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ABSTRACT 
Maximum likelihood methods were developed for estimation of the six parameters relating to a 

marker-linked  quantitative trait locus (QTL) segregating  in a half-sib design,  namely the QTL additive 
effect, the QTL dominance effect, the population mean, recombination between the marker and the 
QTL, the population frequency of the QTL alleles, and the within-family residual  variance. The method 
was tested on simulated  stochastic  data with  various  family structures under two genetic models. A 
method for predicting the expected value  of the likelihood was  also derived and used  to predict the 
lower bound sampling errors of the parameter estimates and the correlations between them. It was 
found that standard errors and confidence intervals  were  smallest for the population mean and variance, 
intermediate for QTL  effects and allele  frequency, and highest for recombination rate. Correlations 
among standard errors of the parameter estimates were generally low except for a strong negative 
correlation ( r  = -0.9) between the QTL's dominance effect and the population mean, and medium 
positive and negative correlations between the QTL's  additive  effect and, respectively, recombination 
rate ( r  = 0.5) and residual  variance ( r  = -0.6). The implications for experimental design and method 
of  analysis on power and accuracy of marker-QTL  linkage experiments were  discussed. 

D ETECTION  of  major  genes  influencing  quantita- 
tive traits is now  feasible  with the explosion of 

genetic  marker  technology  in  recent years. DNA-level 
markers  can be used  to establish genetic  maps  and sys- 
tematically screen  genomes  for  quantitative  trait loci 
(QTL) in  many  agriculturally  important  species (ED- 
WARDS et al. 1987; PATERSON et al. 1988; FRIES et al. 
1989; HALEY et al. 1990; KEIM et al. 1990; SOLLER 1990; 
GEORGES et al. 1995). Detection of QTL  can  be  achieved 
by finding a difference  in  quantitative  trait value of two 
groups  of  offspring  inheriting  alternative  marker alleles 
from a common heterozygous  parent.  This  procedure 
can be used  for  both  inbred  species (e.g. ,  experimental 
species  such  as  Drosophila and mice)  using crosses  be- 
tween inbred lines (SAX 1923; SOLLER et al. 1976) and 
for  outbred species (e.g., farm  animals and  fruit trees) 
where  the analysis is carried  out within  large family 
groups ( GELDERMANN 1975; NEIMANN-SBRENSEN and 
ROBERTSON 1961; SOLLER and GENIZI  1978). 

Having  detected a QTL,  it is of  interest  to  find  its 
location  in  the  genome by estimating its recombina- 
tion  distance  from  the  marker  and  to  determine  the 
effects  of the  QTL  in  the  population by estimating  the 
magnitude  of its  effect, the  degree of dominance,  and 
its frequency  in  the  population. All of  these  parame- 
ters are  important  for  both assessing the  potential use- 
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fulness  of  the  QTL  in  genetic  improvement  programs 
and  the way in  which  it will be  used.  Estimation  of 
these  parameters  can  be  carried  out  using  maximum 
likelihood  methods.  While  the  power  to  detect  QTL 
has been  described well for  both  inbred  line cross de- 
signs (SOLLER et al. 1976;  WELLER  1986,  1987; JENSEN 
1989; LANDER and BOTSTEIN 1989; LUO  and KEARSEY 

1989; SIMPSON 1989; KNOTT and HALEY 1992a; DARVASI 
et al. 1993) and within-family  designs (SOLLER and 
GENIZI 1978; WELLER et al. 1990; KNOTT and HALEY 
199%; BOVENHUIS and WELLER  1994), only  a few stud- 
ies  have  explored  the  accuracy  of  the  estimates (KNOTT 
and HALEY 1992a,b; VAN OOIJEN 1992; DARVASI et al. 
1993). All of the  latter have relied  on  replicated sto- 
chastic  simulations  to  measure  accuracy  empirically. 
As this can  be  tedious,  it  would  be  useful  to be able 
to  predict  the accuracy  of  QTL  parameters  using  theo- 
retical  methods,  although  the  complex  nature  of  the 
likelihood  models  has so far  prevented  this  being 
done.  In this  study, a quasitheoretical  numerical 
method is used  to  predict  both  power  and  accuracy  of 
QTL  parameters  from  the  shape  of  the  multidimen- 
sional  expected  likelihood  surface.  It is applied  to  the 
half-sib design  in  which six parameters  are  estimated 
simultaneously  and is used  to  explore  the effects  of 
data  structure, statistical model  and  inaccurate  marker 
allele  frequencies on  power,  accuracy and  sampling 
correlations  between  parameter  estimates.  The  proce- 
dure  described  here  can be used  to  determine  the 
optimum  experimental  design  and  form  of analysis 
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to  extract  the best information 
marker-QTL linkage data. 

THEORY 

Experimental  design: There 

about  the QTL from 

are s sires each of 
which produce  Nprogeny when mated  to  an  outbred 
population of dams. The phenotype  for  a quantitative 
trait is determined by many genes of  small effect and 
by random  environmental factors, which together 
cause the trait to be normally distributed with a  mean 
of p and variance of 0’. The trait is also affected by 
a relatively major QTL with two alleles, Q and q, at 
population  frequencies of p and 1 - p,  respectively. 
Additive and  dominance effects at  the QTL are  de- 
noted a and d, respectively. Thus  there  are  three possi- 
ble genotypes, QQ Qq and qq, which  have quantitative 
trait values  of pQQ = p + a, pQ(! = p + d and pUeu = p 
- a. A marker locus is situated  adjacent to the QTL 
at  a  recombination distance of r. Only sires heterozy- 
gous for the  genetic  marker  are  included in the analy- 
sis. The notation will assume only two alleles at the 
genetic marker, M and m, although  a situation of mul- 
tiple marker alleles can be  handled with only minor 
modifications. Thus sires have one of four possible 
marker-QTL genotypes, viz: M W m Q   M U  mq, Mq/ mQ 
or Mq/mq. Dams  have one of 10 possible genotypes 
corresponding to all possible combinations of gametes 
M Q  Mq,  mQ and mq. The frequency of allele M in the 
dam  population is denoted t and is assumed to be 
known or estimated with a  high  degree of accuracy. 
The population is assumed to be at Hardy-Weinberg 
equilibrium with respect to the QTL and marker locus. 
Progeny with records  are assumed to be a  random 
sample of the sire’s progeny with respect to their value 
for  the quantitative trait and marker loci. 

Likelihood of the  model: The likelihood for the half- 
sib design, first  given by WELLER (1990) and extended 
here to account for dominance, QTL allele frequency 
and  marker allele frequency, is 

3 x ,  3 

L = fi [ d  n n c C i l f ( X k  - pl) 
b i = l  k = l  I 

6 nz_J 3 

+ p(1 - p )  n n C , j f ( X k  - pj) 
i=4 k = l  1 

9 s 

+ p(1 - p )  n n c i f f ( x k  - pj) 
1=7 k = l  1 

+ (1 - n n c t f f (xk  - pj) (l) 
I2 n1-9 3 

z = I O  k = l  j 1 
where b = 1 to s and denotes  the family number, i = 
1-12 for progeny marker genotypes of MM,  Mm and 
mm nested within sire marker-QTL genotypes M W m Q  
M W m q ,  Mq/mQand Mq/rnq, respectively; nt = the  num- 
ber of progeny in the ith marker genotypic group  and 
ni = nz+3; j = 1 ,  2 and 3 for progeny QTL genotypes 

QQ Qq and qq, respectively; cq = the  element in row i 
and column j from the matrix, C (Table 1) , of progeny 
QTL genotype probabilities conditional on sire  QTL 
genotype and progeny marker genotype; and f(  xk - pJ 
= the  normal density function for the kth observation, 
xk, ( k  = 1, . . . , n,) of the bth sire of the ith marker 
genotype group, conditional on the jth QTL genotype, 
and is abbreviated by and calculated as: 

e-l/2cx,-y/oP 

&0 . A = f ( x k  - p,) = 

The  four terms that  are  summed  in  the likelihood 
equation  for  each  sire  represent  the  four possible 
QTL genotypes of the  sire,  denoted h. That is, for 
each possible genotype of the  sire,  the statistical den- 
sity  of the sire’s progeny’s genotypes,  conditional on 
this sire’s  genotype, is computed over all the observed 
data.  These  terms,  called  sublikelihoods  from  here 
on,  are multiplied by the  probabilities of the sire’s 
genotype Ph [p2  for h = 1, p (  1 - p )  for h = 2 or 3 and 
(1 - p)*  for h = 41 and  summed to  obtain  the overall 
likelihood. 

C, the matrix of progeny QTL genotype probabilities, 
conditional on sire QTL genotype and progeny marker 
genotypes and assuming linkage equilibrium is com- 
puted as  shown  in Table 1.  The rows of C represent  the 
progeny marker genotypes, MM,  Mm, and mm, nested 
within sire marker-QTL genotype, as shown to the right 
of the matrix. The columns of C represent  the progeny 
QTL genotypes QQ Qq, and qq. Thus  the probabilities 
for each row sum to unity. 

Each  sire  passes on average  half  of  his breeding value 
for the quantitative trait to his progeny. Equation 1 
does  not  account for variance among sires due to genes 
other  than  the QTL. The likelihood was therefore mod- 
ified by subtracting half the sire’s polygenic breeding 
value, g b ,  from each observation. Estimates  of the sire’s 
breeding value from genetic evaluations based on infor- 
mation from ancestors and descendants will include the 
sire’s QTL genotype effect and are  therefore biased 
estimates of gb. Thus  an alternative estimate of g b  is 
required. For the situation here, where each sire  has 
many offspring, an appropriate estimate is g b  = x b  - Gh 
where x,, is the observed mean of the sire’s progeny 
and Gh is the  expected QTL genotype mean of the sire’s 
progeny, which is a  function of a, d and p (BOICHARD 
et al. 1990). This is  likely to be an effective way of parti- 
tioning out the effects  of  polygenes from the QTL effect 
in the sires because it uses two pieces of good and 
almost independent  information, namely the sire 
mean, which estimates the total genetic effect, and  the 
between-marker contrast within  this sire mean, which 
estimates the QTL  effect.  Because gb is conditional on 
the sire’s QTL genotype, it is different for each of the 
four summed terms of (1). The likelihood accounting 
for polygenic  effects thus becomes 
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TABLE 1 

Progeny QTL genotype  probabilities  conditional  on  sire  marker-QTL  genotype and own marker  genotype 

C =  

- 

Progeny  QTL  genotype Progeny  marker Sire 
Q4 44 genotype  genotype 

MM 
Mm M W m 4  

MM 
mm 

P p + r - 2pr l - p - r + P  mm 
P p + r - 2pr l - p - r + p r  MM 

[ tP( l  - [ t ( l  - p - r + 2pr) [ t ( l  - p ) r  
+ ( I  - t , p l   + ( 1  - t ) ( p  + r - 2pr)l +( I  - t ) ( 1  - p - r + rp ) ]  Mm M d m Q  

P ( 1  - 4 l - p - r + 2 f w  (1 - p)r  mm 
0 P 1 - P  MM 

0 P 1 - P  M m   M d m 4  
0 P 1 - P  mm - 

i=10 k = l  f 

The properties of this likelihood were explored  both 
by computation of its expectation as a function of pa- 
rameter estimates (deterministic simulations) and by 
stochastic simulations. The situations for which  simula- 
tions were performed  are summarized in Table 2 and 
described in more detail below. 

Deterministic simulations: Expectation of the log likeli- 
hood: A close approximation of the  expected value  of 
the  natural log likelihood, E(1og L ) ,  for a given set of 
parameter estimates is obtained by modifymg (1) to 
give the following equation: 

4 

h 

The derivation  of  this equation and the degree of approx- 
imation is explained in the APPENDIX. Note that now the 
lowercase  subscripts h, iandjindicate that the parameters 
are the true values and the uppercase superscripts and 
the indicate that these parameters are estimates or func- 
tions of estimates on which the value of the likelihood is 

conditional. Thus the symbols  in (3) take on the follow- 
ing meanings: h denotes the sire's true QTL genotype, 
and H the sire's  hypothesized  QTL  genotype; Ph denotes 
the expected frequency of sires  with  genotype h in the 
data (depending  on the real  value of p, as described 
above), and P H  denotes the probability that the sire  has 
genotype H, which is a function of the current estimate 
of p ,  denoted p? ttris the conditional probability of falling 
into  the@ QTL  class and the fth  marker-sire  class  given 
the current estimates of the parameters p and r, denoted 
p and and the hypothesized  sire  genotype, H, where Z 
= i - 3 h + 3H;J is an abbreviation of the density function 
defined previously  used  in (1) and (2) depending on 
whether the model takes account of  polygenic  effects 
(see  below) and f j  is the function fi given the estimates 
of their component parameters e.g, t43 = (1 - fl and n, 
is the expected number of observations  in the ith marker 
genotypic group  and is equal to  '/?Nt, for i = 1, 4, 7, and 
10; '/&for i = 2, 5, 8, and 11; and  '/2N(l - t )  for i = 

3, 6, 9, and 12, respectively.  Without  polygenic  effects 
(Equation I), = A x k  - pj )  and J?i = f ( x k  - j l j ) .  With 
polygenic  effects (Equation 21, J = f (xk  pl - &) and f j  
= f i x k  - jlJ - g b )  where gb = gb - - G. 

When sample size  is infinite, this expected log L, 
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TABLE 2 

Models,  family  structures  and  parameter values used  for simulations 

No. of Family 
Model  families size a d r P P U t 

Deterministic 
h2 = 0  20  250  0.5''  0.1" 0.1" 0.5" 0.0" 1 .Of' 

50 100 0.5"  0.1" 0.1" 0.5" 0.0" 1 .Of' 
0.3 

40 
0.3 

50 0.5"  0.1"  0.1"  0.5"  0.0" 1 .0" 
20  250  0.5 0.1 0.1  0.5  0.0 1 .0 0.3" 

0.3 

h' = 0.25 20  250  0.5"  0.1"  0.1"  0.5"  0.0" 1 .Of' 0.3 

h2 = 0  20  250  0.5  0.1 0.1 0.5 0.0 1 .0 0.3 
20  250 0.5 0.1 0.2  0.5 0.0 1.0  0.3 
20 100 0.5 0.1 0.1 0.5 0.0  1.0  0.3 
40 50 0.5 0.1 0.1 0.5 0.0 1.0  0.3 

h' = 0.25  20  250  0.5 0.1 0.1  0.5 0.0 1 .0 0.3 

h' = 0 indicates that the  data  were  simulated  without polygenes; hz = 0.25 indicates that the  data were simulated with polygenes, 

Stochastic 

which  accounted for 20% of the  residual  variation. 
The  likelihood was evaluated for a range of parameter estimates around these true values. 

because it is based on infinite sample size theory, is 
equivalent to the average of the  log L evaluated in an 
infinite number of replicates of stochastic data.  It is 
therefore useful for  examining  the  shape of the log L 
surface in infinite samples. Because it is the  shape of 
the surface around  the maximum which determines  the 
accuracy of the  parameter estimates, this method is thus 
a useful tool for  exploring  the  properties of the likeli- 
hood surface without having to resort to many  time- 
consuming replicates using stochastic data. The popula- 
tions used in this study are large but  not  infinite, in 
which  case the  expected log L is an approximation to 
the  true average likelihood. In the size  of data sets used 
in this study, this approximation  appears to be close 
enough to  have no appreciable  influence on the power 
and accuracy (see APPENDIX). 

Shape of the likelihood surface: Equation  3 was evaluated 
for values  of estimates f i ,  6, d, ?, j ,  and 8, which ranged 
from +0.25 of the  true values p = 0, a = 0.5, d = 0.1, 
r = 0.1, p = 0.5 and n = 1 in  increments of 0.025 for 
three family structures ( N  = 250, s = 20; N = 50, s = 
100; N = 40, s = 50) without a polygenic effect in the 
model and  one structure ( N  = 250, s = 20) with a 
polygenic effect in  the  model  (Table 2).  These  data 
structures and parameter values are  considered to be 
typical  of  large-scale studies likely  to be used for map- 
ping QTL in forest trees or animals. The marker allele 
frequency, t, was 0.3 in all  cases. For each parameter 
varied, all other parameters were held  at  their  true val- 
ues. In these simulations gb was set to 0 because for 
deterministic evaluations, this parameter is, in effect, 
known. log L was then  plotted against each parameter 
to give "uniparameter profile likelihoods" assuming all 
other parameters are known. Three-dimensional plots 
of log L as a function of two parameters were  also pro- 
duced  for a few pairs of parameters (6  and d, d and ?, 
f i  and d) to examine  the  shape of the likelihood surface 

with respect to these parameters  for  the presence of 
ridges or local maxima. 

Accuracy of the estimates: From the  uniparameter pro- 
file likelihoods, the 95% confidence intervals were  cal- 
culated as the  parameter value at which the log I ,  
equalled  the maximum log L (log &) plus half the 95% 
chi-squared value (x2) on  one degree of freedom ( i . ~ . ,  
log I,,,, = log 4, + 1.92). This test  statistic is based on 
the fact that  for large samples, the difference between 
log L maximized for all but  one  parameter  (log L , ) ,  
and log L maximized for all parameters  (log &,) is as- 
ymptotically distributed as -'/& with one degree of 
freedom (WILE 1938). Assuming normality of the esti- 
mate's sampling distribution,  the  standard  error of the 
estimate is expected to be half the 95% confidence 
interval (KENDALL and STUART 1973). Approximate 
standard  errors  and  the correlations between them 
were  also calculated from the  approximate variance- 
covariance matrix of the estimates, which is obtained 
from the inverse of the matrix of all the  second partial 
derivatives of the log likelihood function ( i . e . ,  the ob- 
served information  matrix) (KENDALL. and STLJART 
1973).  These  are lower bound  standard  errors ac- 
cording to the Cramer-Rao inequality. For the simula- 
tion conditions used above, these second derivatives 
were obtained by evaluating (3)  at points on the surface 
at small distances (?0.005) away from the  true values 
for all  possible  pairwise combinations of the parame- 
ters. This matrix was then inverted to give the approxi- 
mate variances and covariances of the  parameter esti- 
mates and from these the  standard  errors  of  the 
estimates and correlations between them were  calcu- 
lated. When the matrix of numerically derived second 
derivatives was not positive definite,  the interval at 
which they were evaluated was increased to 0.01. The 
standard  errors  and correlations were the same to the 
third decimal place for  the intervals of 0.005 and 0.01 
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in  cases where the matrix was positive definite for both 
intervals, indicating that  the choice of interval size did 
not have detectable effects on the results. The estimates 
of standard  errors derived from the information matrix 
differ  from those calculated from the confidence inter- 
vals  by the fact that they are  not based on the assump- 
tion that all other parameters are known. To test the 
effect on the accuracy  of a single parameter of fixing 
all other parameters us. simultaneously estimating all 
parameters, standard  errors were calculated from the 
reciprocal of only the diagonals of the information ma- 
trix instead of the inverse  of the whole matrix. This 
effectively ignores any covariances between parameters. 
Standard  errors derived in this way and those derived 
from the confidence intervals are called “uniparameter 
standard  errors” from here  on,  and those derived from 
the full information matrix are called “multiparameter 
standard  errors”. 

Effect of marker allele frequency: The effect of using 
wrong values  of the  marker allele frequency, t, was inves- 
tigated by replacing t with i ranging from 0 to 1 in 
intervals of 0.1 in ( 3 ) .  Maximum likelihood estimates 
of each of the parameters were found while holding all 
other parameters constant. The bias  in each parameter 
over the  range of iwas calculated. 

Stochastic  simulations: Stochastic simulations were 
performed to illustrate that estimates of  all parameters 
could be  obtained by numerical maximization in sto- 
chastic data. Also the results from stochastic simulations 
were used to compare with those from the deterministic 
simulations. Data on progeny from multiple half-sib 
families of equal size  were generated by first randomly 
assigning QTL genotypes to sires according to probabil- 
ities p’, p (  1 - p ) ,  p(l - p )  and (1 - p)2 ,  and  then 
generating progeny from each sire by random sampling 
from independent  normal distributions with means of 
pj ( j  = 1, 2 or 3 for QTL genotypes QQ Qq or qq) and 
variance u2 in the expected proportions given the sire’s 
genotype and frequency of the QTL  alleles  in the dam 
population. Marker genotypes were then assigned at 
random  according  to  expected  frequencies given the 
progeny’s QTL genotype. Three  different family  sizes 
( N  = 50, 100, and  250), two numbers of  families (s = 
20 and 40) and two recombination rates ( r  = 0.1 and 
0.2)  were simulated (Table 2). The  other parameters 
were set at p = 0, a = 0.5, d = 0.1, p = 0.5, u = 1 and 
t = 0.3. The above simulations assumed that, except for 
the linked QTL, sires  all had equal breeding values. A 
further simulation with N = 250, s = 20, r = 0.1, p = 
O , a = 0 . 5 , d = 0 . 1 , p = 0 . 5 , ~ = 1 a n d t = 0 . 3 , w a s  
performed  accounting  for polygenes by adding  a half 
of a sire value randomly sampled from a  normal distri- 
bution with mean of 0 and variance 1/4uz = 0.0625 ( i e . ,  
h2 = 0.25). Because random mating between sires and 
dams was assumed, it was not necessary to  account  for 
genetic variation among dams for polygenes. 

Fifteen replicate populations were generated for each 

combination of values.  For each replicate, maximum 
likelihood estimates of ( p  a ) ,  ( p  i- d), ( p  A a ) ,  f, j 
and 6 were obtained by numerically maximizing the 
logarithm of the likelihood described in (11, [or (2) 
for the simulations with a polygenic effect] using the 
iterative numerical maximization subroutine GEMINI 
(LALOUEL 1979). This routine  guarantees to find the 
global maximum and extensive testing using different 
starting values on same sets of data indicated that stop 
ping at local  maxima was extremely unlikely. Thus for 
the replicates reported  here,  prior values  were chosen 
at  random from a range spanning the possible parame- 
ter space given the limits imposed by the overall mean 
and variance of the observed data. Convergence was 
considered to be reached when the normalized gradi- 
ent of the likelihood was <lop5. Parameters were con- 
strained to wide boundaries, and in the case  of r and 
p,  were  allowed to go out of the theoretical parameter 
space during iterations to facilitate convergence. If con- 
vergence was reached  at values outside the  parameter 
space, iteration was restarted with a different set of pri- 
ors. Standard  errors were estimated from the inverted 
matrix of the numerically derived second derivatives  of 
the function close  to the maximum (LALOUEL 1979). 
Predicted standard  errors of combined parameters 
were calculated from the predicted variances and co- 
variances  of individual parameters. For example, the 
standard  error  of ( p  I a) was calculated as the square 
root of the sums of the  squared  standard  errors of ci 
and b plus twice the covariance  between them. 

For all replicates the likelihood was also  maximized 
with rfixed  at r = 0.5 to obtain a x: statistic  with  which 
to test the null hypothesis of no linkage between the 
marker and the QTL. As stated above, the four terms 
which are summed in the likelihood equations (1) and 
(2) represent  the  four possible  QTL genotypes for each 
sire. The most  likely  QTL sire genotype was designated 
as that  corresponding to the maximum of the  four sub- 
likelihoods. 

RESULTS 

Deterministic  simulations: All  of the deterministic 
simulations performed in this  study took <5 min to 
run  on  a personal computer with a 80486 processor. 
Thus  the  method was  very rapid and  not limited by 
computer  requirements. 

Standard errors from conJidence intervals: Figure 1 shows 
the log L profiles as functions of each of the six parame- 
ters b, ci, 2, f, f i  and 6 for two family structures (20 X 
250 and 50 X 100) with and without a polygenic effect. 
The likelihood always maximized at  the  true value  of 
the parameters indicating that  the expected value of 
the log likelihood as  given in (3) calculated using deter- 
ministic simulation yielded unbiased maximum likeli- 
hood estimates, despite it being an approximation. Also 
shown in Figure 1 are  the confidence intervals ( a 2 0  
and C150 for  the two family structures, respectively) 
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FIGURE 1.-Uniparameter profiles of the expected  log likelihood (log L)  with respect to parameter estimates assuming all 
other parameters known for  data sets with  5000 records divided into  either 20 families without (0-0) and with (X-X) 
a polygenic effect fitted in  the model or 50 families (- - - -) without a polygenic effect. True values  of parameters were a = 0.5, 
d = 0.1, r = 0.1, p = 0.5, t = 0.3, p = 0 and g = 1. Confidence intervals for estimates from  data with 20 families (CI20) and 
50 families (CI50) are shown as horizontal lines. 
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TABLE 3 

Standard errors and correlations from deterministic simulations 

No. of Family 
Method  families  size ci 2 i? P P B 

Uniparameter 
From CIS 
From  matrix 
From CIS 
From  matrix 
From CIS 
From matrix 

From CI's 
From matrix 

Multiparameter 

h2 = 0.25 

h2 = 0.25 

h' = 0.25 

h2 = 0.25 

h2 = 0.25 

h2 = 0.25 

h2 = 0.25 

20 

50 

40 

20 

20 
50 
40 
20 

20 
50 
40 
20 

20 
50 
40 
20 

20 
50 
40 
20 

20 
50 
40 
20 

20 
50 
40 
20 

250 

100 

50 

250 

250 
100 
50 

250 

250 
100 
50 

250 

250 
100 
50 

250 

250 
100 
50 

250 

250 
100 
50 

250 

250 
100 
50 

250 

Standard  errors 

0.031 0.027 
0.031 0.028 
0.030 0.027 
0.031 0.028 
0.047 0.043 
0.048 0.045 

0.045 0.098 
0.046 0.098 

0.042 0.100 
0.041 0.100 
0.064 0.159 
0.147 0.104 

Correlations 

1 .oo -0.096 
1 .oo -0.088 
1 .oo -0.085 
1 .oo -0.282 

1 .oo 
1 .oo 
1 .oo 
1 .oo 

0.053 
0.053 
0.053 
0.053 
0.085 
0.086 

0.103 
0.053 

0.061 
0.061 
0.097 
0.122 

0.448 
0.467 
0.474 
0.898 

-0.016 
-0.016 

0.017 
-0.243 

1 .oo 
1 .oo 
1 .oo 
1 .oo 

0.026 
0.027 
0.024 
0.025 
0.046 
0.046 

0.022 
0.020 

0.077 
0.049 
0.056 
0.027 

0.329 
0.218 
0.157 

-0.064 

-0.057 
-0.037 
-0.026 

0.012 

-0.020 
-0.013 
-0.009 
-0.087 

1 .oo 
1 .oo 
1 .oo 
1 .oo 

0.015 
0.015 
0.014 
0.015 
0.023 
0.023 

0.014 
0.015 

0.063 
0.057 
0.086 
0.020 

-0.128 
-0.022 

0.023 
0.039 

-0.759 
-0.863 
-0.908 
-0.005 

0.025 
0.020 
0.018 
0.058 

-0.564 
-0.402 
-0.298 
-0.677 

1 .oo 
1 .oo 
1 .oo 
1 .oo 

0.010 
0.01 1 
0.011 
0.011 
0.019 
0.019 

0.012 
0.01 1 

0.013 
0.013 
0.021 
0.029 

-0.538 
-0.536 
-0.535 
-0.920 

-0.117 
-0.122 
-0.123 

0.187 

-0.354 
-0.357 
-0.358 
-0.850 

-0.112 
-0.072 
-0.051 

0.069 

0.163 
0.140 
0.131 

-0.043 

Uniparameter  and  multiparameter lower  bound  standard  errors  of  parameter  estimates,  and  correlations  between  them, 
derived  from  deterministic  simulations  for  various  models  and  family  structures.  True  parameter  values  were p = 0.0, a = 0.5, 
d = 0.1, r = 0.1, p = 0.5, o = 1 and h' = 0, unless  otherwise  indicated. 

around  the maximum likelihood estimates. The stan- 
dard  errors derived from these  confidence intervals 
(uniparameter  standard  errors),  and those for  the 40 
sires X 50 progeny structure (not shown in Figure 1) 
are given in  Table 3. Clearly, r is the most difficult 
parameter to estimate accurately because of the flatness 
of the likelihood surface across the  range of  values  (Fig- 
ure 1C) and largest standard  error.  The profile likeli- 
hoods  for 2, d and f i  were all similar in curvature (Figure 
1, A, B and D) and  had similar confidence intervals, 
indicating  that these parameters  are estimated to ap- 
proximately the same degree of accuracy. The profiles 

for /i and b were steepest reflecting the greater informa- 
tion contributing  to these parameters (Figure l ,  E and 
F).  The effect of decreasing total experimental size 
from 5000 to 2000 was to increase the standard  errors 
by -50% for all parameters  except forb.  The effect of 
increasing the  number of families on accuracy of  all 
parameters was negligible. Allowing for  a polygenic ef- 
fect  in  the  model  seemed to decrease the accuracy of 
2 and d, increase the accuracy of p and  do nothing  to 
the accuracy of ?, jl, and 8, although these effects could 
not  be tested for statistical significance. The reduction 
in accuracy of ci and d can be  explained by the fact that 
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35 

FIGURE 2.-Expected log likelihood surface with respect  to  estimates of two parameters  at  a time. (A-C): No polygenic effect 
was fitted whereas  in  D  it was.  Data sets comprised 5000 records  divided into 20 families with  true parameter  values of a = 0.5, 
d = 0 . 1 , r = 0 . 1 , p = O . 5 , t = 0 . 3 , p = O a n d a = l .  

by estimating the polygenic effect, g b ,  as a function of 
the sire’s major genotype mean, G b ,  this conditions out 
some of the information on the  component parameters 
of this mean, ci, d, and $. While this explains the de- 
crease in accuracy  of ci and 8, it is not clear why the 
accuracy  of $ increases when this polygenic effect is 
included. Accuracies  of ?, ji, and 6 are not affected by 
the  incorporation of a polygenic effect because these 
parameters are  not  components of the  adjustment 
term, g b .  

Standard errors and correlations from the information  ma- 
trix: Approximate standard  errors of the estimates un- 
der the  four sets  of deterministically simulated condi- 
tions (Table 2) and the matrix of correlations between 
them  are given  in Table 3. Uniparameter  standard  er- 
rors derived from the diagonals of the information ma- 
trix  were similar to those derived from the confidence 
intervals from the profile likelihoods. The multiparame- 
ter standard  errors were considerably higher  than  the 

uniparameter  standard  errors, indicating that confi- 
dence intervals derived from profile likelihoods gener- 
ated by assuming all other parameters are known will 
overestimate the accuracy of the estimates from a mul- 
tiparameter model when the  parameter estimates are 
not  independent, i.e., correlated. While  in general 
there were low correlations between parameter esti- 
mates across the range of conditions tested, there were 
some notable exceptions: a high correlation (-0.9) be- 
tween jl and d, and medium correlations (50.4 to 0.6) 
between 6, ?and 6. This first correlation is presumably 
because when p = 0.5, none of the between-marker 
contrasts are influenced by d so that  the information 
on d relies on the mean of the M m  group of progeny 
from heterozygous sires. This mean has an expectation 
of ( p  i ’/&) so that d and jl are  confounded. This 
correlation is expected to be lower when p is not equal 
to 0.5 because the between-marker contrasts then be- 
come functions of d. When the polygenic effect is fitted, 
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this correlation is reduced to -0 because the expecta- 
tion of the mean becomes jl + 1/2d + - ‘ / 2 d  = jl 
+ &. Thus d and fi  are  no  longer  confounded.  The 
correlations between 6, Pand 6 arise from the fact that 
the  contrast yielding most information on these param- 
eters is MM vs. mm, which has an expected value  of (1 
- 2r )a /o .  Thus  high values  of ci are consistent with 
high values of P and low values  of 6. These  correlations 
become  higher (a 20.9) when much of the informa- 
tion on ci is conditioned  out by accounting  for  the poly- 
genic  effect. Even though these correlations exist and 
influence  the accuracy of the estimates, the fact that 
they are  not perfect indicates that  there is some inde- 
pendent information  contributing  to each parameter 
and thus  each of the  parameters is, in theory, estimable. 
These results show that  the accuracy of individual pa- 
rameter estimates is partly dependent  on  the  data struc- 
ture  and partly on  the statistical model fitted to the 
data. 

Figure 2 shows three-dimensional representations of 
the likelihood surface with respect to two parameters 
at a time (ci and d, ci and P, jl and 4. The figures 
illustrate that  the surface is  relatively uniform in curva- 
ture and has a single global maximum. This indicates 
that,  in theory at least, the  approach to the maximum 
during  the estimation procedure  should be relatively 
unimpeded. Figure 2, C and D, shows the relationship 
between 0 and 2 with and without a polygenic effect 
fitted, respectively. It can be seen that while there is a 
ridge  along  the axis  of d in both figures, that  the  orien- 
tation of the ridge when the polygenic effect is not 
fitted (Figure 1C) is on the diagonal of jl and dwhereas 
it is almost parallel with d when a polygenic effect is 
fitted (Figure 1D). This reflects the  dependence be- 
tween jl and d in the first case and their  independence 
in the  second case.  Similarly, the  orientation of the 
profiles for ci and 2 in the same plane as their corre- 
sponding axes in Figure lA, and  the slightly diagonal 
orientation  of  the profiles for P in Figure lB,  respec- 
tively, reflect the  independence  and  moderate  depen- 
dence between these pairs of parameters. Thus these 
three-dimensional figures are useful to illustrate the 
behavior of maximum likelihood estimators in multipa- 
rameter models. 

Effect of wrong marker allele  frequency: Figure 3 
shows the bias in estimates of ci, ? and j as functions 
of assumed marker allele frequency, f, when the  true 
frequency was t = 0.3. It was found  that P was  very 
sensitive to f, always being  inflated by wrong allele fre- 
quencies, 6 was moderately sensitive, and always de- 
flated, and f i  was relatively unaffected. There were no 
effects on d, 0 and 6. Thus inaccuracies in estimated 
marker allele frequencies will cause the QTL to appear 
smaller and less  tightly linked  than it really  is. The mag- 
nitude of the bias in recombination  fraction was of  the 
order of one  standard  error in the case presented  here. 

Stochastic simulations: Stochastic simulations were 
performed on a  Sun SparcStation 2 computer.  On this 

O.*l r 

, 
-0.1 , , , , , , , , , , , , , , , , , , , , , , , , , 

‘\,a 

0.0 0.2 0.4 0.6 0.8 1 .o 
Marker  allele  frequency 

FIGURE 3.-Bias in estimates of 2, i and as functions of 
assumed  marker  allele frequency, 6 for data sets of 5000 rec- 
ords divided into 20 families and true parameter values of a 
= 0 . 5 , d = 0 . 1 , r = 0 . 1 , p = 0 . 5 , t = 0 . 3 , p = 0 0 n d u = l .  

machine, which processes at 2.4 X lo6 floating  point 
operations  per  second,  a typical run time per replicate 
for 30 iterations or -350 evaluations of the likelihood 
on 5000 records was -6 min of CPU. Generally only 
one  run was required  for  a replicate to reach conver- 
gence,  although -10% of runs  had to be restarted with 
different  starting values because of parameters esti- 
mates exiting the parameter space. 

Estimates and standard mors: The estimates from the 
simulations, averaged over replicates, are given in Table 
4. The success in obtaining estimates similar to simu- 
lated values  shows that  the half-sib likelihood model 
presented in (1) and (2) can separate  the effects of the 
individual parameters and that estimation by numerical 
maximization is computationally feasible. Close agree- 
ment between the means over replicates of simulated 
and estimated parameter values indicates that  the esti- 
mates were unbiased or  at least that any  bias was negligi- 
ble (Table 4). This applied equally in models with and 
without the polygenic effect, indicating that  the  method 
of approximating and adjusting for the polygenic ef- 
fects was successful in separating  the major (QTL) ge- 
notype effect from polygenic effects. 

Standard  errors of the estimates are also  given in 
Table 4. These  standard  errors  are derived from various 
sources. The standard error  on the simulated data repli- 
cate mean (SSE) simply reflects the variation between 
replicates in the  true  parameters due to sampling in 
the simulated data and is based on only 15 observations. 
The  standard  error  on  the estimated parameter (OSE) 
is also based on 15 observations and is the observed 
between-replicate variation in estimates of the parame- 
ters. The estimated standard error (ESE) is that esti- 
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TABLE 4 

Parameter  estimates and standard errors  from  stochastic simulations 

No. families X 
Parameter  estimated 

No.  progeny/sire ( P  4 (P  4 (P  4 5 P B 

20 X 250 
Data ? SSE" 
Estimate t OSEh 
ESE ? SE' 
PSE" 

20 X 250, r = 0.2 
Data ? SSE 
Estimate ? OSE 
ESE ? SE 
PSE 

20 X 250, hz = 0.25 
Data +- SSE 
Estimate ? OSE 
ESE ? SE 
PSE 

20 x 100 
Data t SSE 
Estimate ? OSE 
ESE ? SE 
PSE 

40 X 50 
Data t SSE 
Estimate -f. OSE 
ESE ? SE 
PSE 

0.505 ? 0.036 
0.529 t 0.074 
0.095 t 0.036 

0.071 

0.503 ? 0.034 
0.484 ? 0.094 
0.106 ? 0.056 

0.073 

0.512 ? 0.032 
0.491 ? 0.091 
0.152 t 0.057 

0.149 

0.483 2 0.051 
0.418 ? 0.208 
0.160 ? 0.092 

0.113 

0.514 2 0.035 
0.411 t 0.112 
0.178 ? 0.044 

0.109 

0.100 ? 0.022 
0.075 t 0.055 
0.074 2 0.014 

0.067 

0.099 t 0.024 
0.073 2 0.107 
0.092 ? 0.027 

0.069 

0.105 ? 0.018 
0.146 ? 0.146 
0.165 ? 0.049 

0.106 

0.115 ? 0.039 
0.119 ? 0.135 
0.149 ? 0.068 

0.093 

0.096 t 0.024 
0.051 ? 0.098 
0.155 2 0.074 

0.088 

-0.503 t 0.017 
-0.488 ? 0.119 

0.082 ? 0.021 
0.080 

-0.491 ? 0.023 
-0.461 t 0.124 

0.097 ? 0.028 
0.081 

-0.496 F- 0.032 
-0.490 ? 0.096 

0.153 t 0.046 
0.148 

-0.503 ? 0.065 
-0.468 ? 0.167 

0.110 

-0.506 ? 0.033 
-0.393 ? 0.199 

0.198 ? 0.111 

0.162 ? 0.088 

0.106 

0.103 ? 0.007 
0.115 ? 0.057 
0.073 +- 0.011 

0.061 

0.199 t 0.008 
0.199 ? 0.078 
0.083 ? 0.019 

0.059 

0.100 t 0.004 
0.151 ? 0.089 
0.120 ? 0.036 

0.122 

0.100 t 0.007 
0.099 2 0.124 
0.154 t 0.040 

0.097 

0.103 ? 0.011 
0.138 f 0.094 
0.205 ? 0.090 

0.097 

0.495 t 0.008 
0.500 ? 0.088 
0.087 ? 0.023 

0.077 

0.498 +- 0.010 
0.529 ? 0.101 
0.088 +- 0.028 

0.077 

0.502 t 0.007 
0.569 ? 0.083 
0.103 5 0.026 

0.028 

0.496 ? 0.009 
0.508 t 0.074 
0.096 ? 0.046 

0.079 

0.494 t 0.006 
0.522 t 0.060 
0.084 2 0.038 

0.056 

0.999 ? 0.013 
1.000 t 0.013 
0.014 ? 0.002 

0.013 

0.998 ? 0.012 
1.004 ? 0.014 
0.024 ? 0.034 

0.013 

1.003 5 0.011 
1.004 t 0.017 
0.027 ? 0.008 

0.029 

0.994 ? 0.013 
0.996 ? 0.020 
0.027 ? 0.011 

0.021 

1.000 rt 0.014 
1.017 ? 0.028 
0.027 ? 0.007 

0.021 

Replicate means  (with  replicate  standard errors) of parameters  in  the  data  and  their  estimates  from  stochastic  simulations, 
their maximum likelihood  estimates,  and  estimated  and  predicted  standard  errors  for  various family sizes  and  number of families 
for true values  of p = 0.0, a = 0.5, d = 0.1, r = 0.1, p = 0.5, ~7 = 1 and h2 = 0, unless  otherwise  indicated. 

"Mean  and  standard  error (SSE)  of the  replicates of simulated  data  (see text). 
'Estimates  and  observed  standard  error of parameters, OSE. 
'Estimated  standard  errors (ESE) of parameters  from  information  matrix  using GEMINI. 
'I Multiparameter  predicted  standard  errors (PSE) from  deterministic  simulations. 

mated by GEMINI from the  shape of the likelihood 
surface around  the maximum within each replicate of 
stochastic simulations, averaged over 15 replicates. The 
predicted  standard error (PSE) is the  multiparameter 
standard error derived from the deterministic simula- 
tions, given  previously in Table 3. 

The standard  errors  for simulated data on 5000 ob- 
servations were in  general  agreement with those pre- 
dicted from the deterministic simulations, which are 
also  shown in Table 4. Where discrepancies occurred 
between empirical (OSE and ESE) and predicted stan- 
dard  errors,  the empirical standard  errors (ie., from 
the stochastic simulations) were  usually higher. How- 
ever, for the data sets  with  2000 observations, the empir- 
ical standard  errors were always considerably higher 
than  the  predicted  standard  errors. This difference was 
even greater when smaller families  were used. These 
results confirm that  the  predicted  standard  errors from 
the  information matrix are lower bound  standard  er- 
rors. The underestimation is believed to be because, in 
the calculation of the  expected log likelihood based on 
infinite sampling theory, sampling variation present in 

stochastic data due  to sampling among sire genotypes 
and  among progeny QTL and marker genotypes is not 
represented. Despite this underestimation,  the pre- 
dicted  standard  errors were not beyond the lower 
bound 95% confidence limit of the empirical standard 
errors and so are  not likely to be misleading if they are 
correctly treated as  lower bound estimates. 

As rwas increased from 0.1 to 0.2, the  standard  errors 
of  all parameters  changed very little. The effects  of vary- 
ing a, d and p were not investigated although this can 
readily be done by using the theoretical method based 
on  the expected value of log L presented  here. Since 
it is possible to fix D at unity and measure a and d in 
units of g, the effect of  varying D need  not be consid- 
ered. 

The log likelihoods, under  the full and reduced mod- 
els, and probabilities for  the likelihood ratio chi- 
squared tests, averaged over replicates, are given in Ta- 
ble 5 for all parameter combinations and data set sizes 
stochastically simulated. These figures give an average 
test statistic for  the  different set of simulated conditions 
and thereby an indication of the average power of the 
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TABLE 5 

Log likelihood  ratio  tests  and  proportion of correctly  predicted  genotypes 

No. correct  sire 
Family structure log Lo log LI P genotypes/no. sires 

20 X 250 -7313.8 -7320.6 0.039 19.5/20 
20 X 250, r = 0.2 -7320.2 -7323.5 0.010 18.9/20 
20 X 250, h2 = 0.25 -7311.3 -7324.8 0.004 12.7/20 
20 x 100 -2917.1 -2921.0 0.028 16.3/20 
40 X 50 -2923.4 -2921.1 0.194 26.5/40 

Family structures  are  number of sires X number of  progeny for sire. Replicate  means  of log likelihoods of 
the full model  (log Lo) and the  reduced  model  with r = 0.5 (log L,) ,  the probability, E‘, of the  likelihood 
ratio  test for linkage  being  significant, and  the proportion of sire genotypes ascertained correctly,  for  true 
values of /I = 0.0, a = 0.5, d = 0.1, r = 0.1, p = 0.5, D = 1 and h‘ = 0, unless  otherwise indicated. 
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experiment under these conditions. The likelihood ra- 
tio test was significant at  the 5% level for all combina- 
tions, except  for  the simulations of 40 sires  with 50 
progeny per sire when it was significant at  the 20% 
level, on average. The  corresponding power of these 
data sets, calculated using the  approximate  method of 
WELLER et al. (1990) was >90% for all  sets except the 
40 X 50 data set. 

The  number of sire genotypes ascertained correctly, 
averaged over replicates, are also  given in Table 5 for 
all parameter combinations and  data set sizes simulated. 
Prediction of sire genotype was 95% correct  for  the 
data sets  with 20 sires and 250 progeny per sire. As 
expected,  the  proportion of correct assignments de- 
creased with a  reduction in the  number of records. For 
the same number of records, the  proportion of correct 
predictions was higher with more progeny per sire. This 
corresponds  to  the results given  above  with respect to 
standard  errors of parameter estimates and likelihood 
ratio test probabilities. When adjustment for a poly- 
genic effect was included in the  model,  the  number of 
correctly ascertained sire genotypes was much lower. 
Presumably, this is because a major source of informa- 
tion on sire genotype, the sire genotype mean, is re- 
moved by the adjustment. Thus, for the purposes of 
sire genotype determination, it may be better to fit a 
model without a polygenic effect in order to determine 
which sires have high probabilities of being heterozy- 
gous. 

DISCUSSION 

This study has demonstrated  that it is feasible, both 
computationally and theoretically, to obtain unbiased 
estimates of the six parameters which describe a QTL 
in a segregating outbred population. Attention was fo- 
cused on the accuracy of the estimates of these parame- 
ters because this is crucial to the  interpretation  of  the 
QTL’s characteristics and also  how  effectively the QTL 
is used in subsequent exploitative breeding programs. 
The development of a deterministic method based on 
infinite population sampling theory for  predicting  the 
lower bound  standard  errors of estimates was used to 

demonstrate  the various factors influencing accuracy. 
These factors are summarized and discussed  below. 
However, the value  of the deterministic technique re- 
quires discussion first, because it forms part  of the basis 
for the conclusions drawn about those factors affecting 
accuracy. 

Deterministic  simulation: The deterministic method 
was based on infinite sampling in that it predicted  num- 
bers of observations with a given  value  based on the 
density of the  normal distribution and  then used these 
“perfect” samples to perform a weighted analysis  of 
the whole population. This implies that all the sampling 
variation in the  data was due to random normal devia- 
tions within  QTL genotypes within  families.  However, 
in finite populations, there is also expected to be a 
sampling effect on the  numbers of animals that fall into 
each of the progeny marker-QTL genotype groups and 
also on the  numbers of sires falling into each sire QTL 
genotype group. These multinomial sampling effects 
were not  accounted for in the calculation of the ex- 
pected log likelihood (3) because the  proportions in 
each group were considered to be fixed as dictated by 
the frequency parameters, p and t. While  in data sets 
of 5000 observations, this did not seem to be  a  problem, 
in data sets  of 2000, it is the most  likely  cause of the 
clear underestimation of the  predicted  standard  errors 
compared with the empirical standard  errors, especially 
when the families  were smaller. The  intermediate values 
of p and t used in this  study  would  have exacerbated 
this sampling variation problem. Modification  of (3) 
to take these sampling effects into  account could be 
performed: to do so would  involve calculating the ex- 
pected log likelihood for values of n,c9 and sPh taken 
over the whole range of the  appropriate discrete 
multinomial distribution, weighting accordingly by the 
multinomial probabilities of observing each value, and 
then summing to obtain an overall weighted likelihood. 
This would be considerably more complex than  the 
method used here  but deserves further investigation to 
see whether it accounts for  the underestimation of the 
standard  errors  found using deterministic simulation. 

Even though  the  standard  errors predicted from de- 
terministic simulation were  lower bound  standard  er- 
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rors, these estimates are  considered to be useful for 
predicting  the minimum size of experiment  required 
to obtain  a given  level  of accuracy of estimation of  QTL 
parameters. Also, the fact that they are lower bound 
standard  errors does not devalue the results concerning 
their behavior with respect to data  structure, statistical 
model used, and their  relationship with each  other. 
This seems to be true because of the similar (though 
not always parallel) behavior of the empirical standard 
errors with changes in these conditions. Thus  the con- 
clusions drawn below on  the factors influencing accu- 
racy are  considered valid. 

Factors  influencing  accuracy of parameter  estimates: 
The study identified five separate  (though not  indepen- 
dent) influences on  standard  errors of the  parameters. 
The first was the  nature  and  magnitude of the parame- 
ter itself. Recombination rate, r, was  by far  the most 
inaccurate  parameter and, even with  5000 observations, 
could not  be estimated to an accuracy that was able 
to exclude 0 recombination from the  95%  confidence 
interval. In this study, only a single marker  adjacent to 
the QTL was considered. However, most other studies 
where accuracy has been  examined have  also consid- 
ered two markers which bracket  the QTL (KNOTT and 
HALEY 1992a; VAN OOIJEN 1992; DARVASI et al. 1993) in 
which  case standard  errors  are  reduced,  though  are still 
large (0.05 -0.15) relative to the recombination fraction 
itself. For example, DARVASI et al. (1993) estimated stan- 
dard  errors of  0.11 and 0.05 for  a  gene with an effect 
of 0.5 standard deviations located at  a  recombination 
distance of  -0.1 from a single marker and bracket 
markers space 20  cM apart, respectively, in  a backcross 
population of 1000 informative individuals. The closest 
situation in this  study is that  for  a  gene effect of 0.5 
standard deviations at a  recombination distance of 0.1 
in a  population of  40 sires, only 20  of which  were infor- 
mative,  with  50 progeny each, where the  standard  error 
was 0.10. Thus  the results presented here  concur with 
those of DARVASI et al. (1993) and VAN OOIJEN (1992) 
that  for most feasible experimental sizes, even when two 
markers bracket the QTL, the resolution of mapping  a 
QTL  is near  the limit of the  marker  map itself (10-20 
cM) and therefore other techniques  need to be em- 
ployed for  fine  mapping of the  gene. 

In contrast, reasonably accurate estimates of the  gene 
effects, a and d, can be obtained. Using the examples 
above, the  standard  errors on a were found to be 0.06 
and 0.05 in this and  the study  of  DARVASI et al. (1993), 
respectively. This is -10% of the  parameter itself, which 
is typical  of the accuracy of many  of the  parameters used 
in routine genetic prediction analyses.  Several authors 
(e.g., SMITH and SIMPSON 1986) have pointed out  the 
importance of the accuracy of QTL parameters in pre- 
dicting breeding values based on marker-QTL linkages, 
but most of the loss in prediction accuracy is likely to 
arise from inaccurate estimates of recombination  rate 
rather  than  gene effect, as the  consequences  of infer- 
ring  a  recombinant individual us. a  nonrecombinant 

individual are  far  greater  than overestimating or  under- 
estimating by a small fraction  the value of an individual. 
The  influence of the  magnitude of the  gene effect on 
accuracy was not investigated directly. However,  as the 
gene  effect decreases, the power of the analysis  also 
decreases because the between-marker contrast, which 
is the main source of information, is reduced also. This 
reduction in power is similar to that caused by a  de- 
crease in experimental size; this was investigated in this 
study and shown to cause a decrease in accuracy. 

The population  mean and residual standard devia- 
tion were estimated relatively accurately as expected 
from the fact that all individuals in the  data  contribute 
information to these parameters, not  just those from 
heterozygous sires. Though  not investigated, the accu- 
racy  of the QTL allele frequency, p,  is expected to de- 
crease as the value  of p tends towards extremes. This 
is because the frequency of informative families will 
decrease. It is expected  that  the accuracy  of a, d and r 
will also decrease for  the same reason. It is worth noting 
that  accurate estimation of p is  very important in some 
situations because it determines how much scope for 
genetic  improvement  there is to bring  the favorable 
QTL to fixation and therefore  the value of a marker- 
assisted within-breed improvement  program. 

The second factor affecting accuracy of individual 
parameters is the  correlation with other parameters. 
This study is the first to demonstrate  that  strong sam- 
pling correlations exist between some parameters. This 
result means that  the accuracy of parameters  cannot be 
considered in isolation, because correlations with other 
parameters cause a decrease in accuracy of the other 
parameters. The implications are  that if one parameter 
is poorly estimated or biased for some reason,  then 
correlated  parameters will also be affected. The rela- 
tionships between parameters must be considered in 
the  prediction of response to breeding  programs  that 
attempt to incorporate  information  on several parame- 
ters simultaneously. 

The third  factor affecting accuracy is total experimen- 
tal  size, and this influence is large. When experimental 
size was increased by a  factor of 2.5, the accuracy of 
all parameters improved. It was found  that  parameters 
slightly increased in accuracy  with an increase in family 
size or decrease in number of families when the total 
number of progeny is held  constant, reflecting the im- 
portance of  within-family information to estimate most 
parameters. These results are concomitant with a de- 
crease in power  as  family  size decreases as  also  shown 
by SOLLER and GENIZI (1978) and WELLER et al. (1990). 
It is expected  that  the  influence of family  size on accu- 
racy  would be  more noticeable when the total experi- 
mental size  is smaller than  that used in the  present 
study. 

The  fourth  influence  found to affect accuracy was the 
choice of statistical model. When there  are polygenes 
causing between-family differences, it is necessary  to 
adjust for  the average family effect because ignoring 
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this can lead to overestimation of the QTL effect 
(KNOTT et al. 1990; KNOTT and HALEY 199213). Here  the 
adjustment used was to subtract  the sire’s mean, which 
is similar to the  “modal  method”  for adjusting for sire 
effects used by HOESCHELE (1988) and LE ROY et al. 
(1989)  for segregation analyses to detect major genes 
without the  aid of markers.  In this study, it was shown 
to be an effective way  of accounting  for between-family 
variation without prior knowledge of polygenic herita- 
bility or simultaneous estimation of the between-family 
variation from the likelihood analysis. The latter ap- 
proach was found to be necessary in  the KNOTI and 
HALEY study (1992b), which examined a full-sib design 
in which  family  sizes  were  relatively  small and therefore 
family means were inaccurate. The effect of fitting a 
polygenic model on  parameter accuracy was to decrease 
the accuracy of the  parameters ( a  and d); this contrib- 
uted to the  adjustment term because, in making the 
adjustment,  much of the information on these parame- 
ters is lost. Thus  for  the purposes of obtaining very 
accurate estimates of the  magnitude of gene effects, 
an alternative method  for adjusting for between family 
variation, such as that used by KNOTT and HALEY 
(1992b) may be considered. Certainly, the effect of  us- 
ing  the polygenic model on  the correlations between 
parameters was to strengthen  them, which is an undesir- 
able  consequence if several imperfectly estimated pa- 
rameters are to be used simultaneosuly in breeding pro- 
grams. 

The final influence on parameter accuracy examined 
in this study was that of assumed marker allele fre- 
quency. When wrong marker allele frequencies were 
used in the likelihood equation,  the QTL was estimated 
to be larger and  more  distant from the  marker  than it 
really  was. This  problem is likely to be reduced as the 
heterozygosity of the  marker increases because more 
progeny will have marker alleles that can be assigned 
to the sire and dam with certainty. Increased heterozy- 
gosity will certainly occur with the widespread transition 
of  use of diallelic markers such as RFLPs to polyallelic 
markers such as microsatellites. The model  presented 
here can be adjusted to account  for multiple alleles 
by grouping  the progeny into  three  marker genotype 
groups: one  for those with the same genotype as the 
sire and two for those having either  one of the sire’s 
alleles. In the  current model, these groups would corre- 
spond to the Mm, MM and mm groups and  the frequen- 
cies  of the sire alleles in the  dam  population, t ,  and t . ~  
would then replace t and (1 - t )  in the matrix C. One 
problem  that may arise is that with  many alleles, marker 
frequencies estimated from the sample will be  less accu- 
rate and wrongly assumed frequencies will influence 
the estimates, as shown in this  study. One way to avoid 
this is to only use data from animals that have been 
unambiguously assigned a paternal and maternal allele, 
although this  would result in loss  of information and 
hence loss  of accuracy of the estimates. Sensitivity to 
assumptions about  marker allele frequency is a well 
known problem  in linkage analysis  of discrete traits. 

So far,  the  information yielded by the likelihood on 
the QTL parameters has been discussed. However, the 
likelihood also yielded information  on  the genotypes 
of the sires and was found  to very accurately predict 
the sire’s genotype when the  number of  progeny was 
>loo. This  information is of great practical impor- 
tance when the ultimate goal of the  experiment is to 
select sires carrying favorable QTL alleles for  commer- 
cial breeding via marker-assisted selection  (WELLER 
and FERNANDO  1991).  This  prediction  method may 
also be used to eliminate the uninformative QTL ho- 
mozygous sires at  the early stage of a QTL mapping 
experiment,  although where there  are  multiple QTL 
to detect,  there will be few sires that  are homozygous 
for all QTL and  therefore able to be  discarded. The 
confidence with which sires can be classified into QTL 
genotypes  needs further investigation, especially when 
there  are many possible QTL genotypes, in which case 
the test of one genotype us. the rest requires some 
knowledge of the  properties of this multiple  hypothe- 
sis test statistic. 

The implications of violations of the  assumptions 
of the  model will be briefly considered.  The  model 
assumed underlying normality and  equal variance 
among QTL genotypes and  that  the progeny with rec- 
ords were a random  sample of the sire’s progeny. Skew- 
ness and kurtosis may lead to false conclusions about 
major  gene effects (GO et al. 1978). If there is skewness, 
the analysis can be performed  on transformed  data, 
as suggested by WELLER (1987),  although overcorrec- 
tion of the skewness can remove some of the  informz- 
tion on  the QTL from the  mixture of distributions. 
DARVASI (1990) found  that estimation of QTL parame- 
ters by  ML under  the assumption of equal  genotype 
variance resulted in accurate estimates for  genotype 
means even if this assumption was incorrect, provided 
that  the actual variances were not radically different. 
If recorded  progeny  are a selected  sample, estimates 
of QTL effects will be severely biased (MACKINNON and 
GEORGES  1992).  Incorporation of a truncation  param- 
eter in the likelihood  model  presented here may be 
one way of  accounting  for  the effects of selection. The 
degree of selection would, however, have to be known 
from an  independent analysis. 

Conclusions: The study showed both theoretically 
and empirically that unbiased estimates of the six pa- 
rameters  that  determine a QTL effect in the half-sib 
design are  able to be estimated by maximum likelihood 
methodology via linkage to a genetic markers. All pa- 
rameters  except  for  recombination frequency and the 
QTL’s dominance  effect  are accurately estimated rela- 
tive to the size  of the  parameter itself when there  are 
several thousand progeny records. Further improve- 
ments in accuracy may be obtained by including  other 
markers in the  model  that  reduce  the  background varia- 
tion ( JANSEN 1993; ZENC 1994).  Parameter estimates 
derived by this method could be used as input values 
to genetic evaluation schemes that  include information 
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on QTL in addition to polygenic  effects, pedigree infor- 
mation and fixed  effects (FERNANDO and GROSSMAN 
1989; BENTSEN and KLEMETSDAL 1991; KENNEDY et al. 
1992). The high predictive power of individual sires’ 
QTL can be directly applied to marker assisted  selec- 
tion. Computation of the log likelihood expectation is 
an efficient method for exploration of the accuracy and 
degree of independence  of  parameter estimates and 
power  of QTL detection  for different experimental de- 
signs and  parameter values. 
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APPENDIX 

The theoretical value  of a likelihood function, L, can 
be derived as  follows. For a likelihood function defined 
by a vector of parameters, 8, and a density function 
fix1 e), the log likelihood, log L, of a single observation, 
x, conditional on estimates of the parameters, e, is log- 
[ f i x 1  e)].  The theoretical number of observations with 
value x in a  population of  size N is Nf(xl0) so that  the 
log L over  all observations with  value x is Nf(x1 @)log- 
[ f i x [  e)]. Summing over  all  values  of x gives the ex- 
pected total log likelihood of the distribution of obser- 
vations  as: 

E(1og L) = NJ:mf(x18) logfixl8)*dx (Al)  

This equation can be evaluated at different values  of 
8 by numerical integration to give log likelihood pro- 
files for  the parameters in  8. 

For the  model  presented in this study, the likelihood 
involves a mixture of three  normal distributions of o b  
servations (xl ,  1 = 1, . . . , n,) with means pJ, density 
functions f (x l  - pj) and each with number  of observa- 
tions equal to: 

3 

ni X cy (A21 
i 

where i = 1,12 depends  on  the sire’s QTL genotype, as 
in ( 1 ) .  The likelihood of the model is comprised of 
four sublikelihoods, each conditional on the QTL geno- 
type  of the sire, H, and also dependent  on  the sire’s 
actual genotype, h. For example, if the sire’s actual ge- 
notype is MQ/mQ ( h  = l ) ,  the  expected value of the 

4 r 

log of the sublikelihood of the model conditional on 
the sire  having genotype QQ ( H  = 1 )  over  all  observa- 
tions with  value xl is: 

3 3 

~QQlm(log LJ * C ni C cqf(x l -  PJ 
i = l  j 

1 

x log c (n2,fC.l - a,, (A3) 
i 

and if conditional on  the sire being MQ/mq ( H  = 2) 
is: 

3 3  

EmlQq(l0g L X J  c n” C cqf(x1 - P I )  
z=I 

1 

X log C ? ( i + 3 ) j f ( x l  - Pi) (A41 
1 

Note that these expected log likelihoods are approxi- 
mations, the explanation and justification for which are 
given at  the  end of this APPENDIX. Integrating over  all 
values of xl and adding  together  the antilogs (denoted 
by exp) of the conditional log sublikelihoods weighted 
by the  prior probability of the sire’s genotype, p H ,  gives: 

4&(log L) * $ exp[ log,&] 

J-, j - 1  , 
E 3  3 

+ c nL c C , i f ( X l  - Pj) 

4 

x log c O , f i ( X l  - a,) - (A5) 
I 1 

for T = i + 3 ( H  - 1 )  + 3 ( h  - 1 )  = i + 3 ( H  - 1 )  in 
this case. 

If the sire’s actual genotype is M w m q  ( h  = 2) then 
the total number of observations with  value x/ becomes: 

6 3 

C ni C c Q f ( ~ /  - PJ (A6) 
i=4 j 

giving the expected value of the log likelihood for such 
a sire as: 

4 

Note that now T = i + 3 ( H  - 1 )  + 3 because E(log L, = ph 10g[Eh(log L)] 
h =  1. h 

be QQ is p2s and for Qq is p(l - p ) s ,  etc. Thus  the The approximations used to arrive at this equation 
expected value  of the total log likelihood is: are indicated in the derivation given  below. 

(AS) 

If there  are s sires, the  number of  sires expected to which is equivalent to (3).  
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To  determine  the effect of the  approximation  on 
the results on  standard  errors  and  correlations  pre- 
sented  in this paper, 50 replicates  each of 100 prog- 
eny  from  each of the  four possible sire  genotypes (ie., 
400 progeny  per  replicate  population) were stochas- 
tically simulated  using  the  parameters used  in  this 
study. Their likelihoods for  the  true values, and  the 
second derivatives with respect to ci and  fwere calcu- 
lated  for  each  replicate and  then averaged to give 
average  estimates of standard  errors  and  the correla- 

tion  between them.  The average  log L from  simula- 
tions was -586.324 compared with -589.096 for  the 
E(1og L ) .  Estimated lower bound  standard  errors of 
ci, P and  their  correlation  from simulations  averaged 
0.128, 0.232 and -0.438, respectively, and were pre- 
dicted  to  be  0.126,  0.226  and  -0.380, respectively. 
Thus  there was good  agreement between the E(1og 
L )  from (3)  and  the realized average value of log L 
indicating  that  the  approximation  did  not bias the 
results presented in this study. 


