
approximate  critical  values  for  rejection.  Each  point is based 
on 1000 simulations of population  subdivision with parame- 
ters 0 = 10, n = 50, nA = nB = 25. 

a 1955-bp region of the su( w“) locus. If  we were to take 
as a null hypothesis a selective  sweep  with parameters 
n = 50, s = lo-*, 0 = 10, N = lo6, h = 0.5 and T, 
= 0.45, our 95% confidence interval (estimated from 
simulated data)  for D would  be  [-1.925,  -0.2891, and 
for S would be [ 16, 371. Thus  for these data we would 
not be able to reject that  particular sweep hypothesis 
at  the 5% level. We do  not claim that those data were 
the result of such a sweep, only that  the hypothesis 
cannot be ruled out  on  the basis  of  TAJIMA’S D. Such a 
point hypothesis would not be particularly useful; in 
practice one would  want to include intervals of the pa- 
rameters involved,  as we have done  for 0 in  the  neutral 
model. The  extent to which weaker or  more distant 
selection, or selection with recombination  could result 
in the observed patterns of data  needs  further examina- 
tion. Situations where negative TAJIMA’S D have been 
observed together with reduced variation do appear 
consistent with a simple selective  sweep model (-TIN- 
CAMPOS et al. 1992). The generally low  level  of  power 
of the test  statistics studied here indicates that  other 
means  to distinguish between selective  sweeps and 
other hypotheses, such as background selection 
(CHARLESWORTH et al. 1993; CHARLESWORTH 1994; 
HUDSON and KAPLAN 1994),  should  be  sought  before 
firm conclusions are drawn. To do this, any test will 
have to take into  account  more  information  from  the 
data  than just differences between the  three summary 
statistics k, S, and 7,. The  apparent contrast between 
predictions  for X-linked us. autosomal gene variation is 
but one possibility (AQUADRO et al. 1994). 

The population  bottleneck simulations have  shown 
that,  for  the size and length of bottleneck  studied,  the 
mean and variance of  TAJIMA’S D and  the  other statistics 
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FIGURE 8.-Power of all nine tests  against  population  subdi- 
vision.  Fraction  rejected us. time of separation T,. Based on 
1000 simulations of population  subdivision with n = 50, nA = 
nB = 25, and t9 = 10. 

are  decreased well  below their  neutral expectations. 
TAJIMA’S D is more powerful against such  a  bottleneck 
than  the other tests in this  class, but sample sizes of at 
least 50-100 (depending  on  the mutation  rate)  are 
necessary for reasonable power. In these simulations we 
chose  a bottleneck of length 1 = 0.1, a relatively long 
time (if N = lo6 this is 200,000 generations).  In  a bottle- 
neck of such length, most variation may be eliminated 
by the time the  bottleneck  ends so that  subsequent 
variants are  rare.  In bottlenecks of shorter  duration, 
results may be very different, because polymorphism 
that survives the  bottleneck may quickly reach  interme- 
diate frequency. Thus it is important  not to extrapolate 
these simulation results to parameter ranges we did not 
consider. 

Simulating a subdivided population allowed  us to ex- 
plore the way in which  TAJIMA’S D and  the  other tests 
were affected by an excess of intermediate-frequency 
variants, which tend to make D positive.  Even against 
this extreme no-migration model,  the power  of  TAJIMA’S 
D was  very  low unless the two subpopulations  had  been 
separated  for at least 10 Ngenerations. While we do not 
suppose  that  the subdivision model used is particularly 
realistic  over such a  long time scale, the results of these 
simulations suggest that coalescent trees must be quite 
strongly skewed to produce  data with a significant posi- 
tive D. TAJIMA’S D and  the new statistic T2 were equally 
powerful against this alternative and were more power- 
ful than the  other tests studied.  It is therefore suggested 
that, of the  nine tests studied  in this paper, only TAJI- 
MA’S D test be performed. 

This approach to estimating the power of  statistical 
tests should prove useful in investigating many other 
types  of alternatives and statistical tests. For example, 
it would be useful to know which, if any, existing tests 
are able to  detect  background selection. Tests that use 
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FIGURE 9.-Power of TAJIMA'S test against a selective sweep us. time T, at which  the  sweep began. Each plot is for a constant 

value of the product of n and 19: (a) n8 = 200; (b) n8 = 500; (c) n8 = 1000. Each  data point is based on 1000 simulations of a 
selective sweep with parameters h = 0.5, s = and N = lo". 

more  information from the  data, such as outgroups, 
may be more powerful than  the tests studied  here. We 
( w i t h  M. J. FORD) are currently undertaking  an similar 
analysis of the  properties of the HKA test (HUDSON et 
al. 1987). 
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APPENDIX 

The following are  the coefficients of TAJIMA'S and Fu 
and LI'S tests. 

UT=[( n + l  
3 ( n  - 1 )  an 

up = [" - ( 1  + - 1 - a, + ") - ' ] / ( a ,  + b,) 
a , n  a n  n n2 

V P  = [ 2n3 + l10n2 - 255n + 153 
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n2 n 

- (A6)  

The following are  the coefficients of the new statistical 
tests described in the MATERIALS AND METHODS section. 
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